Three-Dimensional Superhydrophobic Hollow Hemispherical MXene for Efficient Water-in-Oil Emulsions Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Cationic Polystyrene Spheres
2.3. Preparation of Hollow Hemispherical MXene (HSMX)
2.4. Preparation of 3D Superhydrophobic HSMX Membrane
2.5. Preparation of Water-in-Oil Emulsions
2.6. Characterization
3. Results
3.1. Characterization of HSMX
3.2. Superhydrophobic Performance
3.3. Water-in-Oil Emulsion Separation Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.W.; Wen, Y.Y.; Qi, Y.Y.; Zhao, Q.; Qu, L.T.; Li, C. Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 2020, 30, 1906996. [Google Scholar] [CrossRef]
- Ming, F.W.; Liang, H.F.; Zhang, W.L.; Ming, J.; Lei, Y.J.; Emwas, A.H.; Alshareef, H.N. Porous MXenes enable high performance potassium ion capacitors. Nano Energy 2019, 62, 853–860. [Google Scholar] [CrossRef]
- Wu, X.Y.; Han, B.Y.; Zhang, H.B.; Xie, X.; Tu, T.X.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z.Z. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122622. [Google Scholar] [CrossRef]
- He, J.; Shan, D.Y.; Yan, S.Q.; Luo, H.; Cao, C.; Peng, Y.H. Magnetic FeCo nanoparticles-decorated Ti3C2 MXene with enhanced microwave absorption performance. J. Magn. Magn. Mater. 2019, 492, 165639. [Google Scholar] [CrossRef]
- Wang, L.; Song, H.; Yuan, L.Y.; Li, Z.J.; Zhang, P.; Gibson, J.K.; Zheng, L.R.; Wang, H.Q.; Chai, Z.F.; Shi, W.Q. Effective removal of anionic Re (VII) by surface-modified Ti2CTx MXene nanocomposites: Implications for Tc (VII) sequestration. Environ. Sci. Technol. 2019, 53, 3739–3747. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.F.; Zhu, Y.Z.; Zhang, M.; Sui, J.Y.; Peng, W.C.; Li, Y.; Zhang, G.L.; Zhang, F.B.; Fan, X.B. N-butyllithium-treated Ti3C2Tx MXene with excellent pseudocapacitor performance. ACS Nano 2019, 13, 9449–9456. [Google Scholar] [CrossRef]
- He, L.X.; Wang, J.L.; Wang, B.B.; Wang, X.; Zhou, X.; Cai, W.; Mu, X.W.; Hou, Y.B.; Hu, Y.; Song, L. Large-scale production of simultaneously exfoliated and functionalized MXenes as promising flame retardant for polyurethane. Compos. B Eng. 2019, 179, 107486. [Google Scholar] [CrossRef]
- Huang, H.Y.; Jiang, R.M.; Feng, Y.L.; Ouyang, H.; Zhou, N.G.; Zhang, X.Y.; Wei, Y. Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale 2020, 12, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Wang, Z.H.; Shen, Y.Q.; Mu, P.; Wang, Q.T.; Li, J. Ultrathin 2D Ti3C2Tx MXene membrane for effective separation of oil-in-water emulsions in acidic, alkaline, and salty environment. J. Colloid Interface Sci. 2020, 561, 861–869. [Google Scholar] [CrossRef]
- Li, Z.K.; Liu, Y.C.; Li, L.B.; Wei, Y.Y.; Caro, J.; Wang, H.H. Ultra-thin titanium carbide (MXene) sheet membranes for high-efficient oil/water emulsions separation. J. Membr. Sci. 2019, 592, 117361. [Google Scholar] [CrossRef]
- Saththasivam, J.; Wang, K.; Yiming, W.; Liu, Z.Y.; Mahmoud, K.A. A flexible Ti3C2Tx (MXene)/paper membrane for efficient oil/water separation. RSC Adv. 2019, 9, 16296–16304. [Google Scholar] [CrossRef] [Green Version]
