Ultra-Broadband Polarization Conversion Metasurface with High Transmission for Efficient Multi-Functional Wavefront Manipulation in the Terahertz Range
Abstract
:1. Introduction
2. Structural Design and Cross-Polarization Conversion
3. Multi-Functional Wavefront Manipulation
3.1. Anomalous Refraction
3.2. Focusing Metalens
3.3. Vortex Beam Generation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, S.L.; He, Q.; Hao, J.M.; Xiao, S.Y.; Zhou, L. Electromagnetic metasurfaces: Physics and applications. Adv. Opt. Photonics 2019, 11, 380–479. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Yang, F.; Liu, C.; Wu, X.; Cui, T.J. Terahertz beam steering technologies: From Phased Arrays to Field-Programmable Metasurfaces. Adv. Opt. Mater. 2020, 8, 1900628. [Google Scholar] [CrossRef]
- Sorina, I.; Ana-Maria, R.; Daniela, D. Characterization of monochromatic aberrated metalenses in terms of intensity-based moments. Nanomaterials 2021, 11, 1805. [Google Scholar]
- Chen, H.-T.; Taylor, A.J.; Yu, N.-F. A review of metasurfaces: Physics and applications. Rep. Prog. Phys. 2016, 79, 076401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, N.-F.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef]
- Chen, X.; Fan, W.-H. Tunable bound states in the continuum in all-dielectric terahertz metasurfaces. Nanomaterials 2020, 10, 623. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.-Q.; Fan, W.-H.; Chen, X.; Yan, H. Ultrahigh-Q terahertz sensor based on simple all-dielectric metasurface with toroidal dipole resonance. Appl. Phys. Express 2021, 14, 102008. [Google Scholar] [CrossRef]
- Ding, F.; Pors, A.; Bozhevolnyi, S.I. Gradient metasurfaces: A review of fundamentals and applications. Rep. Prog. Phys. 2018, 81, 026401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, N.-F.; Genevet, P.; Kats, M.A.; Aleta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grady, N.K.; Heyes, J.E.; Chowdhury, D.R.; Zeng, Y.; Reiten, M.T.; Azad, A.K.; Taylor, A.J.; Dalvit, D.A.; Chen, H.T. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 2013, 340, 1304–1307. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.W.; Chen, S.Q.; Li, Z.C.; Cheng, H.; Yu, P.; Li, J.X.; Tian, J.G. Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface. Opt. Lett. 2015, 40, 3185–3188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tian, J.; Xiao, S.; Li, L. Methodology for high purity broadband near-unity THz linear polarization converter and its switching characteristics. IEEE Access 2020, 8, 46505. [Google Scholar] [CrossRef]
- Jing, L.-Q.; Wang, Z.-J.; Maturi, R.; Zheng, B.; Wang, H.-P.; Yang, Y.-H.; Shen, L.; Hao, R.; Yin, W.-Y.; Li, E.-P.; et al. Gradient chiral metamirrors for spin-selective anomalous reflection. Laser Photon. Rev. 2017, 11, 1700115. [Google Scholar] [CrossRef]
- Fan, J.-P.; Cheng, Y.-Z.; He, B. High-efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies. J. Phys. D Appl. Phys. 2021, 54, 115101. [Google Scholar] [CrossRef]
- Zang, X.-F.; Ding, H.-Z.; Intaravanne, Y.; Chen, L. A multi-foci metalens with polarization-rotated focal points. Laser Photon. Rev. 2019, 13, 1900182. [Google Scholar] [CrossRef]
