Synthesis, Characterization and Photocatalytic Performance of Calcined ZnCr-Layered Double Hydroxides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of ZnCr-Layered Double Hydroxides and Oxides
2.3. Characterization of the Catalysts
2.4. Photocatalytic Activity
3. Results and Discussions
3.1. Material Characterization
3.2. Photocatalytic Activity
3.2.1. pH Effect
3.2.2. Effect of Initial Concentration of CV Dye
3.2.3. Catalyst Mass Effect
3.2.4. Regeneration of the ZnCr-500 Catalyst
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Gupta, T.B.; Lataye, D.H. Adsorption of indigo carmine dye onto acacia nilotica (babool) sawdust activated carbon. J. Hazard. Toxic Radioact. Waste 2017, 21, 1–11. [Google Scholar] [CrossRef]
- Lee, C.K.; Low, K.S.; Gan, P.Y. Removal of some organic dyes by acid-treated spent bleaching earth. Environ. Technol. 1999, 20, 99–104. [Google Scholar] [CrossRef]
- Chowdhury, M.F.; Khandaker, S.; Sarker, F.; Aminul, I.; Tamzid, M.R.; Rabiul Awual, M. Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review. J. Mol. Liq. 2020, 318, 114061. [Google Scholar] [CrossRef]
- Fan, H.; Ma, Y.; Wan, J.; Wang, Y. Removal of gentian violet and rhodamine B using banyan aerial roots after modification and mechanism studies of differential adsorption behaviors. Environ. Sci. Pollut. Res. 2020, 27, 9152–9166. [Google Scholar] [CrossRef] [PubMed]
- Dil, E.A.; Ghaedi, M.; Ghaedi, A.; Asfaram, A.; Jamshidi, M.; Purkait, M.K. Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: Kinetics and equilibrium study. J. Taiwan Inst. Chem. Eng. 2016, 59, 210–220. [Google Scholar] [CrossRef]
- Ghorai, S.; Sarkar, A.; Raoufi, M.; Panda, A.B.; Schönherr, H.; Pal, S. Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl. Mater. Interfaces 2014, 6, 4766–4777. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Bharagava, R.N. Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. Rev. Environ. Contam. Toxicol. 2016, 237, 71–104. [Google Scholar]
- Bajpai, S.K.; Jain, A. Equilibrium and thermodynamic studies for adsorption of crystal violet onto spent tea leaves (STL). Water 2012, 4, 52–71. [Google Scholar]
- Liu, Q.; Liu, Y.; Zhang, Z.; Wang, X.; Shen, J. Adsorption of cationic dyes from aqueous solution using hydrophilic silica aerogel via ambient pressure drying. Chin. J. Chem. Eng. 2020, 28, 2467–2473. [Google Scholar] [CrossRef]
- Shaban, M.; Abukhadra, M.R.; Hamd, A.; Ragab, R.A.; Abdel Khalek, A. Photocatalytic removal of Congo red dye using MCM-48/Ni2O3 composite synthesized based on silica gel extracted from rice husk ash; fabrication and application. J. Environ. Manag. 2017, 204, 189–199. [Google Scholar] [CrossRef]
- Giménez, J.; Bayarri, B.; González, Ó.; Malato, S.; Peral, J.; Esplugas, S. Advanced oxidation processes at laboratory scale: Environmental and economic impacts. ACS Sustain. Chem. Eng. 2015, 3, 3188–3196. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ. Int. 2015, 75, 33–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orooji, Y.; Mohassel, R.; Amiri, O.; Sobhani, A.; Salavati-Niasari, M. Gd2ZnMnO6/ZnO nanocomposites: Green sol-gel auto-combustion synthesis, characterization and photocatalytic degradation of different dye pollutants in water. J. Alloys Compd. 2020, 835, 155240. [Google Scholar] [CrossRef]
- Ali, B.; Naceur, B.; Abdelkader, E.; Karima, E.; Nourredine, B. Competitive adsorption of binary dye from aqueous solutions using calcined layered double hydroxides. Int. J. Environ. Anal. Chem. 2020, 1–20. [Google Scholar] [CrossRef]
- Theiss, F.L.; Ayoko, G.A.; Frost, R.L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—A review. Appl. Surf. Sci. 2016, 383, 200–213. [Google Scholar] [CrossRef]