- Backes, C.; Abdelkader, A.M.; Alonso, C.; Andrieux-Ledier, A.; Arenal, R.; Azpeitia, J.; Balakrishnan, N.; Banszerus, L.; Barjon, J.; Bartali, R.; et al. Production and processing of graphene and related materials. 2D Mater. 2020, 7, 022001. [Google Scholar] [CrossRef]
- Fang, Z.W.; Xing, Q.Y.; Fernandez, D.; Zhang, X.; Yu, G.H. A mini review on two-dimensional nanomaterial assembly. Nano Res. 2020, 13, 1179–1190. [Google Scholar] [CrossRef]
- Cui, J.H.; Wei, C.L.; Zhang, M.; Zhu, J.; Li, F.X.; Du, X.H.; Chen, L.M.; Li, C.G. 2D to 3D controllable synthesis of three Zn-Co-LDHs for rapid adsorption of MO by TEA-assisted hydrothermal method. Appl. Surf. Sci. 2020, 534, 147564. [Google Scholar]
- Chen, J.; Huang, X.Y.; Zhu, Y.K.; Jiang, P.K. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 2017, 27, 1604754. [Google Scholar] [CrossRef]
- Ribeiro, H.; Trigueiro, J.P.C.; Owuor, P.S.; Machado, L.D.; Woellner, C.F.; Pedrotti, J.J.; Jaques, Y.M.; Kosolwattana, S.; Chipara, A.; Silva, W.M.; et al. Hybrid 2D nanostructures for mechanical reinforcement and thermal conductivity enhancement in polymer composites. Compos. Sci. Technol. 2018, 159, 103–110. [Google Scholar] [CrossRef]
- Xiu, L.Y.; Wang, Z.Y.; Yu, M.Z.; Wu, X.H.; Qiu, J.S. Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 8017–8028. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.C.; Rajouȃ, K.; Le Vot, S.; Fontaine, O.; Simon, P.; Favier, F. Modifications of MXene layers for supercapacitors. Nano Energy 2020, 73, 104734. [Google Scholar] [CrossRef]
- Wu, Z.T.; Shang, T.X.; Deng, Y.Q.; Tao, Y.; Yang, Q.H. The Assembly of MXenes from 2D to 3D. Adv. Sci. 2020, 7, 1903077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bu, F.X.; Zagho, M.M.; Ibrahim, Y.; Ma, B.; Elzatahry, A.; Zhao, D.Y. Porous MXenes: Synthesis, structures, and applications. Nano Today 2020, 30, 100803. [Google Scholar] [CrossRef]
- Rasch, F.; Schutt, F.; Saure, L.M.; Kaps, S.; Strobel, J.; Polonskyi, O.; Nia, A.S.; Lohe, M.R.; Mishra, Y.K.; Faupel, F.; et al. Wet-chemical assembly of 2D nanomaterials into lightweight, microtube-shaped, and macroscopic 3D networks. ACS Appl. Mater. Interfaces 2019, 11, 44652–44663. [Google Scholar] [CrossRef]
- Shen, Y.; Fang, Q.L.; Chen, B.L. Environmental applications of three-Dimensional graphene-based macrostructures: Adsorption, transformation, and detection. Environ. Sci. Technol. 2015, 49, 67–84. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, Q.Z.; Miao, J.W.; Zhang, P.; Wan, P.B.; He, L.Z.; Xu, B. Flexible 3D porous MXene foam for high-performance lithium-Ion batteries. Small 2019, 15, 1904293. [Google Scholar] [CrossRef]
- Hasanpour, M.; Hatami, M. Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Adv. Colloid Interface Sci. 2020, 284, 102247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z.; El-Demellawi, J.K.; Jiang, Q.; Ge, G.; Liang, H.F.; Lee, K.; Dong, X.C.; Alshareef, H.N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020, 49, 7229–7251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhu, Q.Z.; Soomro, R.A.; He, S.Y.; Sun, N.; Qiao, N.; Xu, B. In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors. Adv. Funct. Mater. 2020, 30, 2000922. [Google Scholar] [CrossRef]
