Influence of Coating and Size of Magnetic Nanoparticles on Cellular Uptake for In Vitro MRI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. IONPs Synthesis and Characterization
2.2.1. Dextran Coating of IONPs (NP-D)
2.2.2. Diethylaminoethyl-dextran Coating of IONPs (NP-AD)
2.2.3. Carboxymethyl-dextran Coating of IONPs (NP-CMD)
2.2.4. (3-Aminopropyl) Triethoxysilane Coating of IONPs (NP-APS)
2.2.5. Dimercaptosuccinic Acid Coating of IONPs (NP-DMSA)
2.3. IONPs Characterization
2.3.1. Colloidal Characterization
2.3.2. Thermogravimetric Analysis
2.3.3. Inductively Coupled Plasma (ICP)
2.3.4. Transmission Electron Microscopy (TEM)
2.3.5. X-ray Powder Diffraction (XRD)
2.3.6. Vibrating Sample Magnetometer (VSM)
2.4. IONPs Internalization by Cells
2.4.1. Cell Culture
2.4.2. IONPs Sterilization
2.4.3. IONPs Uptake
2.4.4. Cell Viability
2.4.5. Labelling Efficiency
2.4.6. Scanning Electron Microscopy (SEM)
2.4.7. Intracellular IONPs Quantification after CMI Method
2.4.8. MRI Measurements
2.5. Statistical Analysis
3. Results and Discussion
3.1. Synthesis, Characterization and Colloidal Properties of IONPs with the Same Core and Different Coatings
3.2. IONPs Uptake by the CMI Method
3.3. Influence of Core Size on IONPs Uptake by the CMI Method
3.4. MRI Contrast Enhancement In Vitro
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Weissleder, R.; Nahrendorf, M.; Pittet, M.J. Imaging Macrophages with Nanoparticles. Nat. Mater. 2014, 13, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Lim, J.; Teoh, S.-H.; Xu, C. Emerging Translational Research on Magnetic Nanoparticles for Regenerative Medicine. Chem. Soc. Rev. 2015, 44, 6306–6329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosayebi, J.; Kiyasatfar, M.; Laurent, S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv. Healthc. Mater. 2017, 6, 1700306. [Google Scholar] [CrossRef] [PubMed]
- Israel, L.L.; Galstyan, A.; Holler, E.; Ljubimova, J.Y. Magnetic Iron Oxide Nanoparticles for Imaging, Targeting and Treatment of Primary and Metastatic Tumors of the Brain. J. Control. Release 2020, 320, 45–62. [Google Scholar] [CrossRef]
- Tang, T.; Valenzuela, A.; Petit, F.; Chow, S.; Leung, K.; Gorin, F.; Louie, A.Y.; Dhenain, M. In Vivo MRI of Functionalized Iron Oxide Nanoparticles for Brain Inflammation. Contrast Media Mol. Imaging 2018, 2018, 3476476. [Google Scholar] [CrossRef]
- Johannsen, M.; Gneveckow, U.; Taymoorian, K.; Thiesen, B.; Waldöfner, N.; Scholz, R.; Jung, K.; Jordan, A.; Wust, P.; Loening, S.A. Morbidity and Quality of Life during Thermotherapy Using Magnetic Nanoparticles in Locally Recurrent Prostate Cancer: Results of a Prospective Phase I Trial. Int. J. Hyperth. 2007, 23, 315–323. [Google Scholar] [CrossRef]
- Maier-Hauff, K.; Ulrich, F.; Nestler, D.; Niehoff, H.; Wust, P.; Thiesen, B.; Orawa, H.; Budach, V.; Jordan, A. Efficacy and Safety of Intratumoral Thermotherapy Using Magnetic Iron-Oxide Nanoparticles Combined with External Beam Radiotherapy on Patients with Recurrent Glioblastoma Multiforme. J. Neurooncol. 2011, 103, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.R.; Gambhir, S.S. Nanomaterials for In Vivo Imaging. Chem. Rev. 2017, 117, 901–986. [Google Scholar] [CrossRef]
- M.D. Anderson Cancer Center. Pilot Feasibility Study of Iron Oxide Nanoparticle Magnetic Resonance Dynamic Contrast Enhanced MRI for Primary and Nodal Tumor Imaging in Locally Advanced Head and Neck Squamous Cell Carcinomas; Clinicaltrials.Gov Identifier: NCT01895829. 2021. Available online: https://clinicaltrials.gov/ct2/history/NCT01895829?V_15=View (accessed on 21 October 2021).