- Snehaprava, D.; Sulagna, P.; Kulamani, P. Dynamic charge transfer through Fermi level equilibration in the p-CuFe2O4/n-NiAl LDH interface towards photocatalytic application. J. Catal. Sci. Technol. 2020, 10, 6285–6298. [Google Scholar]
- Tzompantzi, F.; Mantilla, A.; Bañuelos, F.; Fernandez, J.L.; Gomez, R. Improved photocatalytic degradation of phenolic compounds with ZnAl mixed oxides obtained from LDH materials. Top. Catal. 2011, 54, 257–263. [Google Scholar] [CrossRef]
- Chen, C.R.; Zeng, H.Z.; Xu, S.; Shen, J.C.; Hu, G.; Zhu, R.L.; Du, J.Z.; Sun, Y.X. Facile fabrication of CdS/ZnAlO heterojunction with enhanced photocatalytic activity for Cr(VI) reduction under visible light. Appl. Clay Sci. 2018, 165, 197–204. [Google Scholar] [CrossRef]
- Cao, Y.; Li, G.; Li, X. Graphene/layered double hydroxide nanocomposite: Properties, synthesis, and applications. Chem. Eng. J. 2016, 292, 207–223. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, P.; Gong, B.; Fang, Y.; Zhu, N. Fabrication and photocatalytic properties of a visible-light responsive nanohybrid based on self-assembly of carboxyl graphene and ZnAl layered double hydroxides. J. Mater. Chem. A 2014, 2, 5534–5540. [Google Scholar] [CrossRef]
- He, S.; An, Z.; Wei, M.; Evans, D.G.; Duan, X. Layered double hydroxide-based catalysts: Nanostructure design and catalytic performance. Chem. Commun. 2013, 49, 5912–5920. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.J.; Wu, J.Z.; Zhang, J.; Chen, H.; Zhou, J.Z.; Qian, G.R.; Xu, Z.P.; Du, Z.; Rao, Q.L. A review on fabricating heterostructures from layered double hydroxides for enhanced photocatalytic activities. Catal. Sci. Technol. 2018, 8, 1207–1228. [Google Scholar] [CrossRef]
- El Mersly, L.; El Mouchtari, E.M.; Moujahid, E.M.; Forano, C.; El Haddad, M.; Briche, S.; Alaouni Tahiri, A.; Rafqah, S. ZnCr-LDHs with dual adsorption and photocatalysis capability for the removal of acid orange 7 dye in aqueous solution. J. Sci. Adv. Mater. Dev. 2021, 6, 118–126. [Google Scholar] [CrossRef]
- Sahoo, D.P.; Patnaik, S.; Rath, D.; Parida, K.M. Synergistic effects of plasmon induced Ag@Ag3VO4/ZnCr LDH ternary heterostructures towards visible light responsive O2 evolution and phenol oxidation reactions. Inorg. Chem. Front. 2018, 5, 879–896. [Google Scholar] [CrossRef]
- Fu, Y.; Ning, F.; Xu, S.; An, H.; Shao, M.; Wei, M. Terbium doped ZnCr-layered double hydroxides with largely enhanced visible light photocatalytic performance. J. Mater. Chem. A 2016, 4, 3907–3913. [Google Scholar] [CrossRef]
- Zhanga, T.; Wua, Y.; Gaoa, X.; Xiea, H.; Yanga, G.; Tsubakic, N.; Tana, Y. Effects of surface hydroxyl groups induced by the co-precipitation temperature on the catalytic performance of direct synthesis of isobutanol from syngas. Fuel 2019, 237, 1021–1028. [Google Scholar] [CrossRef]
- Silva, C.G.; Bouizi, Y.; Fornes, V.; Garcia, H. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water. J. Amer. Chem. Soc. 2009, 131, 13833–13839. [Google Scholar] [CrossRef]
- Pausová, S.; Krysa, J.; Jirkovsky, J.; Forano, C.; Mailhot, G.; Prevot, V. Insight into the photocatalytic activity of ZnCr–CO3 LDH and derived mixed oxides. Appl. Catal. B Environ. 2015, 170, 25–33. [Google Scholar] [CrossRef]
- Zou, L.; Xiang, X.; Fan, J.; Li, F.; Evans, D.G. Synthesis of high surface area zinc chromate spinel with mesopore network from Zn-Cr-layered double hydroxide precursor. J. Phys. Chem. Solids 2008, 68, 1075–1078. [Google Scholar] [CrossRef]
