Plasma Assisted Reduction of Graphene Oxide Films
Abstract
:1. Introduction
2. GO/rGO: Properties, Reduction Methods, and Characterization
2.1. Structure and Properties of GO/rGO
2.2. Reduction Methods for GO
2.3. Characterization of rGO
- epoxide (C-O-C): 1230–1320 cm−1, asymmetric stretching; ~850 cm−1 bending motion,
- sp2-hybridized C=C: 1500–1600 cm−1, in-plane vibrations,
- carboxyl (COOH): 1650–1750 cm−1 (including C-OH vibrations at 3530 and 1080 cm−1),
- ketonic species (C=O): 1600–1650 and 1750–1850cm−1, and
- hydroxyl (namely phenol, C-OH): 3050–3800 and 1070 cm−1) with all C-OH vibrations from COOH and H2O.
3. Plasma-Assisted Reduction of GO
- operating pressure:
- o
- low-pressure plasma
- o
- atmospheric pressure plasma
- temperature:
- o
- low-temperature plasma (Tgas < 2000 K)
- o
- high-temperature plasma (Tgas > 2000 K)
- thermodynamics:
- o
- thermal plasma/equilibrium plasma (Telectron ≈ Tion ≈ Tgas)
- o
- non-thermal plasma/non-equilibrium plasma (Telectron ≫ Tion ≈ Tgas)
- type of coupling:
- o
- inductive coupling
- o
- capacitive coupling
- plasma generation:
- o
- microwave discharge (300 MHz ≤ f ≤ 300 GHz)
- o
- radiofrequency (RF) discharge (ideally 13.56 MHz):
- o
- direct current (DC) discharge
- o
- dielectric barrier discharge (DBD)
- o
- corona discharge
- o
- electric arc
- o
- hollow cathode discharge
- o
- electron beam discharge (EB)
- o
- plasma torch
- o
- alternating current.
3.1. Inert-Gas (He and Ar) Plasma
3.2. Hydrogen Plasma
3.3. Methane Plasma
3.4. Nitrogen and Ammonia Plasma
3.5. Acetylene Plasma
3.6. Air Plasma
4. Summary and Conclusions
5. Outlook
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2D | two dimensional |
σ | conductivity |
μ-APPJ | micro atmospheric pressure plasma jet |
A | ampere |
AC | alternating current |
AGD | atmospheric-pressure glow discharge plasma |
APPJ | atmospheric pressure plasma jet |
AS | active screen |
CCP | capacitively coupled plasma |
CIGSe | Cu(In, Ga)(Se, S)2 solar cell |
CVD | chemical vapor deposition |
DBD | dielectric barrier discharge |
DC | direct current |
FET | field effect transistor |
GO | graphene oxide |
hr | hour |
ICP | inductively coupled plasma |
kΩ | kilo-Ohm |
min | minute |
mTorr | milli-Torr |
MΩ | mega-Ohm |
MW | microwave |
RF | radio frequency |
rGO | reduced graphene oxide |
s | second |
sq | square |
V | volt |
V/V | volume/volume |
W | watt |
Appendix A
Serial No. | Year & Reference | Plasma | Characteristic Changes | Application | |||
---|---|---|---|---|---|---|---|
Discharge Gas | Generation | Time | Parameters | ||||
1 | 2007 [150] | H2 | -- | 5 s | 30 W, 0.8 mbar | σ: 0.05–2 S/cm, ambipolar charge transport | FET |
2 | 2010 [203] | 10% CH4 + Ar | Electron beam | 30 s | −2 kV pulse at linear hollow cathode with 150 G Helmholtz coil, 90 mTorr | Controlled reduction with atomic oxygen varied between 43% and 5% | -- |
3 | 2011 [188] | Ar | RF | 5–40 min | 25 W, 0.02 mbar, 20 sccm | >2 orders lower surface resistivity. Etching effect with prolonged duration | -- |
4 | 2012 [93] | CH4 | RF | 10 min | 100 W, 0.20 Torr, ~575 °C | σ: 1590 S/cm, ID/IG: ~0.53 | -- |
5 | 2012 [202] | Ar/H2 (1:1) | DC | 30 min | ~2 kV, 10 mA discharge current, atm. pressure, 150 °C | Sheet resistance 47.7 kΩ/sq (~6 μm), C/O ratio 6.95 | -- |
6 | 2013 [192] | NH3 | RF | 3 min | 200W, 500 mTorr, 150 °C, 400 sccm | ~6% N-doped r-GO, σ: 7.4 S/cm, C/O ratio ~9.4 ID/IG: 0.98 (GO:1.09) | -- |
7 | 2013 [193] | H2 | RF | <30 s | 200W, 20 mTorr, 150 °C, 300 sccm | σ: 2 S/cm (18 s) and C/O ratio of ~14 (30 s), >18 s exposure causes trade-off between σ & reduction | -- |
8 | 2013 [280] | H2 | -- | <10 min | 2 W, 1 Torr | Reduction in sheet resistance by 3~4 orders of magnitude that could be restricted to uppermost layers on short exposure | FET |
9 | 2013 [198] | NH3 | DC | 1–20 min | 10–30 W, ~1 Pa | C/O ratio: ~ 6.66, N/C ratio: 15%, work-function change from 4.4 to 3.4 eV, σ: 1–80 S/cm (5 min) | -- |
10 | 2013 [191] | (a) NH3 (b) H2 + 10% Ar | - | (a) 4.5–10 min (b) 8.5 min | 160 W, 8 sccm | (a) μe: 5.41 cm2/V.s (8.5 min) and μh: 2.1 cm2/V.s (5.5 min) (b) σ: 630 S/cm for (8.5 min) | FET |
11 | 2014 [194] | H2 | RF | 40 s | 10 W, 0.3 mbar, 20 sccm | C/O ratio ~7.9, ID/IG: 0.81 (GO: 0.94), 71% (15%) response at 1500 ppm in N2 (in air) | CO2 gas-sensor |
12 | 2014 [199] | H2 | DC | 10 s–5 min | 15 & 30 W, working pressure ~50 Pa, 50–120 °C | σ: 0.2–31 S/cm & μh: 0.1–6 cm2/V.s (15 W, 50 °C, 30 s) | FET |
13 | 2014 [195] | NH3 | RF | 30 min | 10 W, 100 mTorr | σ: 1666 S/m, C/O ratio ~4.16 and N/C ratio 9.3%, ID/IG: 1.84 (GO: 2.22) | -- |
14 | 2014 [56] | He | AGD | 2 s | −10 kV, discharge current ~1.5–1.9 mA, atmospheric pressure (positive-column plasma) | σ: 5900 S/m, C/O ratio 7.6, surface area: 371 m2/g, specific capacitance 161.6 F/g (1 A/g) | Supercapacitor |
15 | 2014 [190] | H2/Ar (various ratio) | RF | 3–10 min | 20–100 W, 4.7 Pa | C/O ratio: 9.6 (100 W, H2/Ar-2:1, 5 min), specific capacitance 185.2 F/g (100 mV/s) for 70 W, H2/Ar-2:1, 5min (C/O ratio 4.2) | Supercapacitor |
16 | 2015 [200] | Ar | DC | 4 min | ~10 kV at cathode, 240 mTorr | C/O ratio ~7.9, ID/IG: 0.85, specific capacitance of 190 F/g (10 mV/s) | Supercapacitor |
17 | 2015 [196] | H2 | RF | 30 min | 60 W | σ: 3.1 S/cm, μ: 37.5 cm2/V.s | -- |
18 | 2015 [204] | 25% N2 + H2 | AS | 60 min | 4 mbar in a traditional 40 kW plasma nitriding unit, 100–200 °C | Doping of N from gas discharge and Fe, Cr, and Mo elements from steel mesh, reduction in resistance from 12.6 MΩ to 50 kΩ (200 °C) | -- |
19 | 2015 [197] | NH3 | RF | 1–40 min | 1 kW/m2, 500 mTorr | C/O ratio ~2.7 and N/C ratio ~17% (30 min), σ: 80 S/m (30 min) | -- |
20 | 2016 [221] | H2 + CH4 | RF | 5–30 min | 100 W, 240 °C | All oxygen containing groups were removed except ~1.2%, ID/IG: 0.83, RSH: 15 k Ω/sq | -- |
21 | 2016 [178] | (a) Ar (b) N2 | RF | 10 min | 100 W, 0.3 Pa, sample biased at 0 V and sample bias from −50 to −300 V | N2-plasma was more effective in reduction (at all sample bias) with relatively higher ion penetration depth | -- |
22 | 2017 [207] | H2, CH4, & H2/CH4 (1:1) | DBD | 1–10 s | 1.9 W/cm2, each gas-flow at 0.2 mL/min | ~40% sp2—Carbon restored. Oxidation level in GO reduced from ~50% to ~10% (H2/CH4) | -- |
23 | 2017 [179] | 10% CH4 + H2 | RF | ~1 min | Thermal annealing (Ar, 1000 °C, 30 min) followed by plasma treatment: 200 W, 0.34 Torr, 700–900 °C | improvement in μ from 0.01–1 cm2/V.s to 50 cm2/V.s., ID/IG: 0.56 (GO:1.04) | -- |
24 | 2017 [259] | 20% H2 + C2H2 | - | 2 min | Thermal annealing (vacuum, 700 °C, 7 hrs.) followed by plasma treatment: 20 W, 50 sccm total flow | μhall: ~90 cm2/V.s, RSH: 510 Ω/sq (5 nm), C/O ratio 10.9, ID/IG: 1.33 (GO:0.97) | Memory device |
25 | 2017 [180] | 5% CH4 + Ar | RF | 1–20 min | 700 W/m2, 500 mTorr | transmittance from 91.9% to ~94% at 600 nm & 8.13 MΩ/sq (10 min) | -- |
26 | 2018 [181] | (a) NH3 (b) N2 | RF | 10 min | 100 W, 0.3 Pa, sample biased at 0 V and −50 to −350 V | Both plasmas incorporated N into GO, NH3 was more effective in reduction of O-groups | -- |
27 | 2018 [208] | H2 | DBD | 1–64 s | 40 W/cm3, atm. pressure | Resistance reduced to 2 MΩ/sq, C/O ratio of ~4.76 (16 s) | -- |
28 | 2018 [205] | Air | RF | 10–120 s | 300 W, 20 kHz, ~10 kV (APPJ plasma) | RSH: 186 Ω/sq (25μm), vol. capacitance 536.55 F/cm3 (1 A/g) | Supercapacitor |
29 | 2018 [184] | H2/CH4 (1:1) | RF | 10–120 min | 10 W, 9.7–9.8 Pa, H2 & CH4: each at 35 sccm flow, 550–650 °C with Cu catalyst | σ: 930 S/cm, μe: 480 cm2/V.s, ID/IG: ~0.4 | FET |
30 | 2018 [183] | H2 | RF | 30 min | 20–60 W | Rise in optical bandgap energy with increase in O-vacancy | -- |
31 | 2018 [201] | H2 | DC | 1 min | 15 W, ~0.3 Torr | Threshold of device reduced from 2.6 to 1.8 V, On/Off ratio improved from ~80 to ~103 | Memory device |
32 | 2018 [185] | CH4/Ar (1:2 to 2:1) | RF | 1–10 min | 100 W, 50 mTorr, total gas flow 30 sccm | C/O ratio improved from 2.2 to 10.6 & σ: 264 S/m (5 min) | -- |
33 | 2019 [189] | H2/CH4 (35:1 to 1:35) | RF | ~0.16–9 hrs | 10 W, 9.7–9.8 Pa, total flow 350 sccm, 550 °C with Cu catalyst | Moderate restored r-GO in ~15 min for CH4 rich condition, high crystallinity for H2 rich condition: μe: 900 cm2/V.s, ID/IG: 0.17 | -- |
34 | 2019 [186] | 20% C2H2 + NH3 | - | 3 min | annealing at 700 °C (30 min, 10−4 mbar); followed by 3 min plasma: 20 W, 2 mbar, 50 sccm total flow | C/O ratio 8.34, μe: 60–80 cm2/V.s, photoresponsivity of 0.68 A/W at 1 V | Photodetector |