- Second Affiliated Hospital, School of Medicine, Zhejiang University. A Phase I Clinical Trial of Neoadjuvant Chemotherapy With/Without Superparamagnetic Iron Oxide Nanoparticles and Spinning Magnetic Field for Patients with Osteosarcoma; Clinicaltrials.Gov Identifier: NCT04316091. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04316091 (accessed on 21 October 2021).
- Radboud University. Preoperative Detection of Lymph Node Metastases in Pancreatic and Periampullary Carcinoma Using Ultrasmall Super Paramagnetic Iron Oxide Nanoparticle Ferumoxtran-10; Clinicaltrials.Gov Identifier: NCT04311047. 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04311047 (accessed on 21 October 2021).
- MegaPro Biomedical Co. Ltd. A Phase I Study to Determine the MTD and to Evaluate Pharmacokinetic, Safety/Tolerability, and Efficacy Profiles of IOP Injection for MRI Contrast Agent in Healthy Subjects; Clinicaltrials.Gov Identifier: NCT02744248. 2018. Available online: https://clinicaltrials.gov/ct2/show/NCT02744248 (accessed on 21 October 2021).
- Neuwelt, E. Pilot Study to Compare Dynamic MR Imaging Changes in Patients with Recurrent High Grade Glioma, Receiving an Antiangiogenic Drug, Bevacizumab, versus Dexamethasone. Dual Agent MR Imaging Study, Using Gadolinium and Ferumoxytol (Code 7228); Clinicaltrials.Gov Identifier: NCT00769093. 2017. Available online: https://clinicaltrials.gov/ct2/show/NCT00769093 (accessed on 21 October 2021).
- Mukesh Harisinghani, MD, Principal Investigator, Massachusetts General Hospital. Pre-Operative Nodal Staging of Thyroid Cancer Using Ultra-Small Superparamagnetic Iron Oxide Magnetic Resonance Imaging (USPIO MRI): Preliminary Study; Clinicaltrials.Gov Identifier: NCT01927887. 2017. Available online: https://clinicaltrials.gov/ct2/show/NCT01927887 (accessed on 21 October 2021).
- M.D. Anderson Cancer Center. Clinical and Technical Feasibility of a Ultrasuperparamagnetic Nanoparticle Iron Oxide (USPIO)-Enhanced Magnetic Resonance Lymph Node Imaging; Clinicaltrials.Gov Identifier: NCT01815333. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT01815333 (accessed on 21 October 2021).
- Ralph, W.M.D. Improved Pre-Operative Staging of Pancreatic Cancer Using Superparamagnetic Iron Oxide Magnetic Resonance Imaging (SPIO MRI); Clinicaltrials.Gov Identifier: NCT00920023. 2017. Available online: https://clinicaltrials.gov/ct2/show/NCT00920023 (accessed on 21 October 2021).
- Zeineh, M. 7T MRI Ferumoxytol-Enhanced Characterization of Multiple Sclerosis and Demyelinating Diseases; Clinicaltrials.Gov Identifier: NCT01973517. 2018. Available online: https://clinicaltrials.gov/ct2/show/NCT01973517 (accessed on 21 October 2021).
- National Institute of Neurological Disorders and Stroke (NINDS). In Vivo Characterization of Inflammation With Ferumoxytol, an Ultrasmall Superparamagnetic Iron Oxide Nanoparticle, on 7 Tesla Magnetic Resonance Imaging; Clinicaltrials.Gov Identifier: NCT02511028. 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT02511028 (accessed on 21 October 2021).
- University of Edinburgh. Ferumoxytol for Magnetic Resonance Imaging of Myocardial Infarction; Clinicaltrials.Gov Identifier: NCT01323296. 2014. Available online: https://clinicaltrials.gov/ct2/show/NCT01323296 (accessed on 21 October 2021).
