Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State
Abstract
:1. Introduction
2. Theory and Structure
3. Results and Discussion
3.1. Simulated Results
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, K.T.; Lin, H.; Yang, T.; Jia, B. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun. 2020, 11, 1389. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhong, H.; Liu, G.; Liu, X.; Wang, Y.; Wang, J. Multi-resonant refractory prismoid for full-spectrum solar energy perfect absorbers. Opt. Express 2020, 28, 31763–31774. [Google Scholar] [CrossRef]
- Li, W.; Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 2014, 14, 3510–3514. [Google Scholar] [CrossRef]
- Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348. [Google Scholar] [CrossRef]
- Guddala, S.; Kumar, R.; Ramakrishna, S.A. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers. Appl. Phys. Lett. 2015, 106, 98. [Google Scholar] [CrossRef] [Green Version]
- Barho, F.B.; Gonzalez-Posada, F.; Bomers, M.; Mezy, A.; Cerutti, L.; Taliercio, T. Surface-enhanced thermal emission spectroscopy with perfect absorber metasurfaces. ACS Photonics 2019, 6, 1506–1514. [Google Scholar] [CrossRef]
- Tittl, A.; Michel, A.; Schäferling, M.; Yin, X.; Gholipour, B.; Cui, L.; Wuttig, M.; Taubner, T.; Neubrech, F.; Giessen, H. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater. 2015, 27, 4597–4603. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kelley, K.; Sachet, E.; Campione, S.; Luk, T.; Maria, J.; Sinclair, M.; Brener, I. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photonics 2017, 11, 390–395. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Xiong, M.; Chen, M.; Deng, S.; Liu, H.; Teng, C.; Yuan, L. Numerical Study of Ultra-Broadband Metamaterial Perfect Absorber Based on Four-Corner Star Array. Nanomaterials 2021, 11, 2172. [Google Scholar] [CrossRef]
- Huo, D.; Ma, X.; Su, H.; Wang, C.; Zhao, H. Broadband Absorption Based on Thin Refractory Titanium Nitride Patterned Film Metasurface. Nanomaterials 2021, 11, 1092. [Google Scholar] [CrossRef] [PubMed]
- Akselrod, G.M.; Huang, J.; Hoang, T.B.; Bowen, P.T.; Su, L.; Smith, D.R.; Mikkelsen, M.H. Large-area metasurface perfect absorbers from visible to near-infrared. Adv. Mater. 2015, 27, 8028–8034. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhong, H.; Zhang, H.; Huang, Z.; Tang, C. Silicon multi-resonant metasurface for full-spectrum perfect solar energy absorption. Sol. Energy 2020, 199, 360–365. [Google Scholar] [CrossRef]
- Wang, X.; Liang, Y.; Wu, L.; Guo, J.; Dai, X.; Xiang, Y. Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene. Opt. Lett. 2018, 43, 4256–4259. [Google Scholar] [CrossRef] [PubMed]
- Elshahat, S.; Abood, I.; Esmail, M.; Ouyang, Z.; Lu, C. One-dimensional topological photonic crystal mirror heterostructure for sensing. Nanomaterials 2021, 11, 1940. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Jin, L.; Pun, Y.B. Tunable multichannel nonreciprocal perfect absorber based on resonant absorption. Opt. Lett. 2012, 37, 2613–2615. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, Z.; Hua, Z.; Ma, G.; Tang, S.H. Observation of two-photon absorption enhancement at double defect modes in one-dimensional photonic crystals. Appl. Phys. Lett. 2016, 88, 011113. [Google Scholar] [CrossRef]
- Ansari, N.; Mohammadi, S.; Mohebbi, E. Approaching the nearly perfect and wavelength-adjustable absorption of mos2 monolayer using defective quasi photonic crystals. J. Appl. Phys. 2020, 127, 043101. [Google Scholar] [CrossRef]
- Tan, W.C.; Preist, T.W.; Sambles, J.R.; Wanstall, N.P. Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings. Phys. Rev. B 1999, 59, 12661–12666. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, X.; Hu, Y.; Tang, L.; Cao, Y.; Li, J.; Dong, Z. High-Q perfect absorption induced by the coupling of LSP and SPP modes. J. Appl. Phys. 2021, 129, 083103. [Google Scholar] [CrossRef]
