Distance-Dependent Fluorescence Resonance Energy Transfer Enhancement on Nanoporous Gold
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of NPG Substrates
2.2. Materials
2.3. Polyelectrolyte Multilayers Layers Assembly
2.4. Fluorescence Spectroscopy and Efficiency and Enhancement Factor of FRET
3. Results and Discussion
3.1. CFP Fluorescence (Donor)
3.2. FRET Based on NPG
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zoric, I.; Zach, M.; Kasemo, B.; Langhammer, C. Gold, Platinum, and Aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms. ACS Nano 2011, 5, 2535–2546. [Google Scholar] [CrossRef] [PubMed]
- Cang, H.; Labno, A.; Lu, C.; Yin, X.; Liu, M.; Gladden, C.; Liu, Y.; Zhang, X. Probing the elctromagnetic field of a 15-nanometre hotspot by single molecule imaging. Nature 2011, 469, 385–388. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, S.H.; Park, S.; Park, C.; Lee, K.S.; Kim, J.; Joo, J. Luminescence enhancement by surface plasmon assisted Förster resonance energy transfer in quantum dots and light emitting polymer hybrids with Au nanoparticles. Synth. Met. 2014, 187, 130–135. [Google Scholar] [CrossRef]
- Naoki, K.; Kazuhiro, A.; Masashi, Y.; Hiroko, Y.; Yoshihisa, F.; Yuji, K.; Michiyuki, M. Development of anoptimized backbone of FRET biosensors for kinases and GTPases. Mol. Biol. Cell 2011, 22, 4647–4656. [Google Scholar]
- Takamitsu, J.M.; Hideaki, F.; Akira, K.; Takashi, H.; Johtaro, Y.; Masataka, K.; Akira, S.; Hiroaki, M.; Keiko, Y.; Taro, I.; et al. Dependence of fluorescentprotein brightness on protein concentration in solution and enhancement of it. Nature 2016, 6, 22342. [Google Scholar]
- Qiao, Y.; Luo, Y.; Long, N.; Xing, Y.; Tu, J. Single-molecular Förster resonance energy transfer measurement on structures and interactions of biomolecules. Micromachines 2021, 12, 492. [Google Scholar] [CrossRef] [PubMed]
- Ines, R.; Mona, S.; Julia, O.; Henning, H.; Martina, P.; Alexander, S.; Andreas, M.S.; Jörg, F. Structural analysis of a genetically encoded FRET biosensor by SAXS and MD simulations. Sensors 2021, 21, 4144. [Google Scholar]
- Li, H.; Wang, M.; Wang, C.; Li, W.; Qang, W.; Xu, D. Silver nanoparticle-enhanced fluorescence resonance energy transfer sensor for human platelet-derived growth factor-BB detection. Anal. Chem. 2013, 85, 4492–4499. [Google Scholar] [CrossRef]
- Kyoungsook, P.; Lan, H.L.; Yong, B.S.; So, Y.Y.; Yong, W.K.; Dai, E.S.; Jin, W.C.; Bong, H.C.; Moonil, K. Detection of conformationally changed MBP using intramolecular FRET. Biochem. Biophys. Res. Commun. 2009, 388, 560–564. [Google Scholar]
- Yun, C.S.; Javier, A.; Jennings, T.; Fisher, M.; Hira, S.; Peterson, S.; Hopkins, B.; Reich, N.O.; Strouse, G.F. Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J. Am. Chem. Soc. 2005, 127, 3115–3119. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, Y.; Lakowicz, J.R. Enhanced Förster Resonance Energy Transfer (FRET) on a single metal particle. J. Phys. Chem. C 2007, 111, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006, 96, 113002. [Google Scholar] [CrossRef] [Green Version]
- Kühn, S.; Håkanson, U.; Rogobete, L.; Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 2006, 97, 017402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulkeith, E.; Morteani, A.C.; Niedereichholz, T.; Klar, T.A.; Feldmann, J.; Levi, S.A.; Veggel, F.C.J.M.; Reinhoudt, D.N.; Möller, M.; Gittins, D. Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Phys. Rev. Lett. 2002, 89, 203002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pompa, P.P.; Martiradonna, L.; Della, T.A.; Della, S.F.; Manna, L.; de Vittorio, M.; Calabi, F.; Cingolani, R.; Rinaldi, R. Metal-enhanced fluorescence of colloidal nanocrystalswith nanoscale control. Nat. Nanotechnol. 2006, 1, 126–130. [Google Scholar] [CrossRef]