35 | 2019 [187] | 20% H2 + N2 | RF | 5–80 min | 1400 W at ~370 kHz, 50 sccm total flow, sample with 0 and −35 V bias | DC bias contributed to efficient reduction and recovery of GO (lowest ID/IG ratio). Resistance change between ~425–570 kΩ for 0–1.5% strain | Stress sensor |
36 | 2019 [162] | Ar | RF | 30–120 min | 300 W, 650 mTorr | resistance of 2 kΩ/sq (120 min), mean sensor sensitivity of 277 ± 80 µA/mM.cm2; Pt reference 5.2 ± 0.51 µA/mM.cm2 | H2O2 sensor |
37 | 2020 [206] | 1% He + N2 & He + H2 | RF | 5 s–3 min | 4 W, flow: 2000 sccm N2 & 16 sccm He (µAPPJ plasma) | Sheet resistance: ~4 MΩ/sq (He + N2), ~0.24 MΩ/sq (He + H2); GO ~138 MΩ/sq | -- |
References
- Boehm, H.P.; Setton, R.; Stumpp, E. Nomenclature and terminology of graphite intercalation compounds. Synth. Metals 1985, 11, 363–371. [Google Scholar] [CrossRef]
- Larousserie, D. Graphene—The New Wonder Material. Available online: https://www.theguardian.com/science/2013/nov/26/graphene-molecule-potential-wonder-material (accessed on 8 June 2020).
- Wallace, P.R. The Band Theory of Graphite. Phys. Rev. 1947, 71, 622. [Google Scholar] [CrossRef]
- McClure, J.W. Diamagnetism of Graphite. Phys. Rev. 1956, 104, 666–671. [Google Scholar] [CrossRef]
- Slonczewski, J.C.; Weiss, P.R. Band Structure of Graphite. Phys. Rev. 1958, 109, 272–279. [Google Scholar] [CrossRef]
- Semenoff, G.W. Condensed-Matter Simulation of a Three-Dimensional Anomaly. Phys. Rev. Lett. 1984, 53, 2449–2452. [Google Scholar] [CrossRef]
- Fradkin, E. Critical behavior of disordered degenerate semiconductors. II. Spectrum and transport properties in mean-field theory. Phys. Rev. B 1986, 33, 3263–3268. [Google Scholar] [CrossRef]
- Haldane, F.D.M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”. Phys. Rev. Lett. 1988, 61, 2015–2018. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Warner, J.H.; Schäffel, F.; Bachmatiuk, A.; Rümmeli, M.H. Properties of Graphene. In Graphene; Elsevier: Amsterdam, The Netherlands, 2013; pp. 61–127. [Google Scholar]
- Novoselov, K.S.; Fal, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef]
- Scott Bunch, J.; Verbridge, S.S.; Alden, J.S.; van der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Impermeable Atomic Membranes from Graphene Sheets. Nano Lett. 2008, 8, 2458–2462. [Google Scholar] [CrossRef] [Green Version]
- Garg, R.; Dutta, N.; Choudhury, N. Work Function Engineering of Graphene. Nanomaterials 2014, 4, 267–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, A.; Chroneos, A.; Braithwaite, N.S.J.; Gandhiraman, R.P.; Krishnamurthy, S. Plasma engineering of graphene. Appl. Phys. Rev. 2016, 3, 021301. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A.C. Production and processing of graphene and 2d crystals. Mater. Today 2012, 15, 564–589. [Google Scholar] [CrossRef]
- Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ji, H.; Cheng, H.M.; Ruoff, R.S. Mass production and industrial applications of graphene materials. Natl. Sci. Rev. 2018, 5, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Backes, C.; Abdelkader, A.M.; Alonso, C.; Andrieux-Ledier, A.; Arenal, R.; Azpeitia, J.; Balakrishnan, N.; Banszerus, L.; Barjon, J.; Bartali, R.; et al. Production and processing of graphene and related materials. 2D Mater. 2020, 7, 022001. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–670. [Google Scholar] [CrossRef] [Green Version]
- Warner, J.H.; Schäffel, F.; Bachmatiuk, A.; Rümmeli, M.H.; Ibrahim, I. Chapter 4: Methods for Obtaining Graphene. In Graphene: Fundamentals and Emergent Applications; Elsevier: Waltham, MA, USA, 2013; pp. 129–228. [Google Scholar]
- Lin, Y.M.; Dimitrakopoulos, C.; Jenkins, K.A.; Farmer, D.B.; Chiu, H.Y.; Grill, A.; Avouris, P. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science 2010, 327, 662. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [Green Version]
- Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324–3334. [Google Scholar] [CrossRef]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’Ko, Y.K.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, D.; Grande, L.; Chundi, V.; White, R.; Bower, C.; Andrew, P.; Ryhänen, T. Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices. Chem. Commun. 2012, 48, 1239–1241. [Google Scholar] [CrossRef] [PubMed]
- Paton, K.R.; Varrla, E.; Backes, C.; Smith, R.J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O.M.; King, P.; et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, P.G.; Hodge, S.A.; Lombardi, L.; Tomarchio, F.; Decorde, N.; Milana, S.; Goykhman, I.; Su, Y.; Mesite, S.V.; Johnstone, D.N.; et al. Microfluidization of Graphite and Formulation of Graphene-Based Conductive Inks. ACS Nano 2017, 11, 2742–2755. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Zhang, C.; Hao, R.; Hou, Y. Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale 2011, 3, 2118–2126. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X.; Liu, X. Obtaining a sustainable competitive advantage from patent information: A patent analysis of the graphene industry. Sustainability 2018, 10, 4800. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Shi, L.; Zhang, Y.; Liu, Z. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem. Soc. Rev. 2018, 47, 3018–3036. [Google Scholar] [CrossRef]
- Stankovich, S.; Piner, R.D.; Chen, X.; Wu, N.; Nguyen, T.; Ruoff, R.S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 2006, 16, 155–158. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Yu, X.; Cheng, H.; Zhang, M.; Zhao, Y.; Qu, L.; Shi, G. Graphene-based smart materials. Nat. Rev. Mater. 2017, 2, 1–14. [Google Scholar] [CrossRef]
- Eftekhari, A.; Garcia, H. The necessity of structural irregularities for the chemical applications of graphene. Mater. Today Chem. 2017, 4, 1–16. [Google Scholar] [CrossRef]
- Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Eda, G.; Chhowalla, M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Adv. Mater. 2010, 22, 2392–2415. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Han, C.; Jiang, B.; Iocozzia, J.; He, C.; Shi, D.; Jiang, T.; Lin, Z. Graphene-based materials with tailored nanostructures for energy conversion and storage. Mater. Sci. Eng. R Rep. 2016, 102, 1–72. [Google Scholar] [CrossRef]
- El-Kady, M.F.; Shao, Y.; Kaner, R.B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 1–14. [Google Scholar] [CrossRef]
- Bahamonde, J.P.; Nguyen, H.N.; Fanourakis, S.K.; Rodrigues, D.F. Recent advances in graphene—Based biosensor technology with applications in life sciences. J. Nanobiotechnol. 2018, 16, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Subhash, A.; Chemmenchery, N.; Kandasubramanian, B. Graphene and Graphene Oxide for Fuel Cell Technology. Ind. Eng. Chem. Res. 2018, 57, 9333–9350. [Google Scholar] [CrossRef]
- Yan, M.; Xiang, T.; Yu, X.; Xiao, J.; Li, W.; Ku, Z.; Huang, F.; Zhong, J.; Peng, Y.; Cheng, Y.-B. Room-temperature Sputtered NiOx for hysteresis-free and stable inverted Cs-FA mixed-cation perovskite solar cells. Mater. Sci. Semicond. Process. 2020, 115, 105129. [Google Scholar] [CrossRef]
- Thakur, S.; Karak, N. Alternative methods and nature-based reagents for the reduction of graphene oxide—A review. Carbon 2015, 94, 224–242. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Z.; Zhang, S.; Shao, G. Recent Advances in Effective Reduction of Graphene Oxide for Highly Improved Performance Toward Electrochemical Energy Storage. Energy Environ. Mater. 2018, 1, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Aunkor, M.T.H.; Mahbubul, I.M.; Saidur, R.; Metselaar, H.S.C. The green reduction of graphene oxide. RSC Adv. 2016, 6, 27807–27828. [Google Scholar] [CrossRef]
- De Silva, K.K.H.; Huang, H.-H.; Joshi, R.K.; Yoshimura, M. Chemical reduction of graphene oxide using green reductants. Carbon 2017, 119, 190–199. [Google Scholar] [CrossRef]
- Taniselass, S.; Md Arshad, M.K.; Gopinath, S.C.B. Current state of green reduction strategies: Solution-processed reduced graphene oxide for healthcare biodetection. Mater. Sci. Eng. C 2019, 96, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Ismail, Z. Green reduction of graphene oxide by plant extracts: A short review. Ceram. Int. 2019, 45, 23857–23868. [Google Scholar] [CrossRef]