- University of Edinburgh. Assessment of Cellular Inflammation Following Acute Myocardial Infarction Application of Ultrasmall Superparamagnetic Particles Of Iron Oxide; Clinicaltrials.Gov Identifier: NCT01995799. 2013. Available online: https://clinicaltrials.gov/ct2/show/NCT01995799 (accessed on 21 October 2021).
- Khan, S. Investigation of Vascular Inflammation in Migraine without Aura Using Molecular Nano-Imaging and Black Blood Imaging MRI; Clinicaltrials.Gov Identifier: NCT02549898. 2018. Available online: https://clinicaltrials.gov/ct2/show/NCT02549898 (accessed on 21 October 2021).
- University of Edinburgh. Inflammatory Cell Labelling and Tracking with Magnetic Resonance Imaging after Myocardial Infarction; Clinicaltrials.Gov Identifier: NCT01127113. 2014. Available online: https://clinicaltrials.gov/ct2/show/NCT01127113 (accessed on 21 October 2021).
- Ali, A.A.A.; Shahror, R.A.; Chen, K.-Y. Efficient Labeling Of Mesenchymal Stem Cells For High Sensitivity Long-Term MRI Monitoring In Live Mice Brains. Int. J. Nanomed. 2020, 15, 97–114. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.-S.; Li, Y.; Yue, W.; Liu, B.; Li, K. Nanoparticle-Based Cell Trackers for Biomedical Applications. Theranostics 2020, 10, 1923–1947. [Google Scholar] [CrossRef]
- Estelrich, J.; Sánchez-Martín, M.J.; Busquets, M.A. Nanoparticles in Magnetic Resonance Imaging: From Simple to Dual Contrast Agents. Int. J. Nanomed. 2015, 10, 1727–1741. [Google Scholar]
- Ocampo, S.M.; Rodriguez, V.; de la Cueva, L.; Salas, G.; Carrascosa, J.L.; Josefa Rodríguez, M.; García-Romero, N.; Cuñado, J.L.F.; Camarero, J.; Miranda, R.; et al. G-Force Induced Giant Efficiency of Nanoparticles Internalization into Living Cells. Sci. Rep. 2015, 5, 15160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo, G.F.; Cortés-Llanos, B.; Belmonte-Beitia, J.; Salas, G.; Ayuso-Sacido, Á. Modelling the Role of Flux Density and Coating on Nanoparticle Internalization by Tumor Cells under Centrifugation. Appl. Math. Model. 2020, 78, 98–116. [Google Scholar] [CrossRef]
- Markides, H.; Rotherham, M.; El Haj, A.J. Biocompatibility and Toxicity of Magnetic Nanoparticles in Regenerative Medicine. J. Nanomater. 2012, 2012, e614094. [Google Scholar] [CrossRef] [Green Version]
- Nosrati, H.; Salehiabar, M.; Fridoni, M.; Abdollahifar, M.-A.; Kheiri Manjili, H.; Davaran, S.; Danafar, H. New Insight about Biocompatibility and Biodegradability of Iron Oxide Magnetic Nanoparticles: Stereological and In Vivo MRI Monitor. Sci. Rep. 2019, 9, 7173. [Google Scholar] [CrossRef] [Green Version]
- Corot, C.; Warlin, D. Superparamagnetic Iron Oxide Nanoparticles for MRI: Contrast Media Pharmaceutical Company R&D Perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 411–422. [Google Scholar] [PubMed]
- Lartigue, L.; Innocenti, C.; Kalaivani, T.; Awwad, A.; del Sanchez Duque, M.M.; Guari, Y.; Larionova, J.; Guérin, C.; Montero, J.-L.G.; Barragan-Montero, V.; et al. Water-Dispersible Sugar-Coated Iron Oxide Nanoparticles. An Evaluation of Their Relaxometric and Magnetic Hyperthermia Properties. J. Am. Chem. Soc. 2011, 133, 10459–10472. [Google Scholar] [CrossRef] [Green Version]