- Komarala, V.K.; Rakovich, Y.P.; Bradley, A.L.; Byrne, S.J.; Gun’ko, Y.K.; Gaponik, N.; Eychmüller, A. Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots. Appl. Phys. Lett. 2006, 89, 253118. [Google Scholar] [CrossRef]
- Ozel, T.; Nizamoglu, S.; Sefunc, M.A.; Samarskaya, O.; Ozel, I.O.; Mutugun, E.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Gaponenko, S.V.; et al. Anisotropic emission from multi-layered plasmon resonator nanocomposites of isotropic semicondcutor quantum dots. ACS Nano 2011, 5, 1328–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, X.M.; Gersten, J.I.; Nitzan, A. Theory of energy transfer between molecules near solid state particles. J. Chern. Phys. 1985, 83, 3650–3659. [Google Scholar] [CrossRef]
- Zhao, L.; Ming, T.; Lei, S.; Chen, H.; Wang, J. Plasmon-controlled Förster resonance energy transfer. J. Phys. Chem. 2012, 116, 8287–8296. [Google Scholar] [CrossRef]
- Bouchet, D.; Cao, D.; Carminati, R.; Wilde, Y.D.; Krachmalnicoff, V. Long-range plasmon-assisted energy transfer between fluorescent emitters. Phys. Rev. Lett. 2016, 116, 37401. [Google Scholar] [CrossRef] [Green Version]
- Kucherenko, M.G.; Stepanov, V.N.; Kruchinin, N.Y. Intermolecular nonradiative energy transfer in clusters with plasmonic nanoparticles. Optic Spectrosc. 2015, 118, 103–110. [Google Scholar] [CrossRef]
- Cristian, L.C.; Zubin, J. Fundamental figures of merit for engineering förster resonance energy transfer. Optic Express 2018, 26, 19371–19387. [Google Scholar]
- Nesrine, A.; Kasper, M.P.; Mikael, K.P.; Johansson, L.; Marcus, W.B.; Albinsson, B. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs. Nanoscale 2017, 9, 673–683. [Google Scholar]
- Zhao, T.; Li, T.; Liu, Y. Silver nanoparticle plasmonic enhanced förster resonance energy transfer (FRET) imaging of protein-specific sialylation on the cell surface. Nanoscale 2017, 9, 9841–9847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komarala, V.K.; Bradley, A.L.; Rakovich, Y.P.; Byrne, S.J.; Gun’ko, Y.K.; Rogach, A.L. Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots. Appl. Phys. Lett. 2008, 93, 123102. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Cristian, A.; Marocico, C.A.; Manuela, L. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled frster resonance energy transfer. ACS Nano 2014, 8, 1273–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrayev, N.; Seliverstova, E.; Zhumabay, N.; Temirbayeva, D. Plasmon effect in the donor- acceptor pairs of dyes with various efficiency of FRET. J. Luminesc. 2019, 214, 116594. [Google Scholar] [CrossRef]
- Benjamin, S.; Michael, K.; Hannah, S.H.; Monika, E. Enhanced fluorescence resonance energy transfer in G protein-coupled receptor probes by nano-coated microscopy coverslips. ACS Photonics 2018, 26, 1–11. [Google Scholar]
- Ahmed, S.R.; Hossain, M.A.; Park, J.Y.; Kim, S.H.; Lee, D.; Suzuki, T.; Lee, J.; Park, E.Y. Metal enhanced fluorescence on nanoporous gold leaf-based assay platform for virus detection. Biosens. Bioelectron. 2014, 58, 33–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limai, T.; Enze, C.; Naveen, G.; Abdennour, A.; Srikanth, S. Gold nanorods as plasmonic nanotransducers: Distance-dependent Refractive Index Sensitivity. Langmuir 2012, 28, 17435. [Google Scholar]
