Effect of Impurities Control on the Crystallization and Densification of Polymer-Derived SiC Fibers
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Raw Materials
2.2. Preparation of Polycrystalline SiC Fibers
2.3. Preparation of Polycrystalline Si-Al-C-O Fibers
2.4. Measurements
3. Results and Discussion
The Crystallization Behavior of Polymer-Derived SiC Fibers
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Naslain, R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: An overview. Compos. Sci. Technol. 2004, 64, 155–170. [Google Scholar] [CrossRef]
- Nasiri, N.A.; Patra, N.; Ni, N.; Jayaseelan, D.D.; Lee, W.E. Oxidation behaviour of SiC/SiC ceramic matrix composites in air. J. Eur. Ceram. Soc. 2016, 36, 3293–3302. [Google Scholar] [CrossRef]
- Thornton, J.; Arhatari, B.D.; Sesso, M.; Wood, C.; Zonneveldt, M.; Kim, S.Y.; Kimpton, J.A.; Hall, C. Failure evaluation of a SiC/SiC ceramic matrix composite during in-situ loading using micro X-ray computed tomography. Microsc. Microanal. 2019, 25, 583–591. [Google Scholar] [CrossRef]
- Yajima, S.; Hayashi, J.; Omuri, M.; Okamura, K. Development of a silicon carbide fibre with high tensile strength. Nature 1976, 261, 683–685. [Google Scholar] [CrossRef]
- Yajima, S.; Hasegawa, Y.; Hayashi, J.; Iimura, M. Synthesis of continuous silicon carbide fibre with high tensile strength and high Young’s modulus. Part 1 synthesis of polycarbosilane as precursor. J. Mater. Sci. 1978, 13, 2569–2576. [Google Scholar]
- Ichikawa, H. Polymer-derived ceramic fibers. Annu. Rev. Mater. Res. 2016, 46, 335–356. [Google Scholar] [CrossRef]
- Colombo, P.; Mera, G.; Riedel, R.; Sorarù, G.D. Polymer-derived ceramics: 40 Years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 2010, 93, 1805–1837. [Google Scholar] [CrossRef]
- Ichikawa, H.; Machino, F.; Mitsuno, S.; Ishikawa, T.; Okamura, K.; Hasegawa, Y. Synthesis of continuous silicon carbide fibre Part 5 Factors affecting stability of polycarbosilane to oxidation. J. Mater. Sci. 1986, 21, 4352–4358. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.D.; Li, X.X.; Zhu, B.; Kim, D.P. The kinetics of oxidation curing of polycarbosilane fibers. Korean J. Chem. Eng. 2004, 21, 901–904. [Google Scholar] [CrossRef]
- Ichikawa, H.; Teranishi, H.; Ishikawa, T. Effect of curing conditions on mechanical properties of SiC fibre (Nicalon). J. Mater. Sci. Lett. 1987, 6, 420–422. [Google Scholar] [CrossRef]
- Peng, Z.; Hwang, J.; Mouris, J.; Hutcheon, R.; Huang, X. Microwave penetration depth in materials with non-zero magnetic susceptibility. ISIJ Int. 2010, 50, 1590–1596. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, M.; Shimoo, T.; Okamura, K.; Seguchi, T. Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation: II, free radical reaction. J. Am. Ceram. Soc. 1995, 78, 1849–1852. [Google Scholar] [CrossRef]
- Narisawa, M.; Shimoda, M.; Okamura, K.; Sugimoto, M.; Seguchi, T. Reaction mechanism of the pyrolysis of polycarbosilane and polycarbosilazane as ceramic precursors. Bull. Chem. Soc. Jpn. 1995, 68, 1098–1104. [Google Scholar] [CrossRef]
- Mao, X.H.; Song, Y.C.; Li, W.; Yang, D.X.; Si, À. Mechanism of curing process for polycarbosilane fiber with cyclohexene vapor. J. Appl. Polym. Sci. 2007, 105, 1651–1657. [Google Scholar] [CrossRef]