- Pothayee, N.; Balasubramaniam, S.; Pothayee, N.; Jain, N.; Hu, N.; Lin, Y.; Davis, R.M.; Sriranganathan, N.; Koretsky, A.P.; Riffle, J.S. Magnetic Nanoclusters with Hydrophilic Spacing for Dual Drug Delivery and Sensitive Magnetic Resonance Imaging. J. Mater. Chem. B 2013, 1, 1142–1149. [Google Scholar] [CrossRef]
- Gutiérrez, L.; de la Cueva, L.; Moros, M.; Mazarío, E.; de Bernardo, S.; de la Fuente, J.M.; Morales, M.P.; Salas, G. Aggregation Effects on the Magnetic Properties of Iron Oxide Colloids. Nanotechnology 2019, 30, 112001. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, C.C.; Payne, C.K. Nanoparticle-Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes. Acc. Chem Res. 2014, 47, 2651–2659. [Google Scholar] [CrossRef]
- Massart, R. Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Trans. Magn. 1981, 17, 1247–1248. [Google Scholar] [CrossRef]
- Costo, R.; Bello, V.; Robic, C.; Port, M.; Marco, J.F.; Puerto Morales, M.; Veintemillas-Verdaguer, S. Ultrasmall Iron Oxide Nanoparticles for Biomedical Applications: Improving the Colloidal and Magnetic Properties. Langmuir 2012, 28, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Safi, M.; Courtois, J.; Seigneuret, M.; Conjeaud, H.; Berret, J.-F. The Effects of Aggregation and Protein Corona on the Cellular Internalization of Iron Oxide Nanoparticles. Biomaterials 2011, 32, 9353–9363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bautista, M.C.; Bomati-Miguel, O.; del Morales, M.P.; Serna, C.J.; Veintemillas-Verdaguer, S. Surface Characterisation of Dextran-Coated Iron Oxide Nanoparticles Prepared by Laser Pyrolysis and Coprecipitation. J. Magn. Magn. Mater. 2005, 293, 20–27. [Google Scholar] [CrossRef]
- Chamorro, S.; Gutierrez, L.; Vaquero, M.P.; Verdoy, D.; Salas, G.; Luengo, Y.; Brenes, A.; Teran, F.J. Safety Assessment of Chronic Oral Exposure to Iron Oxide Nanoparticles. Nanotechnology 2015, 26, 205101. [Google Scholar] [CrossRef]
- Dutz, S.; Clement, J.H.; Eberbeck, D.; Gelbrich, T.; Hergt, R.; Muller, R.; Wotschadlo, J.; Zeisberger, M. Ferrofluids of Magnetic Multicore Nanoparticles for Biomedical Applications. J. Magn. Magn. Mater. 2009, 321, 1501–1504. [Google Scholar] [CrossRef]
- Luengo, Y.; Nardecchia, S.; Morales, M.P.; Serrano, M.C. Different Cell Responses Induced by Exposure to Maghemite Nanoparticles. Nanoscale 2013, 5, 11428–11437. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Hwang, N.-M.; Hyeon, T. Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals. Nat. Mater. 2004, 3, 891–895. [Google Scholar] [CrossRef]
- Sun, S.; Zeng, H.; Robinson, D.B.; Raoux, S.; Rice, P.M.; Wang, S.X.; Li, G. Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279. [Google Scholar] [CrossRef]
- Salas, G.; Casado, C.; Teran, F.J.; Miranda, R.; Serna, C.J.; Morales, M.P. Controlled Synthesis of Uniform Magnetite Nanocrystals with High-Quality Properties for Biomedical Applications. J. Mater. Chem. 2012, 22, 21065–21075. [Google Scholar] [CrossRef]
- Pacakova, B.; Kubickova, S.; Salas, G.; Mantlikova, A.R.; Marciello, M.; Morales, M.P.; Niznansky, D.; Vejpravova, J. The Internal Structure of Magnetic Nanoparticles Determines the Magnetic Response. Nanoscale 2017, 9, 5129–5140. [Google Scholar] [CrossRef] [PubMed]