- Liu, X.; Deng, J.-H.; Li, K.-F.; Tang, Y.-T.; Jin, M.-K.; Zhou, J.; Cheng, X.; Liu, W.; Li, G.-X. Optical Metasurfaces for Designing Planar Cassegrain-Schwarzschild Objectives. Phys. Rev. Appl. 2019, 11, 054055. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, R.-K.; Chang, S.-L.; Li, J.; Shi, Y.; Liu, X.-M.; Sun, J.-H.; Kang, Q.-L.; Guo, K.; Guo, Z.-Y. High-efficiency spin-related vortex metalenses. Nanomaterials 2021, 11, 1485. [Google Scholar] [CrossRef]
- Li, J.-S.; Zhang, L.-N. Simple terahertz vortex beam generator based on reflective metasurfaces. Opt. Express 2020, 28, 36403–36412. [Google Scholar] [CrossRef] [PubMed]
- Pu, M.-B.; Li, X.; Ma, X.-L.; Wang, Y.-Q.; Zhao, Z.-Y.; Wang, C.-T.; Hu, C.-G.; Gap, P.; Huang, C.; Ren, H.-R.; et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 2015, 1, e1500396. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef]
- Malek, S.C.; Ee, H.S.; Agarwal, R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 2017, 17, 3641–3645. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Yang, J.; Wu, X.; Song, J.; Pu, M.; Wang, C.; Luo, X. Reconfigurable metasurface cloak for dynamical electromagnetic illusions. ACS Photonics 2017, 5, 1718–1725. [Google Scholar] [CrossRef]
- Harter, T.; Ummethala, S.; Blaicher, M.; Muehlbrandt, S.; Wolf, S.; Weber, M.; Adib, M.H.; Kemal, J.N.; Merboldt, M.; Boes, F.; et al. Wireless THz link with optoelectronic transmitter and receiver. Optica 2019, 6, 1063–1070. [Google Scholar] [CrossRef]
- Yang, Y.; Yamagami, Y.; Yu, X.; Pitchappa, P.; Webber, J.; Zhang, B.; Fujita, M.; Nagatsuma, T.; Singh, R. Terahertz topological photonics for on-chip communication. Nat. Photonics 2020, 14, 446–451. [Google Scholar] [CrossRef] [Green Version]
- Ding, G.-W.; Chen, K.; Luo, X.-Y.; Zhao, J.-M.; Jiang, T.; Feng, Y.-J. Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion. Phys. Rev. Appl. 2019, 11, 044043. [Google Scholar] [CrossRef]
- Sun, S.-L.; Yang, K.-Y.; Wang, C.-M.; Juan, T.-K.; Chen, W.-T.; Liao, C.-Y.; He, Q.; Xiao, S.; Kung, W.-T.; Guo, G.-Y.; et al. High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces. Nano Lett. 2012, 12, 6223–6229. [Google Scholar] [CrossRef]
- Yang, J.-F.; Qu, S.-B.; Ma, H.; Wang, J.; Sui, S.; Zheng, Q.; Chen, H.; Pang, Y. Ultra-broadband co-polarization anomalous reflection metasurface. Appl. Phys. A 2017, 123, 537. [Google Scholar] [CrossRef]
- Chen, Z.-B.; Deng, H.; Xiong, Q.-X.; Liu, C. Phase gradient metasurface with broadband anomalous reflection based on cross-shaped units. Appl. Phys. A 2018, 124, 281. [Google Scholar] [CrossRef]
- Monticone, F.; Estakhri, N.M.; Alu, A. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett. 2013, 110, 203903. [Google Scholar] [CrossRef]
- Yang, Q.-L.; Gu, J.-Q.; Xu, Y.-H.; Zhang, X.-Q.; Li, Y.-F.; Ouyang, C.-M.; Tian, Z.; Han, J.-G.; Zhang, W.-L. Broadband and Robust Metalens with nonlinear phase profiles for efficient terahertz wave control. Adv. Opt. Mater. 2017, 5, 160184. [Google Scholar] [CrossRef]
- Li, Z.-C.; Liu, W.-W.; Cheng, H.; Liu, J.; Chen, S.; Tian, J. Simultaneous generation of high-efficiency broadband asymmetric anomalous refraction and reflection waves with few-layer anisotropic metasurface. Sci. Rep. 2016, 6, 35485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Noor, A.; Du, L.-L.; Zhang, L.; Xu, Q.; Luan, K.; Wang, T.-Q.; Tian, Z.; Tang, W.-X.; Han, J.-G.; et al. Anomalous Refraction and Nondiffractive Bessel-Beam Generation of Terahertz Waves through Transmission-Type Coding Metasurfaces. ACS Photonics 2016, 3, 1968–1977. [Google Scholar] [CrossRef]
