Photo-Sintered Silver Thin Films by a High-Power UV-LED Module for Flexible Electronic Applications
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wiklund, J.; Karakoç, A.; Palko, T.; Yiğitler, H.; Ruttik, K.; Jäntti, R.; Paltakari, J. A Review on Printed Electronics: Fabrication Methods, Inks, Substrates, Applications and Environmental Impacts. J. Manuf. Mater. Process. 2021, 5, 89. [Google Scholar] [CrossRef]
- Kwon, K.-S.; Rahman, K.; Phung, T.H.; Hoath, S.; Jeong, S.; Kim, J.S. Review of digital printing technologies for electronic materials. Flex. Print. Electron. 2020, 5, 043003. [Google Scholar] [CrossRef]
- Raut, N.C.; Al-Shamery, K. Inkjet printing metals on flexible materials for plastic and paper electronics. J. Mater. Chem. C 2018, 6, 1618–1641. [Google Scholar] [CrossRef]
- Luo, Q. 5–Nanoparticles inks. In Solution Processed Metal Oxide Thin Films for Electronic Applications; Cui, Z., Korotcenkov, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 63–82. [Google Scholar] [CrossRef]
- Tiyyagura, H.; Majerič, P.; Bračič, M.; Anžel, I.; Rudolf, R. Gold Inks for Inkjet Printing on Photo Paper: Complementary Characterisation. Nanomaterials 2021, 11, 599. [Google Scholar] [CrossRef] [PubMed]
- Liew, Q.; Rashid, N.A.; Lee, H.; Hawari, H.; Khir, M.M. Inkjet-Printed Flexible Temperature Sensor using Hybrid Reduced Graphene Oxide–Silver Nanoparticles(rGO/AgNPs) Conductive Ink and Silver Nanoparticles Ink. J. Phys. Conf. Ser. 2021, 1878, 012059. [Google Scholar] [CrossRef]
- Majee, S.; Karlsson, M.C.F.; Sawatdee, A.; Mulla, M.Y.; Alvi, N.U.H.; Beni, V.; Nilsson, D. Low temperature chemical sintering of inkjet-printed Zn nanoparticles for highly conductive flexible electronic components. NPJ Flex. Electron. 2021, 5, 1–8. [Google Scholar] [CrossRef]
- Huang, Y.; Xie, X.; Li, M.; Xu, M.; Long, J. Copper circuits fabricated on flexible polymer substrates by a high repetition rate femtosecond laser-induced selective local reduction of copper oxide nanoparticles. Opt. Express 2021, 29, 4453–4463. [Google Scholar] [CrossRef]
- Huang, Q.; Zhu, Y. Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications. Adv. Mater. Technol. 2019, 4, 1800546. [Google Scholar] [CrossRef]
- Khan, Y.; Thielens, A.; Muin, S.; Ting, J.; Baumbauer, C.; Arias, A.C. A New Frontier of Printed Electronics: Flexible Hybrid Electronics. Adv. Mater. 2019, 32, e1905279. [Google Scholar] [CrossRef]
- Wu, W. Inorganic nanomaterials for printed electronics: A review. Nanoscale 2017, 9, 7342–7372. [Google Scholar] [CrossRef] [PubMed]
- Baumbauer, C.L.; Anderson, M.G.; Ting, J.; Sreekumar, A.; Rabaey, J.M.; Arias, A.C.; Thielens, A. Printed, flexible, compact UHF-RFID sensor tags enabled by hybrid electronics. Sci. Rep. 2020, 10, 16543. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Li, J.; Pan, L.; Shi, Y. Inkjet printing for flexible and wearable electronics. APL Mater. 2020, 8, 120705. [Google Scholar] [CrossRef]
- Noginov, M.; Zhu, G.; Bahoura, M.; Adegoke, J.; Small, C.; Ritzo, B.; Drachev, V.; Shalaev, V. The effect of gain and absorption on surface plasmons in metal nanoparticles. Appl. Phys. A 2006, 86, 455–460. [Google Scholar] [CrossRef]