- Bee, A.; Massart, R.; Neveu, S. Synthesis of Very Fine Maghemite Particles. J. Magn. Magn. Mater. 1995, 149, 6–9. [Google Scholar] [CrossRef]
- Moore, T.L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle Colloidal Stability in Cell Culture Media and Impact on Cellular Interactions. Chem. Soc. Rev. 2015, 44, 6287–6305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russel, W.B.; Saville, D.A.; Schowalter, W.R. Colloidal Dispersions; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Mahmoudi, M.; Lynch, I.; Ejtehadi, M.R.; Monopoli, M.P.; Bombelli, F.B.; Laurent, S. Protein Nanoparticle Interactions: Opportunities and Challenges. Chem. Rev. 2011, 111, 5610–5637. [Google Scholar] [CrossRef]
- Monopoli, M.P.; AAberg, C.; Salvati, A.; Dawson, K.A. Biomolecular Coronas Provide the Biological Identity of Nanosized Materials. Nat. Nanotechnol. 2012, 7, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A. Nanoparticle Size and Surface Properties Determine the Protein Corona with Possible Implications for Biological Impacts. Proc. Natl. Acad. Sci. USA 2008, 105, 14265–14270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Perálvarez-Marín, A.; Minelli, C.; Faraudo, J.; Roig, A.; Laromaine, A. Albumin-Coated SPIONs: An Experimental and Theoretical Evaluation of Protein Conformation, Binding Affinity and Competition with Serum Proteins. Nanoscale 2016, 8, 14393–14405. [Google Scholar] [CrossRef] [Green Version]
- Guldris, N.; Argibay, B.; Gallo, J.; Iglesias-Rey, R.; Carbó-Argibay, E.; Kolen’ko, Y.V.; Campos, F.; Sobrino, T.; Salonen, L.M.; Bañobre-López, M.; et al. Magnetite Nanoparticles for Stem Cell Labeling with High Efficiency and Long-Term in Vivo Tracking. Bioconjugate Chem. 2017, 28, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Sabuncu, A.C.; Grubbs, J.; Qian, S.; Abdel-Fattah, T.M.; Stacey, M.W.; Beskok, A. Probing Nanoparticle Interactions in Cell Culture Media. Colloids Surf. B Biointerfaces 2012, 95, 96–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrenberg, M.S.; Friedman, A.E.; Finkelstein, J.N.; Oberdörster, G.; McGrath, J.L. The Influence of Protein Adsorption on Nanoparticle Association with Cultured Endothelial Cells. Biomaterials 2009, 30, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Gage, S.H.; Stein, B.D.; Nikoshvili, L.Z.; Matveeva, V.G.; Sulman, M.G.; Sulman, E.M.; Morgan, D.G.; Yuzik-Klimova, E.Y.; Mahmoud, W.E.; Bronstein, L.M. Functionalization of Monodisperse Iron Oxide NPs and Their Properties as Magnetically Recoverable Catalysts. Langmuir 2012, 29, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Cheon, J.; Kang, N.-J.; Lee, S.-M.; Lee, J.-H.; Yoon, J.-H.; Oh, S.J. Shape Evolution of Single-Crystalline Iron Oxide Nanocrystals. J. Am. Chem. Soc. 2004, 126, 1950–1951. [Google Scholar] [CrossRef] [PubMed]
- Saei, A.A.; Yazdani, M.; Lohse, S.E.; Bakhtiary, Z.; Serpooshan, V.; Ghavami, M.; Asadian, M.; Mashaghi, S.; Dreaden, E.C.; Mashaghi, A.; et al. Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity. Chem. Mater. 2017, 29, 6578–6595. [Google Scholar] [CrossRef]