- Wei, L.; Xiong, C.; Jiang, H.R.; Fan, X.Z.; Zhao, T.S. Highly catalytic hollow Ti3C2Tx MXene spheres decorated graphite felt electrode for vanadium redox flow batteries. Energy Stor. Mater. 2020, 25, 885–892. [Google Scholar] [CrossRef]
- Zhao, M.Q.; Xie, X.Q.; Ren, C.E.; Makaryan, T.; Anasori, B.; Wang, G.X.; Gogotsi, Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 2017, 29, 1702410. [Google Scholar] [CrossRef]
- Yao, M.Y.; Chen, Y.Y.; Wang, Z.; Shao, C.M.; Dong, J.; Zhang, Q.H.; Zhang, L.L.; Zhao, X. Boosting gravimetric and volumetric energy density via engineering macroporous MXene films for supercapacitors. Chem. Eng. J. 2020, 395, 124057. [Google Scholar] [CrossRef]
- Shang, T.X.; Lin, Z.F.; Qi, C.S.; Liu, X.C.; Li, P.; Tao, Y.; Wu, Z.T.; Li, D.W.; Simon, P.; Yang, Q.H. 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 2019, 29, 1903960. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Kamdem, P.; Jin, X.J. A freeze-and-thaw-assisted approach to fabricate MXene/ZIF-8 composites for high-performance supercapacitors and methylene blue adsorption. J. Electrochem. Soc. 2020, 167, 110562. [Google Scholar] [CrossRef]
- Anwer, S.; Anjum, D.H.; Luo, S.H.; Abbas, Y.; Li, B.S.; Iqbal, S.; Liao, K. 2D Ti3C2Tx MXene nanosheets coated cellulose fibers based 3D nanostructures for efficient water desalination. Chem. Eng. J. 2021, 406, 126827. [Google Scholar] [CrossRef]
- Amiri, A.; Chen, Y.J.; Teng, C.B.; Naraghi, M. Porous nitrogen-doped MXene-based electrodes for capacitive deionization. Energy Stor. Mater. 2020, 25, 731–739. [Google Scholar] [CrossRef]
- Liu, H.; Chen, X.Y.; Zheng, Y.J.; Zhang, D.B.; Zhao, Y.; Wang, C.F.; Pan, C.F.; Liu, C.T.; Shen, C.Y. Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater. 2021, 2008006. [Google Scholar] [CrossRef]
- Zhang, Q.; Yi, G.; Fu, Z.; Yu, H.T.; Chen, S.; Quan, X. Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 2019, 13, 13196–13207. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, H.B.; Sun, R.H.; Liu, Y.F.; Liu, Z.S.; Zhou, A.G.; Yu, Z.Z. Hydrophobic, Flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367. [Google Scholar] [CrossRef]
- Wang, N.N.; Wang, H.; Wang, Y.Y.; Wei, Y.H.; Si, J.Y.; Yuen, A.C.Y.; Xie, J.S.; Yu, B.; Zhu, S.E.; Lu, H.D.; et al. Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation. ACS Appl. Mater. Interfaces 2019, 11, 40512–40523. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhou, Y.F.; Xu, W.T.; Huang, D.C.; Wang, Z.G.; Hong, M.C. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceram. Int. 2016, 42, 8419–8424. [Google Scholar] [CrossRef]
- Bhuttoa, A.A.; Vesely, D.; Gabry, B.J. Miscibility and interactions in polystyrene and sodium sulfonated polystyrene with poly(vinyl methyl ether) PVME blends. Part II. FTIR. Polymer 2003, 44, 6627–6631. [Google Scholar] [CrossRef]
- Olmos, D.; Martin, E.V.; González-Benito, J. New molecular-scale information on polystyrene dynamics in PS and PS–BaTiO3 composites from FTIR spectroscopy. Phys. Chem. Chem. Phys. 2014, 16, 24339–24349. [Google Scholar] [CrossRef]