- De Silva, K.K.H.; Huang, H.-H.; Joshi, R.; Yoshimura, M. Restoration of the graphitic structure by defect repair during the thermal reduction of graphene oxide. Carbon 2020, 166, 74–90. [Google Scholar] [CrossRef]
- Feng, J.; Ye, Y.; Xiao, M.; Wu, G.; Ke, Y. Synthetic routes of the reduced graphene oxide. Chem. Pap. 2020, 74, 3767–3783. [Google Scholar] [CrossRef]
- Jakhar, R.; Yap, J.E.; Joshi, R. Microwave reduction of graphene oxide. Carbon 2020, 170, 277–293. [Google Scholar] [CrossRef]
- Agarwal, V.; Zetterlund, P.B. Strategies for reduction of graphene oxide—A comprehensive review. Chem. Eng. J. 2021, 405, 127018. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Mao, S.; Pu, H.; Chen, J. Graphene oxide and its reduction: Modeling and experimental progress. RSC Adv. 2012, 2, 2643–2662. [Google Scholar] [CrossRef]
- Dong, L.; Yang, J.; Chhowalla, M.; Loh, K.P. Synthesis and reduction of large sized graphene oxide sheets. Chem. Soc. Rev. 2017, 46, 7306–7316. [Google Scholar] [CrossRef] [PubMed]
- Neustroev, E.P. Plasma Treatment of Graphene Oxide. In Graphene Oxide—Applications and Opportunities; Kamble, G., Ed.; IntechOpen: London, UK, 2018; pp. 7–24. [Google Scholar]
- Bo, Z.; Zhu, W.; Tu, X.; Yang, Y.; Mao, S.; He, Y.; Chen, J.; Yan, J.; Cen, K. Instantaneous Reduction of Graphene Oxide Paper for Supercapacitor Electrodes with Unimpeded Liquid Permeation. J. Phys. Chem. C 2014, 118, 13493–13502. [Google Scholar] [CrossRef]
- Nair, R.R.; Wu, H.A.; Jayaram, P.N.; Grigorieva, I.V.; Geim, A.K. Unimpeded Permeation of Water through Helium-Leak-Tight Graphene-Based Membranes. Science 2012, 335, 442–444. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Fang, S.; Wang, Q. The tunable plasma synthesis of Pt-reduced graphene oxide nanocomposites. AIP Adv. 2017, 7, 065118. [Google Scholar] [CrossRef]
- Ke, Z.; Ma, Y.; Zhu, Z.; Zhao, H.; Wang, Q.; Huang, Q. Non-thermal hydrogen plasma processing effectively increases the antibacterial activity of graphene oxide. Appl. Phys. Lett. 2018, 112, 013701. [Google Scholar] [CrossRef]
- Abdelkader-Fernández, V.K.; Melguizo, M.; Domingo-García, M.; López-Garzón, F.J.; Pérez-Mendoza, M. Hydrogen cold plasma for the effective reduction of graphene oxide. Appl. Surf. Sci. 2019, 464, 673–681. [Google Scholar] [CrossRef]
- Eliasson, B.; Kogelschatz, U. Nonequilibrium Volume Plasma Chemical Processing. IEEE Trans. Plasma Sci. 1991, 19, 1063–1077. [Google Scholar] [CrossRef]
- Hopwood, J. Review of inductively coupled plasmas for plasma processing. Plasma Sources Sci. Technol. 1992, 1, 109–116. [Google Scholar] [CrossRef]
- Schütze, A.; Jeong, J.Y.; Babayan, S.E.; Park, J.; Selwyn, G.S.; Hicks, R.F. The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. IEEE Trans. Plasma Sci. 1998, 26, 1685–1694. [Google Scholar] [CrossRef] [Green Version]
- Conrads, H.; Schmidt, M. Plasma generation and plasma sources. Plasma Sour. Sci. Technol. 2000, 9, 441–454. [Google Scholar] [CrossRef] [Green Version]
- Bogaerts, A.; Neyts, E.; Gijbels, R.; Van der Mullen, J. Gas discharge plasmas and their applications. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 609–658. [Google Scholar] [CrossRef]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Adamovich, I.; Baalrud, S.D.; Bogaerts, A.; Bruggeman, P.J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J.G.; Favia, P.; et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology. J. Phys. D Appl. Phys. 2017, 50, 323001. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Ruoff, R.S.; Bielawski, C.W. From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future. Angew. Chemie Int. Ed. 2010, 49, 9336–9344. [Google Scholar] [CrossRef] [PubMed]
- Brodie, B.J., XIII. On the atomic weight of graphite. Phil. Trans. R. Soc. 1859, 149, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Mkhoyan, K.A.; Contryman, A.W.; Silcox, J.; Stewart, D.A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Atomic and Electronic Structure of Graphene-Oxide. Nano Lett. 2009, 9, 1058–1063. [Google Scholar] [CrossRef] [Green Version]
- Dreyer, D.R.; Park, S.; Bielawski, W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef]
- Mouhat, F.; Coudert, F.-X.; Bocquet, M.-L. Structure and chemistry of graphene oxide in liquid water from first principles. Nat. Commun. 2020, 11, 1566. [Google Scholar] [CrossRef]
- He, H.; Klinowski, J.; Forster, M.; Lerf, A. A new structural model for graphite oxide. Chem. Phys. Lett. 1998, 287, 53–56. [Google Scholar] [CrossRef]
- Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of Graphite Oxide Revisited. J. Phys. Chem. B 1998, 102, 4477–4482. [Google Scholar] [CrossRef]
- Sun, L. Structure and synthesis of graphene oxide. Chin. J. Chem. Eng. 2019, 27, 2251–2260. [Google Scholar] [CrossRef]
- Brisebois, P.P.; Siaj, M. Harvesting graphene oxide—Years 1859 to 2019: A review of its structure, synthesis, properties, and exfoliation. J. Mater. Chem. C 2020, 8, 1517–1547. [Google Scholar] [CrossRef]
- Aliyev, E.; Filiz, V.; Khan, M.M.; Lee, Y.J.; Abetz, C.; Abetz, V. Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris. Nanomaterials 2019, 9, 1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Müller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Hontoria-Lucas, C.; López-Peinado, A.J.; López-González, J.d.D.; Rojas-Cervantes, M.L.; Martín-Aranda, R.M. Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon 1995, 33, 1585–1592. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Babaev, A.A.; Zobov, M.E.; Kornilov, D.Y.; Tkachev, S.V.; Terukov, E.I.; Levitskii, V.S. Temperature Dependence of Electrical Resistance of Graphene Oxide. High Temp. 2019, 57, 198–202. [Google Scholar] [CrossRef]
- Gómez-Navarro, C.; Meyer, J.C.; Sundaram, R.S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic Structure of Reduced Graphene Oxide. Nano Lett. 2010, 10, 1144–1148. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.; Xie, J.; Dong, C.; Zhang, S.; Cao, G.; Zhao, X. From graphite oxide to nitrogen and sulfur co-doped few-layered graphene by a green reduction route via Chinese medicinal herbs. RSC Adv. 2014, 4, 17902–17907. [Google Scholar] [CrossRef]
- Noorunnisa Khanam, P.; Hasan, A. Biosynthesis and characterization of graphene by using non-toxic reducing agent from Allium Cepa extract: Anti-bacterial properties. Int. J. Biol. Macromol. 2019, 126, 151–158. [Google Scholar] [CrossRef]
- Sharma, M.; Mondal, D.; Das, A.K.; Prasad, K. Production of partially reduced graphene oxide nanosheets using a seaweed sap. RSC Adv. 2014, 4, 64583–64588. [Google Scholar] [CrossRef]
- Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H.M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466–4474. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Becerril, H.A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 2008, 92, 263302. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, T.; Xu, S.; Yuan, P.; Xu, X.; Wang, X. Thermal conductivity of giant mono- to few-layered CVD graphene supported on an organic substrate. Nanoscale 2016, 8, 10298–10309. [Google Scholar] [CrossRef]
- Ma, T.; Liu, Z.; Wen, J.; Gao, Y.; Ren, X.; Chen, H.; Jin, C.; Ma, X.-L.; Xu, N.; Cheng, H.-M.; et al. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nat. Commun. 2017, 8, 14486. [Google Scholar] [CrossRef]
- López, V.; Sundaram, R.S.; Gómez-Navarro, C.; Olea, D.; Burghard, M.; Gómez-Herrero, J.; Zamora, F.; Kern, K. Chemical Vapor Deposition Repair of Graphene Oxide: A Route to Highly-Conductive Graphene Monolayers. Adv. Mater. 2009, 21, 4683–4686. [Google Scholar] [CrossRef]
- Cheng, M.; Yang, R.; Zhang, L.; Shi, Z.; Yang, W.; Wang, D.; Xie, G.; Shi, D.; Zhang, G. Restoration of graphene from graphene oxide by defect repair. Carbon 2012, 50, 2581–2587. [Google Scholar] [CrossRef] [Green Version]
- Mathkar, A.; Tozier, D.; Cox, P.; Ong, P.; Galande, C.; Balakrishnan, K.; Leela Mohana Reddy, A.; Ajayan, P.M. Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide. J. Phys. Chem. Lett. 2012, 3, 986–991. [Google Scholar] [CrossRef]
- Hunt, A.; Kurmaev, E.Z.; Moewes, A. Band gap engineering of graphene oxide by chemical modification. Carbon 2014, 75, 366–371. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Raja, S.N.; Osenberg, D.; Choi, K.; Park, H.G.; Poulikakos, D. Annealing and polycrystallinity effects on the thermal conductivity of supported CVD graphene monolayers. Nanoscale 2017, 9, 15515–15524. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Lin, X.; Jia, J.; Wang, Z.; Li, Z.; Kim, J.-K. Tunable thermal conductivities of graphene oxide by functionalization and tensile loading. Carbon 2014, 80, 235–245. [Google Scholar] [CrossRef]