- Hong, J.; Cho, K.Y.; Shin, D.G.; Kim, J.I.; Oh, S.T.; Riu, D.H. Low-temperature chemical vapour curing using iodine for fabrication of continuous silicon carbide fibres from low-molecular-weight polycarbosilane. J. Mater. Chem. A 2014, 2, 2781–2793. [Google Scholar] [CrossRef]
- Hasegawa, Y. New curing method for polycarbosilane with unsaturaed hydrocarbons and application to thermally stable SiC fibre. Compos. Sci. Technol. 1994, 51, 161–166. [Google Scholar] [CrossRef]
- Hong, J.S.; Cho, K.Y.; Shin, D.G.; Kim, J.I.; Riu, D.H. Iodine diffusion during iodine-vapor curing and its effects on the morphology of polycarbosilane/silicon carbide fibers. J. Appl. Polym. Sci. 2015, 132, 42687. [Google Scholar] [CrossRef]
- Ishikawa, T. Recent development of the SiC fiber nicalon and its composites, including properies of the SiC fiber Hi-Nicalon for ultra-high temperature. Compos. Sci. Technol. 1994, 51, 135–144. [Google Scholar] [CrossRef]
- Cao, S.; Wang, J.; Wang, H. Formation mechanism of large SiC grains on SiC fiber surfaces during heat treatment. CrystEngComm 2016, 18, 3674–3682. [Google Scholar] [CrossRef]
- Vijay, V.V.; Nair, S.G.; Sreejith, K.J.; Devasia, R. Synthesis, ceramic conversion and microstructure analysis of zirconium modified polycarbosilane. J. Inorg. Organomet. Polym. Mater. 2016, 26, 302–311. [Google Scholar] [CrossRef]
- Ishikawa, T.; Kohtoku, Y.; Kumagawa, K.; Yamamura, T.; Nagasawa, T. High-strength alkali-resistant sintered SiCfibre stable to 2200 °C. Nature 1998, 391, 773–775. [Google Scholar] [CrossRef]
- Usukawa, R.; Ishikawa, T. High-performance SiC-polycrystalline fiber with smooth surface. Ceramics 2018, 1, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, T.; Oda, H. Defect control of SiC polycrystalline fiber synthesized from poly-aluminocarbosilane. J. Eur. Ceram. Soc. 2016, 36, 3657–3662. [Google Scholar] [CrossRef]
Elmt | 1400/2 | 1400/4 | 1400/6 | |||
---|---|---|---|---|---|---|
wt% | at% | wt% | at% | wt% | at% | |
Si | 45.62 | 27.39 | 44.96 | 26.64 | 48.03 | 29.14 |
C | 45.27 | 63.20 | 48.52 | 66.69 | 46.04 | 64.68 |
O | 9.02 | 9.39 | 6.42 | 6.66 | 5.88 | 6.18 |
I | 0.09 | 0.01 | 0.01 | 0.01 | 0.04 | 0.01 |
C/Si ratio | - | 2.31 | - | 2.50 | - | 2.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, Y.-j.; Joo, S.-h.; Lee, H.-j.; Shim, Y.-j.; Shin, D.-g.; Cho, K.-y. Effect of Impurities Control on the Crystallization and Densification of Polymer-Derived SiC Fibers. Nanomaterials 2021, 11, 2933. https://doi.org/10.3390/nano11112933
Joo Y-j, Joo S-h, Lee H-j, Shim Y-j, Shin D-g, Cho K-y. Effect of Impurities Control on the Crystallization and Densification of Polymer-Derived SiC Fibers. Nanomaterials. 2021; 11(11):2933. https://doi.org/10.3390/nano11112933
Chicago/Turabian StyleJoo, Young-jun, Sang-hyun Joo, Hyuk-jun Lee, Young-jin Shim, Dong-geun Shin, and Kwang-youn Cho. 2021. "Effect of Impurities Control on the Crystallization and Densification of Polymer-Derived SiC Fibers" Nanomaterials 11, no. 11: 2933. https://doi.org/10.3390/nano11112933
APA StyleJoo, Y.-j., Joo, S.-h., Lee, H.-j., Shim, Y.-j., Shin, D.-g., & Cho, K.-y. (2021). Effect of Impurities Control on the Crystallization and Densification of Polymer-Derived SiC Fibers. Nanomaterials, 11(11), 2933. https://doi.org/10.3390/nano11112933