- Xue, J.W.; Zhu, L.; Zhu, X.; Li, H.; Ma, C.; Yu, S.F.; Sun, D.F.; Xia, F.J. Tetradecylamine-MXene functionalized melamine sponge for effective oil/ water separation and selective oil adsorption. Sep. Purif. Technol. 2021, 259, 118106. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Liu, J.Z.; Zhang, X.X.; Tian, D.; Zhan, Z.Y.; Lu, C.H. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 2019, 6, 1802040. [Google Scholar] [CrossRef]
- Lu, H.D.; Charles, A.W. The influence of α-zirconium phosphate on fire performance of EVA and PS composites. Polym. Adv. Technol. 2011, 22, 1123–1130. [Google Scholar] [CrossRef]
- Liu, M.J.; Wang, S.T.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036. [Google Scholar] [CrossRef]
- Leese, H.; Bhurtun, V.; Lee, K.P.; Mattia, D. Wetting behaviour of hydrophilic and hydrophobic nanostructured porous anodic alumina. Colloids Surf. A Physicochem. Eng. Asp. 2013, 420, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Marmur, A. Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be? Langmuir 2003, 19, 8343–8348. [Google Scholar] [CrossRef]
Sample | TGA | ||||
---|---|---|---|---|---|
T10% (°C) | Tmax (°C) | Char (%, 600 °C) | Cal-Char (%, 600 °C) | Enhancement in Char Compared to Cal-Char (%) | |
CPS | 370.2 | 403.6 | 0.4 | NA | NA |
MXene | NA | 560.6 | 97.1 | NA | NA |
CPS@MXene | 375.5 | 411.5 | 19.2 | 9.1 | 111.0 |
Sample | Porosity (%) | Packing Density (g/mL) | Average Pore Diameter (nm) | Total Pore Volume (mL/g) | Total Pore Area (m2/g) |
---|---|---|---|---|---|
MXene | 95.3 | 0.062 | 1355.3 | 15.3 | 294.3 |
HSMX | 97.8 | 0.025 | 1431.2 | 39.8 | 703.1 |
Emulsions | Droplet Size (nm) | Water Content in Filtrate (ppm) | Separation Efficiency (%) | Separation Flux (L/m2·h·bar) | |||
---|---|---|---|---|---|---|---|
Feeding | Filtrate | ||||||
Distribution | Average | Distribution | Average | ||||
Emulsion-Ⅰ | 2600–6500 | 4243 ± 770 | 530–6500 | 1521 ± 464 | 208 | 97.6 | 354.6 |
Emulsion-Ⅱ (1) | 1200–3600 | 2151 ± 432 | 530–1300 | 849 ± 160 | 240 | 97.3 | 159.4 |
Emulsion-Ⅱ (2) | 950–2700 | 1745 ± 343 | 340–1200 | 681 ± 153 | 500 | 96.5 | 86.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Wang, R.; Meng, W.; Chen, F.; Li, T.; Wang, D.; Wei, C.; Lu, H.; Yang, W. Three-Dimensional Superhydrophobic Hollow Hemispherical MXene for Efficient Water-in-Oil Emulsions Separation. Nanomaterials 2021, 11, 2866. https://doi.org/10.3390/nano11112866
Chen H, Wang R, Meng W, Chen F, Li T, Wang D, Wei C, Lu H, Yang W. Three-Dimensional Superhydrophobic Hollow Hemispherical MXene for Efficient Water-in-Oil Emulsions Separation. Nanomaterials. 2021; 11(11):2866. https://doi.org/10.3390/nano11112866
Chicago/Turabian StyleChen, Haoran, Riyuan Wang, Weiming Meng, Fanglin Chen, Tao Li, Dingding Wang, Chunxiang Wei, Hongdian Lu, and Wei Yang. 2021. "Three-Dimensional Superhydrophobic Hollow Hemispherical MXene for Efficient Water-in-Oil Emulsions Separation" Nanomaterials 11, no. 11: 2866. https://doi.org/10.3390/nano11112866
APA StyleChen, H., Wang, R., Meng, W., Chen, F., Li, T., Wang, D., Wei, C., Lu, H., & Yang, W. (2021). Three-Dimensional Superhydrophobic Hollow Hemispherical MXene for Efficient Water-in-Oil Emulsions Separation. Nanomaterials, 11(11), 2866. https://doi.org/10.3390/nano11112866