- Sousa, C.; Sequeira, D.; Kolen’ko, Y.V.; Pinto, I.M.; Petrovykh, D.Y. Analytical Protocols for Separation and Electron Microscopy of Nanoparticles Interacting with Bacterial Cells. Anal. Chem. 2015, 87, 4641–4648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilas-Boas, V.; Espiña, B.; Kolen’ko, Y.V.; Bañobre-Lopez, M.; Duarte, J.A.; Martins, V.C.; Petrovykh, D.Y.; Freitas, P.P.; Carvalho, F.D. Combining CXCR4-Targeted and Nontargeted Nanoparticles for Effective Unassisted in Vitro Magnetic Hyperthermia. Biointerphases 2018, 13, 011005. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, A.; Cañete, M.; Roca, A.G.; Calero, M.; Veintemillas-Verdaguer, S.; Serna, C.J.; del Morales, M.P.; Miranda, R. The Influence of Surface Functionalization on the Enhanced Internalization of Magnetic Nanoparticles in Cancer Cells. Nanotechnology 2009, 20, 115103. [Google Scholar] [CrossRef]
- Verma, A.; Stellacci, F. Effect of Surface Properties on Nanoparticle–Cell Interactions. Small 2010, 6, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Kenzaoui, B.H.; Vilà, M.R.; Miquel, J.M.; Cengelli, F.; Juillerat-Jeanneret, L. Evaluation of Uptake and Transport of Cationic and Anionic Ultrasmall Iron Oxide Nanoparticles by Human Colon Cells. Int. J. Nanomed. 2012, 7, 1275–1286. [Google Scholar]
- Calero, M.; Gutiérrez, L.; Salas, G.; Luengo, Y.; Lázaro, A.; Acedo, P.; Morales, M.P.; Miranda, R.; Villanueva, A. Efficient and Safe Internalization of Magnetic Iron Oxide Nanoparticles: Two Fundamental Requirements for Biomedical Applications. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 733–743. [Google Scholar] [CrossRef]
- Lin, M.M.; Li, S.; Kim, H.-H.; Kim, H.; Lee, H.B.; Muhammed, M.; Kim, D.K. Complete Separation of Magnetic Nanoparticles via Chemical Cleavage of Dextran by Ethylenediamine for Intracellular Uptake. J. Mater. Chem. 2009, 20, 444–447. [Google Scholar] [CrossRef]
- Xiao, Y.-D.; Paudel, R.; Liu, J.; Ma, C.; Zhang, Z.-S.; Zhou, S.-K. MRI Contrast Agents: Classification and Application (Review). Int. J. Mol. Med. 2016, 38, 1319–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Barahona, I.; Muñoz-Hernando, M.; Ruiz-Cabello, J.; Herranz, F.; Pellico, J. Iron Oxide Nanoparticles: An Alternative for Positive Contrast in Magnetic Resonance Imaging. Inorganics 2020, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Antal, I.; Strbak, O.; Khmara, I.; Koneracka, M.; Kubovcikova, M.; Zavisova, V.; Kmetova, M.; Baranovicova, E.; Dobrota, D. MRI Relaxivity Changes of the Magnetic Nanoparticles Induced by Different Amino Acid Coatings. Nanomaterials 2020, 10, 394. [Google Scholar] [CrossRef] [Green Version]
- Marashdeh, M.W.; Ababneh, B.; Lemine, O.M.; Alsadig, A.; Omri, K.; El Mir, L.; Sulieman, A.; Mattar, E. The Significant Effect of Size and Concentrations of Iron Oxide Nanoparticles on Magnetic Resonance Imaging Contrast Enhancement. Results Phys. 2019, 15, 102651. [Google Scholar] [CrossRef]