- Naveen, G.; Christopher, P.; Limei, T.; Rui, T.; Baogang, X.; Samuel, A.; Srikanth, S. Probing distance-dependent plasmon-enhanced near-infrared fluorescence using polyelectrolyte multilayers as dielectric spacers. Angew. Chem. Int. Ed. 2014, 53, 866–870. [Google Scholar]
- Ling, Z.; Yunke, S.; Takeshi, F.; Ye, Z.; Mingwei, C.; Tza-Huei, W. Large enhancement of quantum dot fluorescence by highly scalable nanoporous gold. Adv. Mater. 2014, 26, 1289–1294. [Google Scholar]
- Wei, C.W.; Joseph, B.; Tracy, T. Large-scale silica overcoating of gold nanorods with tunable shell thicknesses. Chem. Mater. 2015, 27, 2888–2894. [Google Scholar]
- Daming, C.; Qing, H.X. Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles. Chem. Commun. 2007, 3, 248–250. [Google Scholar]
- Kümmerlen, J.; Leitner, A.; Brunner, H.; Aussenegg, F.; Wokaun, A. Enhanced dye fluorescence over silver island films: Analysis of the distance dependence. Mol. Phys. 1993, 80, 1031–1046. [Google Scholar] [CrossRef]
- Erlebacher, J.; Aziz, M.J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450. [Google Scholar] [CrossRef] [PubMed]
- Voevodin, A.A.; Rebholz, C.; Schneider, J.M.; Schneider, J.M.; Stevenson, P.; Matthews, A. Wear resistant composite coatings deposited by electron enhanced closed field unbalanced magnetron sputtering. Surf. Coat. Technol. 1995, 73, 185–197. [Google Scholar] [CrossRef]
- Ray, K.; Badugu, R.; Lakowicz, J.R. Polyelectrolyte layer-by-layer assembly to control the distance between fluorophores and plasmonic Nanostructures. Chem. Mater. 2007, 19, 5902–5909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuriye, A.; Joseph, R.L.; Krishanu, R. Distance-dependent intrinsic fluorescence of proteins on aluminum nanostructures. Proc. SPIE 2012, 8234, 823417. [Google Scholar]
- Zong, H.; Wang, X.; Mu, X.; Wang, J.; Sun, M. Plasmon-enhanced fluorescence resonance energy transfer. Chem. Rec. 2019, 19, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Ermolaev, V.L.; Bodunov, E.N.; Sveshnikova, Y.V.; Shakhveredov, T.A. Radiationless Transfer of Electron Excitation Energy; Academy of Science of USSR: Saint Petersburg, Russia, 1977; Volume 42, pp. 214–224. [Google Scholar]
- Myung-Jin, L.; Lee, W.Y.; Joon, H.; Kiju, H.; Weon, S.C. Silver-coated nanoporous gold skeletons for fluorescence amplification. Microporous Mesoporous Mater. 2017, 237, 60–64. [Google Scholar]
Wt.% | NPG27 | NPG32 | NPG38 | NPG45 |
---|---|---|---|---|
Au | 97.64 | 97.52 | 97.74 | 98.45 |
Ag | 2.36 | 2.48 | 2.26 | 1.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Zhang, L.; Zeng, H. Distance-Dependent Fluorescence Resonance Energy Transfer Enhancement on Nanoporous Gold. Nanomaterials 2021, 11, 2927. https://doi.org/10.3390/nano11112927
Cui L, Zhang L, Zeng H. Distance-Dependent Fluorescence Resonance Energy Transfer Enhancement on Nanoporous Gold. Nanomaterials. 2021; 11(11):2927. https://doi.org/10.3390/nano11112927
Chicago/Turabian StyleCui, Lianmin, Ling Zhang, and Heping Zeng. 2021. "Distance-Dependent Fluorescence Resonance Energy Transfer Enhancement on Nanoporous Gold" Nanomaterials 11, no. 11: 2927. https://doi.org/10.3390/nano11112927
APA StyleCui, L., Zhang, L., & Zeng, H. (2021). Distance-Dependent Fluorescence Resonance Energy Transfer Enhancement on Nanoporous Gold. Nanomaterials, 11(11), 2927. https://doi.org/10.3390/nano11112927