- Mu, X.; Wu, X.; Zhang, T.; Go, D.B.; Luo, T. Thermal transport in graphene oxide—From ballistic extreme to amorphous limit. Sci. Rep. 2015, 4, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Dun, C.; Xu, J.; Mu, J.; Li, P.; Gu, L.; Hou, C.; Hewitt, C.A.; Zhang, Q.; Li, Y.; et al. Ultrathin, Washable, and Large-Area Graphene Papers for Personal Thermal Management. Small 2017, 13, 1702645. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, T.; Yao, Y.; Li, T.; Hu, L.; Marconnet, A. Thermally Conductive Reduced Graphene Oxide Thin Films for Extreme Temperature Sensors. Adv. Funct. Mater. 2019, 29, 1–7. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Zhao, J.; Liu, F. Mechanical properties of graphene oxides. Nanoscale 2012, 4, 5910. [Google Scholar] [CrossRef]
- Gao, W.; Alemany, L.B.; Ci, L.; Ajayan, P.M. New insights into the structure and reduction of graphite oxide. Nat. Chem. 2009, 1, 403–408. [Google Scholar] [CrossRef]
- De Lima, B.S.; Bernardi, M.I.B.; Mastelaro, V.R. Wavelength effect of ns-pulsed radiation on the reduction of graphene oxide. Appl. Surf. Sci. 2020, 506, 144808. [Google Scholar] [CrossRef]
- Huang, X.-M.; Liu, L.-Z.; Zhou, S.; Zhao, J.-J. Physical properties and device applications of graphene oxide. Front. Phys. 2020, 15, 33301. [Google Scholar] [CrossRef] [Green Version]
- Milic, J.V.; Arora, N.; Dar, M.I.; Zakeeruddin, S.M.; Grätzel, M. Reduced Graphene Oxide as a Stabilizing Agent in Perovskite Solar Cells. Adv. Mater. Interfaces 2018, 5, 1800416. [Google Scholar] [CrossRef]
- Rosli, N.N.; Ibrahim, M.A.; Ahmad Ludin, N.; Mat Teridi, M.A.; Sopian, K. A review of graphene based transparent conducting films for use in solar photovoltaic applications. Renew. Sustain. Energy Rev. 2019, 99, 83–99. [Google Scholar] [CrossRef]
- Lamanna, E.; Tucci, M.; Lamanna, E.; Matteocci, F.; Calabro, E.; Serenelli, L.; Salza, E.; Martini, L.; Menchini, F.; Izzi, M.; et al. Mechanically Stacked, Two-Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26%. Joule 2020, 4, 865–881. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, K.; Luo, H.; Cheng, G.; Ma, X.; Xiong, Z.; Xiao, X. Highly efficient graphene-based Cu(In, Ga)Se2 solar cells with large active area. Nanoscale 2014, 6, 10879–10886. [Google Scholar] [CrossRef]
- Sim, J.K.; Kang, S.; Nandi, R.; Jo, J.Y.; Jeong, K.U.; Lee, C.R. Implementation of graphene as hole transport electrode in flexible CIGS solar cells fabricated on Cu foil. Sol. Energy 2018, 162, 357–363. [Google Scholar] [CrossRef]
- Alhammadi, S.; Reddy, V.R.M.; Gedi, S.; Park, H.; Sayed, M.S.; Shim, J.J.; Kim, W.K. Performance of graphene–cds hybrid nanocomposite thin film for applications in Cu(In, Ga)Se2 solar cell and h2 production. Nanomaterials 2020, 10. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wenisch, R.; Schlatmann, R.; Lauermann, I. Inorganic Materials as Hole Selective Contacts and Intermediate Tunnel Junction Layer for Monolithic Perovskite-CIGSe Tandem Solar Cells. Adv. Energy Mater. 2018, 8, 1–18. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Shi, G. Graphene materials for electrochemical capacitors. J. Phys. Chem. Lett. 2013, 4, 1244–1253. [Google Scholar] [CrossRef]
- Choi, S.; Kim, C.; Suh, J.M.; Jang, H.W. Reduced graphene oxide-based materials for electrochemical energy conversion reactions. Carbon Energy 2019, 1, 85–108. [Google Scholar] [CrossRef] [Green Version]
- Joshi, R.K.; Alwarappan, S.; Yoshimura, M.; Sahajwalla, V.; Nishina, Y. Graphene oxide: The new membrane material. Appl. Mater. Today 2015, 1, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.W.; Yu, Z.Y.; Cheng, S.J.; Chung, J.H.Y.; Liu, X.; Wu, C.Y.; Lin, S.F.; Chen, G.Y. Graphene oxide–based nanomaterials: An insight into retinal prosthesis. Int. J. Mol. Sci. 2020, 21, 2957. [Google Scholar] [CrossRef] [PubMed]
- Tarcan, R.; Todor-Boer, O.; Petrovai, I.; Leordean, C.; Astilean, S.; Botiz, I. Reduced graphene oxide today. J. Mater. Chem. C 2020, 8, 1198–1224. [Google Scholar] [CrossRef]
- Singh, R.K.; Kumar, R.; Singh, D.P. Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Adv. 2016, 6, 64993–65011. [Google Scholar] [CrossRef]
- Yang, D.; Velamakanni, A.; Park, S.; Stoller, M.; Piner, R.D.; Stankovich, S.; Jung, I.; Field, D.A.; Ventrice, C.A.; Ruoff, R.S. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47, 145–152. [Google Scholar] [CrossRef]
- Mohan, V.B.; Brown, R.; Jayaraman, K.; Bhattacharyya, D. Characterisation of reduced graphene oxide: Effects of reduction variables on electrical conductivity. Mater. Sci. Eng. B 2015, 193, 49–60. [Google Scholar] [CrossRef]
- Shin, H.-J.; Kim, K.K.; Benayad, A.; Yoon, S.-M.; Park, H.K.; Jung, I.-S.; Jin, M.H.; Jeong, H.-K.; Kim, J.M.; Choi, J.-Y.; et al. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Adv. Funct. Mater. 2009, 19, 1987–1992. [Google Scholar] [CrossRef]
- Fadeel, B.; Bussy, C.; Merino, S.; Vázquez, E.; Flahaut, E.; Mouchet, F.; Evariste, L.; Gauthier, L.; Koivisto, A.J.; Vogel, U.; et al. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano 2018, 12, 10582–10620. [Google Scholar] [CrossRef]
- Eigler, S.; Grimm, S.; Enzelberger-Heim, M.; Müller, P.; Hirscha, A. Graphene oxide: Efficiency of reducing agents. Chem. Commun. 2013, 49, 7391–7393. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.C. Application and Uses of Graphene Oxide and Reduced Graphene Oxide. In Applications of Graphene and Graphene-Oxide Based Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2015; pp. 39–55. [Google Scholar]
- Larciprete, R.; Fabris, S.; Sun, T.; Lacovig, P.; Baraldi, A.; Lizzit, S. Dual path mechanism in the thermal reduction of graphene oxide. J. Am. Chem. Soc. 2011, 133, 17315–17321. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, Y.; Huang, K. Advances in Microwave-Assisted Production of Reduced Graphene Oxide. Front. Chem. 2019, 7, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Zhao, Z.; Zhou, Q.; Gogotsi, Y.; Qiu, J. The role of microwave absorption on formation of graphene from graphite oxide. Carbon 2012, 50, 3267–3273. [Google Scholar] [CrossRef]
- Tang, S.; Jin, S.; Zhang, R.; Liu, Y.; Wang, J.; Hu, Z.; Lu, W.; Yang, S.; Qiao, W.; Ling, L.; et al. Effective reduction of graphene oxide via a hybrid microwave heating method by using mildly reduced graphene oxide as a susceptor. Appl. Surf. Sci. 2019, 473, 222–229. [Google Scholar] [CrossRef]
- Levchenko, I.; Ostrikov, K.K.; Zheng, J.; Li, X.; Keidar, M.; Teo, K.B.K. Scalable graphene production: Perspectives and challenges of plasma applications. Nanoscale 2016, 8, 10511–10527. [Google Scholar] [CrossRef] [PubMed]
- Dubin, S.; Gilje, S.; Wang, K.; Tung, V.C.; Cha, K.; Hall, A.S.; Farrar, J.; Varshneya, R.; Yang, Y.; Kaner, R.B. A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents. ACS Nano 2010, 4, 3845–3852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas, E.C.; Sun, Z.; Lüttge, A.; Tour, J.M. Reduction of Graphene Oxide via Bacterial Respiration. ACS Nano 2010, 4, 4852–4856. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, O.; Ghaderi, E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 2012, 50, 1853–1860. [Google Scholar] [CrossRef]
- Khanra, P.; Kuila, T.; Kim, N.H.; Bae, S.H.; Yu, D.-S.; Lee, J.H. Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast. Chem. Eng. J. 2012, 183, 526–533. [Google Scholar] [CrossRef]
- Chen, Y.; Niu, Y.; Tian, T.; Zhang, J.; Wang, Y.; Li, Y.; Qin, L.C. Microbial reduction of graphene oxide by Azotobacter chroococcum. Chem. Phys. Lett. 2017, 677, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhi, L.; Müllen, K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2008, 8, 323–327. [Google Scholar] [CrossRef]
- Becerril, H.A.; Mao, J.; Liu, Z.; Stoltenberg, R.M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Eigler, S.; Dotzer, C.; Hirsch, A.; Enzelberger, M.; Müller, P. Formation and decomposition of CO2 intercalated graphene oxide. Chem. Mater. 2012, 24, 1276–1282. [Google Scholar] [CrossRef]
- Kuila, T.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale 2013, 5, 52–71. [Google Scholar] [CrossRef] [PubMed]