- Qin, F.; Chen, Z.; Chen, X.; Yi, Z.; Yao, W.; Duan, T.; Yi, Y. A tunable triple-band near-infrared metamaterial absorber based on Au nano-cuboids array. Nanomaterials 2020, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Kavokin, A.V.; Shelykh, I.A.; Malpuech, G. Lossless interface modes at the boundary between two periodi dielectri structures. Phys. Rev. B 2005, 72, 233102. [Google Scholar] [CrossRef] [Green Version]
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otto, A. Excitation of nonradiative surface plasma waves in silver by method of frustrated total reflection. Z. Phys. A 1968, 216, 398–410. [Google Scholar] [CrossRef]
- Ditlbacher, H.; Krenn, J.R.; Schider, G.; Leitner, A.; Aussenegg, F.R. Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 2002, 81, 1762–1764. [Google Scholar] [CrossRef]
- Ohno, H.; Mendez, E.E.; Brum, J.A.; Hong, J.M.; Agulló-Rueda, F.; Chang, L.L.; Esaki, L. Observation of “tamm states” in superlattices. Phys. Rev. Lett. 1990, 64, 2555–2558. [Google Scholar] [CrossRef] [PubMed]
- Kaliteevski, M.; Iorsh, I.; Brand, S.; Abram, R.A.; Chamberlain, J.M.; Kavokin, A.V.; Shelykh, I.A. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B 2007, 76, 165415. [Google Scholar] [CrossRef] [Green Version]
- Sasin, M.E.; Seisyan, R.P.; Kalitteevski, M.A.; Brand, S.; Abram, R.A.; Chamberlain, J.M.; Egorov, A.; Vasil’Ev, A.P.; Mikhrin, V.S.; Kavokin, A. Tamm plasmon polaritons: Slow and spatially compact light. Appl. Phys. Lett. 2008, 92, 824. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Jiang, X.; You, Q.; Guo, J.; Dai, X.; Xiang, Y. Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene. Photonics Res. 2017, 5, 536–542. [Google Scholar] [CrossRef]
- Zheng, G.; Qiu, M.; Xian, F.; Chen, Y.; Xu, L.; Wang, J. Multiple visible optical Tamm states supported by graphene-coated distributed Bragg reflectors. Appl. Phys. Express 2017, 10, 092202. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, X.; Wang, L.; Lu, H.; Wang, G. Multiple responses of TPP-assisted near-perfect absorption in metal/fibonacci quasiperiodic photonic crystal. Opt. Express 2011, 19, 9759–9769. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Wu, F.; Zheng, M.; Chen, C.; Zhou, X.; Diao, C.; Liu, F.; Du, G.; Xue, C.; Jiang, H.; et al. Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials. Opt. Express 2019, 27, 5326–5336. [Google Scholar] [CrossRef]
- Wang, H.; Ouyang, F.; Lei, Y. Enhanced absorption study of one-way absorber based on magnetophotonic crystal combined with graphene. J. Opt. 2021, 50, 132–141. [Google Scholar] [CrossRef]
- Li, R.; Zhang, C.; Li, X. Schottky hot-electron photodetector by cavity-enhanced optical Tamm resonance. Appl. Phys. Lett. 2017, 110, 013902. [Google Scholar] [CrossRef]
- Sánchez-Soto, L.L.; Monzón, J.J.; Barriuso, A.G.; Cariñena, J.F. The transfer matrix: A geometrical perspective. Phys. Rep. 2012, 513, 191–227. [Google Scholar] [CrossRef] [Green Version]
- Katsidis, C.C.; Siapkas, D.I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl. Opt. 2002, 41, 3978–3987. [Google Scholar] [CrossRef]
- Sikder, U.; Zaman, M.A. Optimization of multilayer antireflection coating for photovoltaic applications. Opt. Laser Tecgnol. 2016, 79, 88–94. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Zhang, K.; Zhao, Y.; Zhang, L.; Shang, Z.; Zhou, H.; Diao, C.; Zhou, X. Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State. Nanomaterials 2021, 11, 3447. https://doi.org/10.3390/nano11123447
Lu G, Zhang K, Zhao Y, Zhang L, Shang Z, Zhou H, Diao C, Zhou X. Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State. Nanomaterials. 2021; 11(12):3447. https://doi.org/10.3390/nano11123447
Chicago/Turabian StyleLu, Guang, Kaiyuan Zhang, Yunpeng Zhao, Lei Zhang, Ziqian Shang, Haiyang Zhou, Chao Diao, and Xiachen Zhou. 2021. "Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State" Nanomaterials 11, no. 12: 3447. https://doi.org/10.3390/nano11123447
APA StyleLu, G., Zhang, K., Zhao, Y., Zhang, L., Shang, Z., Zhou, H., Diao, C., & Zhou, X. (2021). Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State. Nanomaterials, 11(12), 3447. https://doi.org/10.3390/nano11123447