- Bohren, C.F. How can a particle absorb more than the light incident on it? Am. J. Phys. 1983, 51, 323–327. [Google Scholar] [CrossRef]
- Grouchko, M.; Kamyshny, A.; Mihailescu, C.F.; Anghel, D.F.; Magdassi, S. Conductive Inks with a “Built-In” Mechanism That Enables Sintering at Room Temperature. ACS Nano 2011, 5, 3354–3359. [Google Scholar] [CrossRef]
- Huang, Q.; Shen, W.; Xu, Q.; Tan, R.; Song, W. Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity. Mater. Chem. Phys. 2014, 147, 550–556. [Google Scholar] [CrossRef]
- Allen, M.L. Nanoparticle Sintering Methods and Applications for Printed Electronics. Ph.D. Thesis, Aalto University, Helsinki, Finland, 2011. ISBN 978-952-60-4277-0. [Google Scholar]
- Allen, M.L.; Aronniemi, M.; Mattila, T.; Alastalo, A.; Ojanperä, K.; Suhonen, M.; Seppä, H. Electrical sintering of nanoparticle structures. Nanotechnology 2008, 19, 175201. [Google Scholar] [CrossRef]
- Xie, G.; Ohashi, O.; Yamaguchi, N.; Wang, A. Effect of surface oxide films on the properties of pulse electric-current sintered metal powders. Met. Mater. Trans. A 2003, 34, 2655–2661. [Google Scholar] [CrossRef]
- Gu, W.; Yuan, W.; Zhong, T.; Wu, X.; Zhou, C.; Lin, J.; Cui, Z. Fast near infrared sintering of silver nanoparticle ink and applications for flexible hybrid circuits. RSC Adv. 2018, 8, 30215–30222. [Google Scholar] [CrossRef]
- Sowade, E.; Kang, H.; Mitra, K.Y.; Weiß, O.J.; Weber, J.; Baumann, R.R. Roll-to-roll infrared (IR) drying and sintering of an inkjet-printed silver nanoparticle ink within 1 second. J. Mater. Chem. C 2015, 3, 11815–11826. [Google Scholar] [CrossRef]
- Denneulin, A.; Blayo, A.; Neuman, C.; Bras, J. Infra-red assisted sintering of inkjet printed silver tracks on paper substrates. J. Nanoparticle Res. 2011, 13, 3815–3823. [Google Scholar] [CrossRef]
- Cherrington, M.; Claypole, T.C.; Deganello, D.; Mabbett, I.; Watson, T.; Worsley, D. Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink. J. Mater. Chem. 2011, 21, 7562–7564. [Google Scholar] [CrossRef]
- Balliu, E.; Andersson, H.; Engholm, M.; Öhlund, T.; Nilsson, H.-E.; Olin, H. Selective laser sintering of inkjet-printed silver nanoparticle inks on paper substrates to achieve highly conductive patterns. Sci. Rep. 2018, 8, 10408. [Google Scholar] [CrossRef]
- Yeo, J.; Kim, G.; Hong, S.; Kim, M.S.; Kim, D.; Lee, J.; Lee, H.B.; Kwon, J.; Suh, Y.D.; Kang, H.W.; et al. Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application. J. Power Sources 2013, 246, 562–568. [Google Scholar] [CrossRef]
- Hong, S.; Yeo, J.; Kim, G.; Kim, D.; Lee, H.; Kwon, J.; Lee, H.; Lee, P.; Ko, S.H. Nonvacuum, Maskless Fabrication of a Flexible Metal Grid Transparent Conductor by Low-Temperature Selective Laser Sintering of Nanoparticle Ink. ACS Nano 2013, 7, 5024–5031. [Google Scholar] [CrossRef]
- Perelaer, J.; Abbel, R.; Wünscher, S.; Jani, R.; Van Lammeren, T.; Schubert, U. Roll-to-Roll Compatible Sintering of Inkjet Printed Features by Photonic and Microwave Exposure: From Non-Conductive Ink to 40% Bulk Silver Conductivity in Less Than 15 Seconds. Adv. Mater. 2012, 24, 2620–2625. [Google Scholar] [CrossRef]