- Trusovas, R.; Ratautas, K.; Raciukaitis, G.; Barkauskas, J.; Stankeviciene, I.; Niaura, G.; Mazeikiene, R. Reduction of graphite oxide to graphene with laser irradiation. Carbon 2012, 52, 574–582. [Google Scholar] [CrossRef]
- Mukherjee, R.; Thomas, A.V.; Krishnamurthy, A.; Koratkar, N. Photothermally Reduced Graphene as High-Power Anodes for Lithium-Ion Batteries. ACS Nano 2012, 6, 7867–7878. [Google Scholar] [CrossRef] [PubMed]
- Rozada, R.; Paredes, J.I.; López, M.J.; Villar-Rodil, S.; Cabria, I.; Alonso, J.A.; Martínez-Alonso, A.; Tascón, J.M.D. From graphene oxide to pristine graphene: Revealing the inner workings of the full structural restoration. Nanoscale 2015, 7, 2374–2390. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.J.; Levchenko, I.; Kumar, S.; Yajadda, M.M.A.; Yick, S.; Seo, D.H.; Martin, P.J.; Peel, S.; Kuncic, Z.; Ostrikov, K. Plasma nanofabrication and nanomaterials safety. J. Phys. D Appl. Phys. 2011, 44, 174019. [Google Scholar] [CrossRef]
- Bo, Z.; Yang, Y.; Chen, J.; Yu, K.; Yan, J.; Cen, K. Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale 2013, 5, 5180–5204. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, X.; Chai, Z.; Hu, W. Low-temperature plasma synthesis of carbon nanotubes and graphene-based materials and their fuel cell applications. Chem. Soc. Rev. 2013, 42, 8821–8834. [Google Scholar] [CrossRef]
- Dato, A. Graphene synthesized in atmospheric plasmas—A review. J. Mater. Res. 2019, 34, 214. [Google Scholar] [CrossRef] [Green Version]
- Perrozzi, F.; Prezioso, S.; Ottaviano, L. Graphene oxide: From fundamentals to applications. J. Phys. Condens. Matter 2014, 27, 13002. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Schniepp, H.C.; Adamson, D.H. Characterization of graphene oxide: Variations in reported approaches. Carbon 2019, 154, 510–521. [Google Scholar] [CrossRef]
- Sinitskii, A.; Dimiev, A.; Kosynkin, D.V.; Tour, J.M. Graphene nanoribbon devices produced by oxidative unzipping of carbon nanotubes. ACS Nano 2010, 4, 5405–5413. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Navarro, C.; Weitz, R.T.; Bittner, A.M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Lett. 2007, 7, 3499–3503. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M.S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Mather, R.R. Surface modification of textiles by plasma treatments. In Surface Modification of Textiles; Woodhead Publishing Limited: Cambridge, UK, 2009; pp. 296–317. [Google Scholar]
- Cui, Y.T.; Tougaard, S.; Oji, H.; Son, J.Y.; Sakamoto, Y.; Matsumoto, T.; Yang, A.; Sakata, O.; Song, H.; Hirosawa, I. Thickness and structure of thin films determined by background analysis in hard X-ray photoelectron spectroscopy. J. Appl. Phys. 2017, 121, 225307. [Google Scholar] [CrossRef] [Green Version]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291. [Google Scholar] [CrossRef]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Shan, C.; Tang, H.; Wong, T.; He, L.; Lee, S.T. Facile synthesis of a large quantity of graphene by chemical vapor deposition: An advanced catalyst carrier. Adv. Mater. 2012, 24, 2491–2495. [Google Scholar] [CrossRef]
- Cançado, L.G.; Jorio, A.; Ferreira, E.H.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef] [Green Version]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Eigler, S.; Dotzer, C.; Hirsch, A. Visualization of defect densities in reduced graphene oxide. Carbon 2012, 50, 3666–3673. [Google Scholar] [CrossRef]
- Wróblewska, A.; Dużyńska, A.; Judek, J.; Stobiński, L.; Zerańska, K.; Gertych, A.P.; Zdrojek, M. Statistical analysis of the reduction process of graphene oxide probed by Raman spectroscopy mapping. J. Phys. Condens. Matter 2017, 29, 475201. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.W.T.; Hu, G.; Howe, R.C.T.; Zhu, X.; Yang, Z.; Jones, C.G.; Hasan, T. Printing of Graphene and Related 2D Materials; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Sui, Y.; Hess-Dunning, A.; Wei, P.; Pentzer, E.; Sankaran, R.M.; Zorman, C.A. Electrically Conductive, Reduced Graphene Oxide Structures Fabricated by Inkjet Printing and Low Temperature Plasma Reduction. Adv. Mater. Technol. 2019, 4, 1–8. [Google Scholar] [CrossRef]
- Acik, M.; Lee, G.; Mattevi, C.; Chhowalla, M.; Cho, K.; Chabal, Y.J. Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat. Mater. 2010, 9, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, I. Oscillations in ionized gases. Proc. Natl. Acad. Sci. USA 1928, 14, 627. [Google Scholar] [CrossRef] [Green Version]
- Department of Space and Climate Physics—University College London. What is Space Plasma? Available online: https://www.ucl.ac.uk/mssl/research/solar-system/space-plasma-physics/what-space-plasma (accessed on 4 December 2020).
- Harry, J.E. Introduction to Plasma Technology; Wiley: Weinheim, Germany, 2010. [Google Scholar]
- Fridman, A. Plasma Chemistry; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Szabó, D.; Schlabach, S. Microwave Plasma Synthesis of Materials—From Physics and Chemistry to Nanoparticles: A Materials Scientist’s Viewpoint. Inorganics 2014, 2, 468–507. [Google Scholar] [CrossRef] [Green Version]
- Tendero, C.; Tixier, C.; Tristant, P.; Desmaison, J.; Leprince, P. Atmospheric pressure plasmas: A review. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 2–30. [Google Scholar] [CrossRef]
- Antao, D.S.; Staack, D.A.; Fridman, A.; Farouk, B. Atmospheric pressure dc corona discharges: Operating regimes and potential applications. Plasma Sources Sci. Technol. 2009, 18, 035016. [Google Scholar] [CrossRef]
- Penkov, O.V.; Khadem, M.; Lim, W.S.; Kim, D.E. A review of recent applications of atmospheric pressure plasma jets for materials processing. J. Coat. Technol. Res. 2015, 12, 225–235. [Google Scholar] [CrossRef]
- Graves, D.B. Plasma processing in microelectronics manufacturing. AIChE J. 1989, 35, 1–29. [Google Scholar] [CrossRef]
- Lee, C.G.N.; Kanarik, K.J.; Gottscho, R.A. The grand challenges of plasma etching: A manufacturing perspective. J. Phys. D Appl. Phys. 2014, 47, 273001. [Google Scholar] [CrossRef]
- Ebnesajjad, S. Surface Treatment of Fluoropolymers for Adhesion. In Fluoroplastics; Elsevier: Amsterdam, The Netherlands, 2015; Volume 2, pp. 564–588. [Google Scholar]
- Kan, C.W. Plasma surface treatments for smart textiles. In Active Coatings for Smart Textiles; Elsevier: Amsterdam, The Netherlands, 2016; pp. 221–241. [Google Scholar]
- Annen, A.; Jacob, W. Chemical erosion of amorphous hydrogenated boron films. Appl. Phys. Lett. 1997, 71, 1326–1328. [Google Scholar] [CrossRef]
- Hansen, T.A.R.; Weber, J.W.; Colsters, P.G.J.; Mestrom, D.M.H.G.; Van De Sanden, M.C.M.; Engeln, R. Synergistic etch rates during low-energetic plasma etching of hydrogenated amorphous carbon. J. Appl. Phys. 2012, 112. [Google Scholar] [CrossRef] [Green Version]
- Mohai, M.; Bertóti, I. Modification of graphene-oxide surface in nitrogen and argon glow discharge plasma. Surf. Interface Anal. 2016, 48, 461–464. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Pu, H.; Lv, P.; Zhu, Z.; Yang, C.; Zheng, R.; Wang, Z.; Liu, C.; Hu, E.; Zheng, J.; et al. Healing of reduced graphene oxide with methane + hydrogen plasma. Carbon 2017, 120, 274–280. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.; Kim, H.T.; Kim, C.; Lee, H.-R. The effects of capacitively coupled CH4 plasma on the reduction of the graphene oxide film. Mol. Cryst. Liq. Cryst. 2017, 651, 203–207. [Google Scholar] [CrossRef]
- Mohai, M.; László, K.; Bertóti, I. Reduction and covalent modification of graphene-oxide by nitrogen in glow discharge plasma. Surf. Interface Anal. 2018, 50, 1207–1212. [Google Scholar] [CrossRef]
- Neustroev, E.P.; Burtseva, E.K.; Soloviev, B.D.; Prokopiev, A.R.; Popov, V.I.; Timofeev, V.B. Modification of graphene oxide films by radiofrequency N2 plasma. Nanotechnology 2018, 29, 144002. [Google Scholar] [CrossRef]
- Banerjee, I.; Mahapatra, S.K.; Pal, C.; Sharma, A.K.; Ray, A.K. Effect of plasma power on reduction of printable graphene oxide thin films on flexible substrates. Mater. Res. Express 2018, 5, 056405. [Google Scholar] [CrossRef] [Green Version]
- Obata, S.; Sato, M.; Akada, K.; Saiki, K. High Degree Reduction and Restoration of Graphene Oxide on SiO2 at low temperature via remote Cu-assisted Plasma Treatment. Nanotechnology 2018, 29, 245603. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Gong, J.; Zeng, P.; Yang, X.; Liang, R.; Ou, Q.; Zhang, S. Fast room-temperature reduction of graphene oxide by methane/argon plasma for flexible electronics. Appl. Surf. Sci. 2018, 452, 481–486. [Google Scholar] [CrossRef]