- Naumkin, A.V.; Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. NIST Standard Reference Database 20, Version 4.1. J. Res. Natl. Inst. Stand Technol. 2012, 1–49. [Google Scholar]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Peng, C.; Gao, L. Optical and photocatalytic properties of spinel ZnCr2O4 nanoparticles synthesized by a hydrothermal route. J. Am. Ceram. Soc. 2008, 91, 2388–2390. [Google Scholar] [CrossRef]
- Ohtani, B.; Mahaney, O.O.P.; Amano, F.; Murakami, N.; Abe, R. What are Titania Photocatalysts?—An exploratory correlation of photocatalytic activity with structural and physical properties. J. Adv. Oxid. Technol. 2010, 13, 247–261. [Google Scholar] [CrossRef]
- Ohtani, B.; Pal, B.; Ikeda, S. Photocatalytic organic syntheses: Selective cyclization of amino acids in aqueous suspensions. Catal. Surv. Asia 2003, 7, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Lu, L.; Li, J.; Somg, P. Biotemplated hierarchical porous-structure of ZnAlLDH/ZnCo2O4 composites with enhanced adsorption and photocatalytic performance. RSC Adv. 2016, 6, 12797–12808. [Google Scholar] [CrossRef]
- Salehi, M.; Eshaghi, A.; Tajizadegan, H. Synthesis and characterization of TiO2/ZnCr2O4 core-shell structure and its photocatalytis and antibacterial activity. J. Alloys Compd. 2019, 778, 148–155. [Google Scholar] [CrossRef]
- Habibi-Yangjeh, A.; Sabri, M.; Chjand, H.; Krishnan, V.; Wang, C. Novel ZnO/CuBiS2 nanocomposites with p-n heterojunction for persulfate-promoted photocatalytic mitigation of pollutants under visible light. Surf. Interfaces 2021, 27, 101518. [Google Scholar] [CrossRef]
- Parida, K.M.; Baliarsingh, N.; Sairam Patra, B.; Das, J. Copperphthalocyanine immobilized Zn/Al LDH as photocatalyst under solar radiation for decolorization of methylene blue. J. Mol. Catal. A Chem. 2007, 267, 202–208. [Google Scholar] [CrossRef]
- The Huy, B.; Seul Paeng, D.; Thi Bich Thao, C.; Thi Kim Phuong, N.; Lee, Y.-I. ZnO-Bi2O3/graphitic carbon nitride photocatalytic system with H2O2-assisted enhanced degradation of Indigo carmine under visible light. Arab. J. Chem. 2020, 13, 3790–3800. [Google Scholar]
Sample | Specific Surface Area/m2 g−1 | Average Por Size/nm | Pore Volume/cm3 g−1 |
---|---|---|---|
ZnCr-500 | 38.45 ± 1.00 | 26.0 ± 3.0 | 0.232 ± 0.03 |
ZnCr-LDH | 0.06 ± 0.01 |
Test | CV Dye Concentration/mg L−1 | kapp/min−1 | R2 |
---|---|---|---|
Photocatalyst: ZnCr-500; 50 mg, pH = 7 | 5 | 0.0239 | 0.9881 |
10 | 0.0058 | 0.9861 | |
15 | 0.0045 | 0.9803 | |
30 | 0.0019 | 0.9880 | |
Photolysis test at pH = 7 | 5 | 0.0021 | 0.9843 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bencherif, S.D.; Gallardo, J.J.; Carrillo-Berdugo, I.; Bahmani, A.; Navas, J. Synthesis, Characterization and Photocatalytic Performance of Calcined ZnCr-Layered Double Hydroxides. Nanomaterials 2021, 11, 3051. https://doi.org/10.3390/nano11113051
Bencherif SD, Gallardo JJ, Carrillo-Berdugo I, Bahmani A, Navas J. Synthesis, Characterization and Photocatalytic Performance of Calcined ZnCr-Layered Double Hydroxides. Nanomaterials. 2021; 11(11):3051. https://doi.org/10.3390/nano11113051
Chicago/Turabian StyleBencherif, Somia Djelloul, Juan Jesús Gallardo, Iván Carrillo-Berdugo, Abdellah Bahmani, and Javier Navas. 2021. "Synthesis, Characterization and Photocatalytic Performance of Calcined ZnCr-Layered Double Hydroxides" Nanomaterials 11, no. 11: 3051. https://doi.org/10.3390/nano11113051
APA StyleBencherif, S. D., Gallardo, J. J., Carrillo-Berdugo, I., Bahmani, A., & Navas, J. (2021). Synthesis, Characterization and Photocatalytic Performance of Calcined ZnCr-Layered Double Hydroxides. Nanomaterials, 11(11), 3051. https://doi.org/10.3390/nano11113051