- Perelaer, J.; Klokkenburg, M.; Hendriks, C.E.; Schubert, U.S. Microwave Flash Sintering of Inkjet-Printed Silver Tracks on Polymer Substrates. Adv. Mater. 2009, 21, 4830–4834. [Google Scholar] [CrossRef] [PubMed]
- Perelaer, J.J.; De Gans, B.B.-J.; Schubert, U.U. Ink-jet Printing and Microwave Sintering of Conductive Silver Tracks. Adv. Mater. 2006, 18, 2101–2104. [Google Scholar] [CrossRef]
- Wünscher, S.; Stumpf, S.; Perelaer, J.; Schubert, U.S. Towards single-pass plasma sintering: Temperature influence of atmospheric pressure plasma sintering of silver nanoparticle ink. J. Mater. Chem. C 2013, 2, 1642–1649. [Google Scholar] [CrossRef]
- Ma, S.; Bromberg, V.; Liu, L.; Egitto, F.D.; Chiarot, P.R.; Singler, T.J. Low temperature plasma sintering of silver nanoparticles. Appl. Surf. Sci. 2014, 293, 207–215. [Google Scholar] [CrossRef]
- Wünscher, S.; Stumpf, S.; Teichler, A.; Pabst, O.; Perelaer, J.; Beckert, E.; Schubert, U.S. Localized atmospheric plasma sintering of inkjet printed silver nanoparticles. J. Mater. Chem. 2012, 22, 24569–24576. [Google Scholar] [CrossRef]
- Reinhold, I.; Hendriks, C.E.; Eckardt, R.; Kranenburg, J.M.; Perelaer, J.; Baumann, R.R.; Schubert, U.S. Argon plasma sintering of inkjet printed silver tracks on polymer substrates. J. Mater. Chem. 2009, 19, 3384–3388. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Gupta, H.; Gupta, D. Flash Light Sintering of Silver Nanoink for Inkjet-Printed Thin-Film Transistor on Flexible Substrate. IEEE Trans. Nanotechnol. 2017, 16, 375–382. [Google Scholar] [CrossRef]
- Chung, W.-H.; Hwang, H.-J.; Lee, S.-H.; Kim, H.-S. In situmonitoring of a flash light sintering process using silver nano-ink for producing flexible electronics. Nanotechnology 2012, 24, 035202. [Google Scholar] [CrossRef]
- Abbel, R.; van Lammeren, T.; Hendriks, R.; Ploegmakers, J.; Rubingh, E.J.; Meinders, E.R.; Groen, P. Photonic flash sintering of silver nanoparticle inks: A fast and convenient method for the preparation of highly conductive structures on foil. MRS Commun. 2012, 2, 145–150. [Google Scholar] [CrossRef]
- Kang, J.S.; Ryu, J.; Kim, H.S.; Hahn, H.T. Sintering of Inkjet-Printed Silver Nanoparticles at Room Temperature Using Intense Pulsed Light. J. Electron. Mater. 2011, 40, 2268–2277. [Google Scholar] [CrossRef]
- Lee, D.J.; Park, S.H.; Jang, S.; Kim, H.-S.; Oh, J.H.; Song, Y.W. Pulsed light sintering characteristics of inkjet-printed nanosilver films on a polymer substrate. J. Micromechan. Microeng. 2011, 21, 125023. [Google Scholar] [CrossRef]
- West, J.; Carter, M.; Smith, S.; Sears, J. Photonic Curing of Silver Nanoparticle Based Inks. In Proceedings of the Nano Science and Technology Institute (NSTI) Nanotechnology Conference, Anahaim, CA, USA, 21–24 June 2010; pp. 210–213. [Google Scholar]
- Yung, K.; Gu, X.; Lee, C.; Choy, H. Ink-jet printing and camera flash sintering of silver tracks on different substrates. J. Mater. Process. Technol. 2010, 210, 2268–2272. [Google Scholar] [CrossRef]