- Haniff, M.A.S.M.; Ariffin, N.H.Z.; Hafiz, S.M.; Ooi, P.C.; Syono, M.I.; Hashim, A.M. Wafer-Scale Fabrication of Nitrogen-Doped Reduced Graphene Oxide with Enhanced QuaternaryN for High-Performance Photodetection. ACS Appl. Mater. Interfaces 2019, 11, 4625–4636. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.P.; Ye, X.; Huang, W.; Wu, M.Q.; Mao, L.N.; Yu, B.; Xu, S.; Levchenko, I.; Bazaka, K. Wearable, Flexible, Disposable Plasma-Reduced Graphene Oxide Stress Sensors for Monitoring Activities in Austere Environments. ACS Appl. Mater. Interfaces 2019, 11, 15122–15132. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, M.; Valentini, L.; Fabbri, P.; Kenny, J.M. Radiofrequency plasma assisted exfoliation and reduction of large-area graphene oxide platelets produced by a mechanical transfer process. Chem. Phys. Lett. 2011, 508, 285–288. [Google Scholar] [CrossRef]
- Obata, S.; Saiki, K. The effect of growth condition on graphene growth via Cu-assisted plasma reduction and restoration of graphene oxide. Jpn. J. Appl. Phys. 2019, 58, 015003. [Google Scholar] [CrossRef]
- Li, J.; Chen, C.; Wei, J.; Li, J.; Wang, X. Enhanced Electrochemical Performance of Reduced Graphene Oxides by H2/Ar Plasma Treatment. J. Phys. Chem. C 2014, 118, 28440–28447. [Google Scholar] [CrossRef]
- Zhu, H.; Ji, D.; Jiang, L.; Dong, H.; Hu, W. Tuning electrical properties of graphite oxide by plasma. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.J.; Jeong, Y.; Sohn, S.; Lee, S.Y.; Kim, Y.J.; Lee, K.; Kahng, Y.H.; Jang, J.-H. Fast and low-temperature reduction of graphene oxide films using ammonia plasma. AIP Adv. 2013, 3, 012117. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Kahng, Y.H.; Kim, Y.J.; Prem, T.; Park, K.; Lee, K.; Jang, J. Optical endpoint detection for plasma reduction of graphene oxide. AIP Adv. 2013, 3, 032121. [Google Scholar] [CrossRef]
- Hafiz, S.M.; Ritikos, R.; Whitcher, T.J.; Razib, N.M.; Bien, D.C.S.; Chanlek, N.; Nakajima, H.; Saisopa, T.; Songsiriritthigul, P.; Huang, N.M.; et al. A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sens. Actuators B Chem. 2014, 193, 692–700. [Google Scholar] [CrossRef]
- Kim, H.T.; Kim, C.; Park, C. Reduction and nitridation of graphene oxide (GO) films at room temperature using inductively coupled NH3 plasma. Vacuum 2014, 108, 35–38. [Google Scholar] [CrossRef]
- Li, T.; Patel, T.; Banerjee, I.; Pearce-hill, R. Plasma treated graphene oxide films: Structural and electrical studies. J. Mater. Sci. Mater. Electron. 2015, 26, 4810–4815. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, C.; Kim, H.T. Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH3 plasma. J. Appl. Phys. 2015, 118, 103303. [Google Scholar] [CrossRef]
- Singh, G.; Sutar, D.S.; Botcha, V.D.; Narayanam, P.K.; Talwar, S.S.; Srinivasa, R.S.; Major, S.S. Study of simultaneous reduction and nitrogen doping of graphene oxide Langmuir–Blodgett monolayer sheets by ammonia plasma treatment. Nanotechnology 2013, 24, 355704. [Google Scholar] [CrossRef]
- Singh, G.; Botcha, V.D.; Sutar, D.S.; Narayanam, P.K.; Talwar, S.S.; Srinivasa, R.S.; Major, S.S. Near room temperature reduction of graphene oxide Langmuir—Blodgett monolayers by hydrogen plasma. Phys. Chem. Chem. Phys. 2014, 16, 11708–11718. [Google Scholar] [CrossRef]
- Bo, Z.; Qian, J.; Han, Z.J.; Duan, L.; Qiu, K.; Ostrikov, K.K.; Yan, J.; Cen, K. Note: Rapid reduction of graphene oxide paper by glow discharge plasma. Rev. Sci. Instrum. 2015, 86, 056101. [Google Scholar] [CrossRef]
- Jesuraj, P.J.; Parameshwari, R.; Jeganathan, K. Improved performance of graphene oxide based resistive memory devices through hydrogen plasma. Mater. Lett. 2018, 232, 62–65. [Google Scholar] [CrossRef]
- Lee, S.W.; Mattevi, C.; Chhowalla, M.; Sankaran, R.M. Plasma-Assisted Reduction of Graphene Oxide at Low Temperature and Atmospheric Pressure for Flexible Conductor Applications. J. Phys. Chem. Lett. 2012, 3, 772–777. [Google Scholar] [CrossRef]
- Baraket, M.; Walton, S.G.; Wei, Z.; Lock, E.H.; Robinson, J.T.; Sheehan, P. Reduction of graphene oxide by electron beam generated plasmas produced in methane/argon mixtures. Carbon 2010, 48, 3382–3390. [Google Scholar] [CrossRef]
- Chen, J.; Shi, X.; Qi, S.; Mohai, M.; Bertoti, I.; Gao, Y.; Dong, H. Reducing and multiple-element doping of graphene oxide using active screen plasma treatments. Carbon 2015, 95, 338–346. [Google Scholar] [CrossRef]
- Alotaibi, F.; Tung, T.T.; Nine, M.J.; Kabiri, S.; Moussa, M.; Tran, D.N.H.H.; Losic, D.; Nine, J.; Kabiri, S.; Moussa, M.; et al. Scanning Atmospheric Plasma for Ultrafast Reduction of Graphene Oxide and Fabrication of Highly Conductive Graphene Films and Patterns. Carbon 2018, 127, 113–121. [Google Scholar] [CrossRef]
- Dey, A.; Ghosh, P.; Bowen, J.; Braithwaite, N.S.J.; Krishnamurthy, S. Engineering work function of graphene oxide from p to n type using a low power atmospheric pressure plasma jet. Phys. Chem. Chem. Phys. 2020, 22, 7685–7698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodik, M.; Zahoranova, A.; Micusik, M.; Bugarova, N.; Spitalsky, Z.; Omastova, M.; Majkova, E.; Jergel, M.; Siffalovic, P. Fast low-temperature plasma reduction of monolayer graphene oxide at atmospheric pressure. Nanotechnology 2017, 28, 145601. [Google Scholar] [CrossRef] [PubMed]
- Homola, T.; Pospíšil, J.; Krumpolec, R.; Souček, P.; Dzik, P.; Weiter, M.; Černák, M. Atmospheric Dry Hydrogen Plasma Reduction of Inkjet-Printed Flexible Graphene Oxide Electrodes. ChemSusChem 2018, 11, 941–947. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhao, Z.; Chen, Y.; Hu, H.; Qiu, J. Low temperature plasma-mediated synthesis of graphene nanosheets for supercapacitor electrodes. J. Mater. Chem. 2012, 22, 6061. [Google Scholar] [CrossRef]
- Jin, M.; Jiao, N.; Zhang, C.X.; Xiao, H.P.; Zhang, K.W.; Sun, L.Z. Reduction mechanism of hydroxyl group from graphene oxide with and without –NH2 agent. Phys. B Condens. Matter 2015, 477, 70–74. [Google Scholar] [CrossRef]
- Wang, A.; Qin, M.; Guan, J.; Wang, L.; Guo, H.; Li, X.; Wang, Y.; Prins, R.; Hu, Y. The Synthesis of Metal Phosphides: Reduction of Oxide Precursors in a Hydrogen Plasma. Angew. Chemie Int. Ed. 2008, 47, 6052–6054. [Google Scholar] [CrossRef]
- Kim, K.S.; Ji, Y.J.; Nam, Y.; Kim, K.H.; Singh, E.; Lee, J.Y.; Yeom, G.Y. Atomic layer etching of graphene through controlled ion beam for graphene-based electronics. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Kalache, B.; Novikova, T.; Fontcuberta i Morral, A.; Roca i Cabarrocas, P.; Morscheidt, W.; Hassouni, K. Investigation of coupling between chemistry and discharge dynamics in radio frequency hydrogen plasmas in the Torr regime. J. Phys. D Appl. Phys. 2004, 37, 1765–1773. [Google Scholar] [CrossRef]
- Despiau-Pujo, E.; Davydova, A.; Cunge, G.; Delfour, L.; Magaud, L.; Graves, D.B. Elementary processes of H2 plasma-graphene interaction: A combined molecular dynamics and density functional theory study. J. Appl. Phys. 2013, 113, 114302. [Google Scholar] [CrossRef]
- Despiau-Pujo, E.; Davydova, A.; Cunge, G.; Graves, D.B. Hydrogen Plasmas Processing of Graphene Surfaces. Plasma Chem. Plasma Process. 2016, 36, 213–229. [Google Scholar] [CrossRef]
- Davydova, A.; Despiau-Pujo, E.; Cunge, G.; Graves, D.B. H+ ion-induced damage and etching of multilayer graphene in H2 plasmas. J. Appl. Phys. 2017, 121. [Google Scholar] [CrossRef] [Green Version]
- Dai, B.; Fu, L.; Liao, L.; Liu, N.; Yan, K.; Chen, Y.; Liu, Z. High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res. 2011, 4, 434–439. [Google Scholar] [CrossRef]
- Grimm, S.; Schweiger, M.; Eigler, S.; Zaumseil, J. High-Quality Reduced Graphene Oxide by CVD-Assisted Annealing. J. Phys. Chem. C 2016, 120, 3036–3041. [Google Scholar] [CrossRef]
- Su, C.-Y.; Xu, Y.; Zhang, W.; Zhao, J.; Liu, A.; Tang, X.; Tsai, C.-H.; Huang, Y.; Li, L.-J. Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors. ACS Nano 2010, 4, 5285–5292. [Google Scholar] [CrossRef] [PubMed]
- Rozada, R.; Paredes, J.I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J.M.D. Towards full repair of defects in reduced graphene oxide films by two-step graphitization. Nano Res. 2013, 6, 216–233. [Google Scholar] [CrossRef]