- Fan, J.-P.; Cheng, Y.-Z. Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave. J. Phys. D Appl. Phys. 2020, 53, 025109. [Google Scholar] [CrossRef]
- Wang, K.; Fan, W.-H.; Chen, X.; Song, C.; Jiang, X.-Q. Graphene based polarization independent Fano resonance at terahertz for tunable sensing at nanoscale. Opt. Commun. 2019, 439, 61–65. [Google Scholar] [CrossRef]
- Cheng, Y.-Z.; Zhao, J.-C.; Mao, X.-S.; Gong, R. Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial. Prog. Electromagn. Res. 2017, 160, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-B.; Zhou, X.; Tang, D.-F.; Dong, J.-F. Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry–Perot-like resonators. J. Mod. Opt. 2017, 64, 750–759. [Google Scholar] [CrossRef]
- Gao, X.; Singh, L.; Yang, W.; Zheng, J.; Li, H.; Zhang, W. Bandwidth broadening of a linear polarization converter by near-field metasurface coupling. Sci. Rep. 2017, 7, 6817. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.-C.; Wang, L.; Zhang, Y.-X.; Shi, Q.-W.; Liang, S.-X.; Huang, W.-X.; Kou, W.; Yang, Z.-Q. Dynamic Photo-induced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures. ACS Photon. 2018, 5, 3040–3050. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Zhu, A.Y.; Roques-Carmes, C.; Chen, W.-T.; Oh, J.; Mishra, I.; Devlin, R.C.; Capasso, F. Polarization-Insensitive Metalenses at Visible Wavelengths. Nano Lett. 2016, 16, 7229–7234. [Google Scholar] [CrossRef]
- Qi, Q.; Chen, X.; Zhong, C.; Zhang, Z. Integration of energy, computation and communication in 6G cellular internet of things. IEEE Commun. Lett. 2020, 24, 1333–1337. [Google Scholar] [CrossRef]
- Strain, M.J.; Cai, X.-L.; Wang, J.-W.; Zhu, J.; Phillips, D.B.; Chen, L.; Lopez-Garcia, M.; O’Brien, J.L.; Thompson, M.G.; Sorel, M.; et al. Electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nat. Commun. 2014, 5, 4856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Fan, W.; Qin, C.; Chen, X. Ultra-Broadband Polarization Conversion Metasurface with High Transmission for Efficient Multi-Functional Wavefront Manipulation in the Terahertz Range. Nanomaterials 2021, 11, 2895. https://doi.org/10.3390/nano11112895
Jiang X, Fan W, Qin C, Chen X. Ultra-Broadband Polarization Conversion Metasurface with High Transmission for Efficient Multi-Functional Wavefront Manipulation in the Terahertz Range. Nanomaterials. 2021; 11(11):2895. https://doi.org/10.3390/nano11112895
Chicago/Turabian StyleJiang, Xiaoqiang, Wenhui Fan, Chong Qin, and Xu Chen. 2021. "Ultra-Broadband Polarization Conversion Metasurface with High Transmission for Efficient Multi-Functional Wavefront Manipulation in the Terahertz Range" Nanomaterials 11, no. 11: 2895. https://doi.org/10.3390/nano11112895
APA StyleJiang, X., Fan, W., Qin, C., & Chen, X. (2021). Ultra-Broadband Polarization Conversion Metasurface with High Transmission for Efficient Multi-Functional Wavefront Manipulation in the Terahertz Range. Nanomaterials, 11(11), 2895. https://doi.org/10.3390/nano11112895