- Brisset, J.-C.; Desestret, V.; Marcellino, S.; Devillard, E.; Chauveau, F.; Lagarde, F.; Nataf, S.; Nighoghossian, N.; Berthezene, Y.; Wiart, M. Quantitative Effects of Cell Internalization of Two Types of Ultrasmall Superparamagnetic Iron Oxide Nanoparticles at 4.7 T and 7 T. Eur. Radiol. 2010, 20, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Shan, W.; Ai, C.; Chen, Z.; Zhou, T.; Lv, X.; Zhou, X.; Ye, S.; Ren, L.; Wang, X. Construction of Multifunctional Fe3O4-MTX@HBc Nanoparticles for MR Imaging and Photothermal Therapy/Chemotherapy. Nanotheranostics 2018, 2, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, T.; Chen, X.; Fang, J.; Xue, W.; Zhang, J.; Tong, H.; Liu, H.; Guo, Y.; Yang, Y.; Zhang, W. Non-Invasive Monitoring of the Kinetic Infiltration and Therapeutic Efficacy of Nanoparticle-Labeled Chimeric Antigen Receptor T Cells in Glioblastoma via 7.0-Tesla Magnetic Resonance Imaging. Cytotherapy 2021, 23, 211–222. [Google Scholar] [CrossRef]
IONPs | Dhyd (nm) | ζ Potential (mV) | ||||
---|---|---|---|---|---|---|
Coating | Water | DMEM | DMEM +10%FBS | Water | DMEM | DMEM +10%FBS |
NP | 124 (0.1) | 1347 (0.3) | 137 (0.2) | −8 | −8 | 13 |
NP-D | 85 (0.2) | 132 (0.3) | 128 (0.2) | −0.5 | −4 | −6 |
NP-AD | 81 (0.2) | 76 (0.3) | 561 (0.3) | 37 | 10 | −7 |
NP-CMD | 84 (0.4) | 84 (0.1) | 79 (0.2) | −33 | −18 | −18 |
NP-APD | 166 (0.6) | 1342 (0.3) | 177 (0.2) | 27 | −6 | −1 |
NP-DMSA | 124 (0.1) | 1636 (0.2) | 335 (0.3) | −26 | −13 | −12 |
Samples | [IONPs] (μg/mL) | R1 (s−1) | R2 (s−1) | R2* (s−1) | R1/R2 |
---|---|---|---|---|---|
Control | 50.000 cells | 0.4 | 10.1 | 29.7 | 26.2 |
IONP7 | 25 | 0.5 | 8.9 | 16.4 | 17.7 |
50 | 0.4 | 8.8 | 45.9 | 20.4 | |
75 | 0.3 | 8.6 | 101.0 | 29.3 | |
IONP12 | 25 | 0.2 | 7.4 | 35.8 | 32.3 |
50 | 0.5 | 22.8 | 142.3 | 46.4 | |
75 | 0.7 | 58.0 | 393.7 | 88.4 | |
IONP14 | 25 | 0.4 | 13.6 | 103.3 | 33.0 |
50 | 0.4 | 21.9 | 124.8 | 50.5 | |
75 | 0.6 | 83.9 | 428.3 | 144.7 | |
IONP18 | 25 | 0.5 | 11.5 | 34.3 | 22.1 |
50 | 0.5 | 12.7 | 43.9 | 26.6 | |
75 | 0.3 | 12.8 | 69.9 | 43.3 | |
IONP23 | 25 | 0.3 | 10.6 | 42.0 | 31.6 |
50 | 0.4 | 12.6 | 68.2 | 35.2 | |
75 | 0.4 | 32.9 | 278.0 | 80.5 | |
IONP33 | 25 | 0.4 | 9.7 | 72.9 | 23.9 |
50 | 0.4 | 13.2 | 72.5 | 34.2 | |
75 | 0.3 | 19.5 | 186.2 | 62.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortés-Llanos, B.; Ocampo, S.M.; de la Cueva, L.; Calvo, G.F.; Belmonte-Beitia, J.; Pérez, L.; Salas, G.; Ayuso-Sacido, Á. Influence of Coating and Size of Magnetic Nanoparticles on Cellular Uptake for In Vitro MRI. Nanomaterials 2021, 11, 2888. https://doi.org/10.3390/nano11112888
Cortés-Llanos B, Ocampo SM, de la Cueva L, Calvo GF, Belmonte-Beitia J, Pérez L, Salas G, Ayuso-Sacido Á. Influence of Coating and Size of Magnetic Nanoparticles on Cellular Uptake for In Vitro MRI. Nanomaterials. 2021; 11(11):2888. https://doi.org/10.3390/nano11112888
Chicago/Turabian StyleCortés-Llanos, Belén, Sandra M. Ocampo, Leonor de la Cueva, Gabriel F. Calvo, Juan Belmonte-Beitia, Lucas Pérez, Gorka Salas, and Ángel Ayuso-Sacido. 2021. "Influence of Coating and Size of Magnetic Nanoparticles on Cellular Uptake for In Vitro MRI" Nanomaterials 11, no. 11: 2888. https://doi.org/10.3390/nano11112888
APA StyleCortés-Llanos, B., Ocampo, S. M., de la Cueva, L., Calvo, G. F., Belmonte-Beitia, J., Pérez, L., Salas, G., & Ayuso-Sacido, Á. (2021). Influence of Coating and Size of Magnetic Nanoparticles on Cellular Uptake for In Vitro MRI. Nanomaterials, 11(11), 2888. https://doi.org/10.3390/nano11112888