- Chiang, W.; Lin, T.; Li, Y.; Yang, Y.; Pei, Z. Toward bandgap tunable graphene oxide nanoribbons by plasma-assisted reduction and defect restoration at low temperature. RSC Adv. 2016, 6, 2270–2278. [Google Scholar] [CrossRef]
- Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y.J.; Chhowalla, M.; Shenoy, V.B. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010, 2, 581–587. [Google Scholar] [CrossRef]
- Gao, X.; Jang, J.; Nagase, S. Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design. J. Phys. Chem. C 2010, 114, 832–842. [Google Scholar] [CrossRef]
- Eigler, S. Mechanistic insights into the reduction of graphene oxide addressing its surfaces. Phys. Chem. Chem. Phys. 2014, 16, 19832–19835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Kong, W.; Duan, H.M.; Zhang, J. Theoretical simulation of reduction mechanism of graphene oxide in sodium hydroxide solution. Phys. Chem. Chem. Phys. 2014, 16, 12858–12864. [Google Scholar] [CrossRef] [PubMed]
- Koenig, S.P.; Wang, L.; Pellegrino, J.; Bunch, J.S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 2012, 7, 728–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Song, Z.; Zhang, X.; Huang, Y.; Li, S.; Mao, Y.; Ploehn, H.J.; Bao, Y.; Yu, M. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 2013, 342, 95–98. [Google Scholar] [CrossRef]
- Yadav, R.; Dixit, C.K. Synthesis, characterization and prospective applications of nitrogen-doped graphene: A short review. J. Sci. Adv. Mater. Devices 2017, 2, 141–149. [Google Scholar] [CrossRef]
- Liang, H.; Ming, F.; Alshareef, H.N. Applications of Plasma in Energy Conversion and Storage Materials. Adv. Energy Mater. 2018, 8, 1801804. [Google Scholar] [CrossRef]
- Li, D.; Yu, C.; Wang, M.; Zhang, Y.; Pan, C. Synthesis of nitrogen doped graphene from graphene oxide within an ammonia flame for high performance supercapacitors. RSC Adv. 2014, 4, 55394–55399. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, Y.; Matson, D.W.; Li, J.; Lin, Y. Nitrogen-Doped Graphene and Its Biosensing. ACS Nano 2010, 4, 1790–1798. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, Y.; Niu, K.; Liu, T.; Bustillo, K.; Ercius, P.; Nordlund, D.; Wu, J.; Zheng, H.; Du, X. Selective nitrogen doping of graphene oxide by laser irradiation for enhanced hydrogen evolution activity. Chem. Commun. 2018, 54, 13726–13729. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Sun, G.; Routh, P.; Kim, D.-H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067–7098. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; He, R.; Rim, K.T.; Schiros, T.; Kim, K.S.; Zhou, H.; Gutierrez, C.; Chockalingam, S.P.; Arguello, C.J.; Palova, L.; et al. Visualizing Individual Nitrogen Dopants in Monolayer Graphene. Science 2011, 333, 999–1003. [Google Scholar] [CrossRef] [Green Version]
- Schiros, T.; Nordlund, D.; Pálová, L.; Prezzi, D.; Zhao, L.; Kim, K.S.; Wurstbauer, U.; Gutiérrez, C.; Delongchamp, D.; Jaye, C.; et al. Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene. Nano Lett. 2012, 12, 4025–4031. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xia, Z. Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells. J. Phys. Chem. C 2011, 115, 11170–11176. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, J.; Dai, L.; Xia, Z. Effect of Microstructure of Nitrogen-Doped Graphene on Oxygen Reduction Activity in Fuel Cells. Langmuir 2012, 28, 7542–7550. [Google Scholar] [CrossRef] [PubMed]
- Varga, T.; Vásárhelyi, L.; Ballai, G.; Haspel, H.; Oszkó, A.; Kukovecz, Á.; Kónya, Z. Noble-Metal-Free Iron Nitride/Nitrogen-Doped Graphene Composite for the Oxygen Reduction Reaction. ACS Omega 2019, 4, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Yeh, T.F.; Teng, C.Y.; Chen, S.J.; Teng, H. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 2014, 26, 3297–3303. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, C.; Peng, Z.; Liu, Y.; Zhang, J.; Liu, Z.; Li, D. 3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage. Sci. Rep. 2017, 7, 4886. [Google Scholar] [CrossRef]
- Nolan, H.; Mendoza-Sanchez, B.; Ashok Kumar, N.; McEvoy, N.; O’Brien, S.; Nicolosi, V.; Duesberg, G.S. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors. Phys. Chem. Chem. Phys. 2014, 16, 2280. [Google Scholar] [CrossRef] [Green Version]
- Daula Shamim, S.U.; Hossain, M.K.; Hasan, S.M.; Hossain, A.; Ahmed, F. Ab initio study of N-doped graphene oxide (NDGO) as a promising anode material for Li-ion rechargeable battery. Mol. Simul. 2020, 46, 1135–1145. [Google Scholar] [CrossRef]
- Feng, S.; Yang, Y.; Li, M.; Wang, J.; Cheng, Z.; Li, J.; Ji, G.; Yin, G.; Song, F.; Wang, Z.; et al. High-Performance Perovskite Solar Cells Engineered by an Ammonia Modified Graphene Oxide Interfacial Layer. ACS Appl. Mater. Interfaces 2016, 8, 14503–14512. [Google Scholar] [CrossRef]
- Bakardjieva, V.S.; Alexieva, Z.I.; Beshkov, G.D.; Mateev, E.S. Plasma nitridation of silicon by N 2 and NH 3 in PECVD reactor. J. Phys. Conf. Ser. 2010, 223, 012010. [Google Scholar] [CrossRef]
- Lianzhu, Z.; Shuxia, Z.; Xiulan, M. Characterization of Nitrogen Glow Discharge Plasma via Optical Emission Spectrum Simulation. Plasma Sci. Technol. 2008, 10, 455–462. [Google Scholar] [CrossRef]
- Kang, S.J.; Donnelly, V.M. Optical absorption and emission spectroscopy studies of ammonia-containing plasmas. Plasma Sources Sci. Technol. 2007, 16, 265–272. [Google Scholar] [CrossRef]
- Grulich, O.; Kregar, Z.; Modic, M.; Vesel, A.; Cvelbar, U.; Mracek, A.; Ponizil, P. Treatment and stability of sodium hyaluronate films in low temperature inductively coupled ammonia plasma. Plasma Chem. Plasma Process. 2012, 32, 1075–1091. [Google Scholar] [CrossRef]
- Rybin, M.; Pereyaslavtsev, A.; Vasilieva, T.; Myasnikov, V.; Sokolov, I.; Pavlova, A.; Obraztsova, E.; Khomich, A.; Ralchenko, V.; Obraztsova, E. Efficient nitrogen doping of graphene by plasma treatment. Carbon 2016, 96, 196–202. [Google Scholar] [CrossRef]
- Draškovič-Bračun, A.; Mozetič, M.; Zaplotnik, R. E- and H-mode transition in a low pressure inductively coupled ammonia plasma. Plasma Process. Polym. 2018, 15, 1–10. [Google Scholar] [CrossRef]
- Fateev, A.; Leipold, F.; Kusano, Y.; Stenum, B.; Tsakadze, E.; Bindslev, H. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge. Plasma Process. Polym. 2005, 2, 193–200. [Google Scholar] [CrossRef]
- Kusano, Y.; Leipold, F.; Fateev, A.; Stenum, B.; Bindslev, H. Production of ammonia-derived radicals in a dielectric barrier discharge and their injection for denitrification. Surf. Coat. Technol. 2005, 200, 846–849. [Google Scholar] [CrossRef]
- Xu, S.; Dong, J.; Pan, L.; Que, X.; Zheng, Y.; Shi, Y.; Wang, X. A molecular understanding of the gas-phase reduction and doping of graphene oxide. Nano Res. 2012, 5, 361–368. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, Z.; Dai, L. Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 2015, 1, e1500564. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.A.; Nolan, H.; McEvoy, N.; Rezvani, E.; Doyle, R.L.; Lyons, M.E.G.; Duesberg, G.S. Plasma-assisted simultaneous reduction and nitrogen doping of graphene oxide nanosheets. J. Mater. Chem. A 2013, 1, 4431–4435. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, Y.; Saito, S. Formation, stabilities, and electronic properties of nitrogen defects in graphene. Phys. Rev. B 2011, 84, 245446. [Google Scholar] [CrossRef] [Green Version]
- Hou, Z.; Wang, X.; Ikeda, T.; Terakura, K.; Oshima, M.; Kakimoto, M.A.; Miyata, S. Interplay between nitrogen dopants and native point defects in graphene. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 85, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Höfert, O.; Gotterbarm, K.; Zhu, J.F.; Papp, C.; Steinrück, H.-P. Production of Nitrogen-Doped Graphene by Low-Energy Nitrogen Implantation. J. Phys. Chem. C 2012, 116, 5062–5066. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, Y.; Cheng, D.; Zhang, W.; Pan, H.; Zhu, J. Simultaneous reduction and N-doping of graphene oxides by low-energy N2+ ion sputtering. Carbon 2013, 62, 365–373. [Google Scholar] [CrossRef]
- Ooi, P.C.; Aniq, M.; Mohammad, S.; Wee, M.F.M.R.; Dee, C.F.; Goh, B.T.; Mohamed, M.A.; Majlis, B.Y. Reduced graphene oxide preparation and its applications in solution-processed write-once-read-many-times graphene-based memory device. Carbon 2017, 124, 547–554. [Google Scholar] [CrossRef]
- Gong, C.; Acik, M.; Abolfath, R.M.; Chabal, Y.; Cho, K. Graphitization of Graphene Oxide with Ethanol during Thermal Reduction. J. Phys. Chem. C 2012, 116, 9969–9979. [Google Scholar] [CrossRef]
- Huang, W.; Ptasinska, S. Functionalization of graphene by atmospheric pressure plasma jet in air or H2O2 environments. Appl. Surf. Sci. 2016, 367, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Gorbanev, Y.; Privat-Maldonado, A.; Bogaerts, A. Analysis of Short-Lived Reactive Species in Plasma-Air-Water Systems: The Dos and the Do Nots. Anal. Chem. 2018, 90, 13151–13158. [Google Scholar] [CrossRef] [Green Version]
- Gerber, I.; Mihaila, I.; Hein, D.; Nastuta, A.; Jijie, R.; Pohoata, V.; Topala, I. Time Behaviour of Helium Atmospheric Pressure Plasma Jet Electrical and Optical Parameters. Appl. Sci. 2017, 7, 812. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.S.; Zhang, G.J.; Shao, X.J.; Zhang, Z.H. Diagnosis of gas temperature, electron temperature, and electron density in helium atmospheric pressure plasma jet. Phys. Plasmas 2012, 19, 073513. [Google Scholar] [CrossRef]
- Sun, T.; Blanchard, P.Y.; Mirkin, M.V. Cleaning nanoelectrodes with air plasma. Anal. Chem. 2015, 87, 4092–4095. [Google Scholar] [CrossRef] [PubMed]
- Prysiazhnyi, V.; Vasina, P.; Panyala, N.R.; Havel, J.; Cernak, M. Air DCSBD plasma treatment of Al surface at atmospheric pressure. Surf. Coat. Technol. 2012, 206, 3011–3016. [Google Scholar] [CrossRef]
- Paredes, V.; Salvagni, E.; Rodríguez-Castellón, E.; Manero, J.M. Comparative Study of Surface Chemical Composition and Oxide Layer Modification upon Oxygen Plasma Cleaning and Piranha Etching on a Novel Low Elastic Modulus Ti25Nb21Hf Alloy. Metall. Mater. Trans. A 2017, 48, 3770–3776. [Google Scholar] [CrossRef]
- Pham, P.V. Cleaning of graphene surfaces by low-pressure air plasma. R. Soc. Open Sci. 2018, 5, 172395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ptasińska, S.; Bahnev, B.; Stypczyńska, A.; Bowden, M.; Mason, N.J.; Braithwaite, N.S.J. DNA strand scission induced by a non-thermal atmospheric pressure plasma jet. Phys. Chem. Chem. Phys. 2010, 12, 7779. [Google Scholar] [CrossRef] [Green Version]
- Krupka, J.; Strupinski, W. Measurements of the sheet resistance and conductivity of thin epitaxial graphene and SiC films. Appl. Phys. Lett. 2010, 96, 082101. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Kang, K.; Chen, Y.; Li, Y.; Chen, T.; Xu, Y. Characterization of CVD graphene permittivity and conductivity in micro-/millimeter wave frequency range. AIP Adv. 2016, 6, 095014. [Google Scholar] [CrossRef] [Green Version]
- Brownson, D.A.C.; Varey, S.A.; Hussain, F.; Haigh, S.J.; Banks, C.E. Electrochemical properties of CVD grown pristine graphene: Monolayer- vs. quasi-graphene. Nanoscale 2014, 6, 1607–1621. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Frisch, J.; Zhi, L.; Norouzi-Arasi, H.; Feng, X.; Rabe, J.P.; Koch, N.; Müllen, K. Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules. Nanotechnology 2009, 20, 434007. [Google Scholar] [CrossRef]
- Xu, Z.; Bando, Y.; Liu, L.; Wang, W.; Bai, X.; Golberg, D. Electrical conductivity, chemistry, and bonding alternations under graphene oxide to graphene transition as revealed by in situ TEM. ACS Nano 2011, 5, 4401–4406. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ang, P.K.; Wang, Z.; Tang, A.L.L.; Thong, J.T.L.; Loh, K.P. High mobility, printable, and solution-processed graphene electronics. Nano Lett. 2010, 10, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, A.F.; Zhang, H.; Cho, K. Formation energy of graphene oxide structures: A molecular dynamics study on distortion and thermal effects. Carbon 2015, 84, 365–374. [Google Scholar] [CrossRef]
- Kong, W.; Kum, H.; Bae, S.H.; Shim, J.; Kim, H.; Kong, L.; Meng, Y.; Wang, K.; Kim, C.; Kim, J. Path towards graphene commercialization from lab to market. Nat. Nanotechnol. 2019, 14, 927–938. [Google Scholar] [CrossRef]
- Lin, L.; Peng, H.; Liu, Z. Synthesis challenges for graphene industry. Nat. Mater. 2019, 18, 520–524. [Google Scholar] [CrossRef]
- Olson, D.W. Graphite (Natural). In Mineral Commodity Summaries; USGS: Reston, VA, USA, 2020. [Google Scholar]
- Eda, G.; Nathan, A.; Wöbkenberg, P.; Colleaux, F.; Ghaffarzadeh, K.; Anthopoulous, T.D.; Chhowalla, M. Graphene oxide gate dielectric for graphene-based monolithic field effect transistors. Appl. Phys. Lett. 2013, 102, 133108. [Google Scholar] [CrossRef]
Property | CVD-Graphene | Various-GO | Various-rGO |
---|---|---|---|
RC/O | - | 0.6–2.38[47,83,84] | 1.48–12 [52,85,86] * |
T (%, @ 550 nm) | 97.7 [87] | >97.5 [88] | ~97.5 [88,89] |
σ (S/cm) | ~104 [90,91] | ~10−3–103 [92,93] † | |
Eg (eV) | 0 | 0–3.5 [94,95] † | |
κ (W/m∙K) | 300–5300 [96,97] | 8.8–625 [98,99] †,‡ | 46–2600 [100,101] |
E (GPa) | 1000 [102] | 290–430 [103] †,‡ | |
τc (GPa) | 130 [102] | 28–48 [103] †,‡ |
Features/Properties | Applications/Technologies | Reference |
---|---|---|
Large specific area; lightweight; high conductivity; hetero-atom doping; micro-structuring; composite material formation | Electrochemical storage (batteries and capacitors) | [16,114] |
Large specific area; tunable electronic structure; hetero-atom doping; structural modification and functionalization | Electrocatalysts for electrochemical energy conversion reactions (water splitting; CO2, N2, and O2 reduction reaction) | [115] |
Nanocapillaries; ease of making atomically thin layers; good mechanical properties | Membranes (selective ion-, vapor-, gas-, water-transport; proton exchange; desalination) | [116] |
Biocompatibility; functionalization; physiochemical properties; fluorescence | Pharmaceutical, biomedical, and biosensing | [106,117] |
Tunable electronic properties; optical transparency; mechanical flexibility | Flexible-, thin-film, and opto-electronics | [106,118] |
Non-linear optics (saturable absorption; reverse saturable absorption; two-photon absorption) | Mode-locking; Q-switching; optical limiters | [106] |
Seebeck coefficient; electrical conductivity; thermal conductivity | Thermoelectric devices | [106] |
Advanced mechanical and structural properties in composites | Mechanical and rheological (cement composites; green plastics; composites for military and aerospace) | [118] |
Reduction Method | Features | Reference |
---|---|---|
Chemical | simple and scalable approach; commonly used reducing agents are toxic/hazardous; rGO yields have lower surface area and electrical conductivity; prolonged reduction duration | [94,125] |
Thermal | simple approach; defects are created in the lattice with the removal of carbon; high-temperature process not for suitable sensitive substrates; substantial energy consumption | [125,126] |
Electrochemical | rGO yields have good structural quality and electrical conductivity; non-hazardous process, large-scale production is challenging | [125] |
Microwave-assisted | microwave absorption depends on the oxidation degree of GO; reducing atmosphere are needed to improve quality of yield; high temperatures attained limit substrate selection | [50,127,128,129] |
Plasma | requires special equipment; versatile and offers industrial-level scalability; relatively short reaction period; effective in restoration of lattice defects | [49,93,130] |
Plasma Source | Breakdown Voltage (kV) [63] | Plasma Density (cm−3) [63] | Electron Temperature (eV) † |
---|---|---|---|
Low-pressure discharge | 0.2–0.8 | 108–1013 | 0.1–10 [172] |
Arc and plasma torch | 10–50 | 1016–1019 | 2–7 [63] |
Corona | 10–50 | 109–1013 | 5 ‡ [61] |
DBD | 5–25 | 1012–1015 | 1–10 [61] |
Plasma jet | 0.05–0.2 | 1011–1012 | 1–2 [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinoth Kumar, S.H.B.; Muydinov, R.; Szyszka, B. Plasma Assisted Reduction of Graphene Oxide Films. Nanomaterials 2021, 11, 382. https://doi.org/10.3390/nano11020382
Vinoth Kumar SHB, Muydinov R, Szyszka B. Plasma Assisted Reduction of Graphene Oxide Films. Nanomaterials. 2021; 11(2):382. https://doi.org/10.3390/nano11020382
Chicago/Turabian StyleVinoth Kumar, Sri Hari Bharath, Ruslan Muydinov, and Bernd Szyszka. 2021. "Plasma Assisted Reduction of Graphene Oxide Films" Nanomaterials 11, no. 2: 382. https://doi.org/10.3390/nano11020382
APA StyleVinoth Kumar, S. H. B., Muydinov, R., & Szyszka, B. (2021). Plasma Assisted Reduction of Graphene Oxide Films. Nanomaterials, 11(2), 382. https://doi.org/10.3390/nano11020382