- Schroder, K.A.; McCool, S.C.; Furlan, W.F. Broadcast Photonic Curing of Metallic Nanoparticle Films. In Proceedings of the Nano Science and Technology Institute (NSTI) Nanotechnology Conference, Boston, MA, USA, 7–11 May 2006; pp. 198–201. [Google Scholar]
- Jang, Y.-R.; Ryu, C.-H.; Hwang, Y.-T.; Kim, H.-S. Optimization of Intense Pulsed Light Sintering Considering Dimensions of Printed Cu Nano/Micro-paste Patterns for Printed Electronics. Int. J. Precis. Eng. Manuf. Technol. 2020, 8, 471–485. [Google Scholar] [CrossRef]
- Jang, Y.-R.; Jeong, R.; Kim, H.-S.; Park, S.S. Fabrication of solderable intense pulsed light sintered hybrid copper for flexible conductive electrodes. Sci. Rep. 2021, 11, 14551. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Devaraj, H.; Yang, C.; Gao, Z.; Chang, C.-H.; Lee, H.; Malhotra, R. Rapid Pulsed Light Sintering of Silver Nanowires on Woven Polyester for personal thermal management with enhanced performance, durability and cost-effectiveness. Sci. Rep. 2018, 8, 17159. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.-H.; Jang, Y.-R.; Hwang, Y.-T.; Kim, S.-H.; Kim, H.-S. The surface plasmonic welding of silver nanowiresviaintense pulsed light irradiation combined with NIR for flexible transparent conductive films. Nanoscale 2020, 12, 17725–17737. [Google Scholar] [CrossRef]
- Noh, Y.; Jeong, H.; Lee, D. Enhanced ultraviolet photodetector using zinc oxide nanowires with intense pulsed light post-treatment. J. Alloys Compd. 2021, 871, 159537. [Google Scholar] [CrossRef]
- Park, S.-H.; Kim, H.-S. Flash light sintering of nickel nanoparticles for printed electronics. Thin Solid Films 2014, 550, 575–581. [Google Scholar] [CrossRef]
- Skoog, D.A.; Holler, F.J.; Nieman, T.A. Principles of Instrumental Analysis, 5th ed.; Brooks/Cole: Belmont, CA, USA, 1998; pp. 336–341. [Google Scholar]
- Shatokha, V. Sintering—Methods and Products; InTech: Rijeka, Croatia, 2012; p. 177. [Google Scholar] [CrossRef]
- Sarina, S.; Waclawik, E.R.; Zhu, H. Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem. 2013, 15, 1814–1833. [Google Scholar] [CrossRef]
- Fievet, F.; Lagier, J.; Blin, B.; Beaudoin, B.; Figlarz, M. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 1989, 32-33, 198–205. [Google Scholar] [CrossRef]
- Cullity, B.D.; Stock, S.R. Elements of X-Ray Diffraction, 3rd ed.; Pearson Education Limited: Harlow, UK, 2014; pp. 92–96. [Google Scholar]
- Jiang, H.; Tang, C.; Wang, Y.; Mao, L.; Sun, Q.; Zhang, L.; Song, H.; Huang, F.; Zuo, C. Low content and low-temperature cured silver nanoparticles/silver ion composite ink for flexible electronic applications with robust mechanical performance. Appl. Surf. Sci. 2021, 564, 150447. [Google Scholar] [CrossRef]
- Zikulnig, J.; Roshanghias, A.; Rauter, L.; Hirschl, C. Evaluation of the Sheet Resistance of Inkjet-Printed Ag-Layers on Flexible, Uncoated Paper Substrates Using Van-der-Pauw’s Method. Sensors 2020, 20, 2398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziedzic, A.; Magiera, A.; Winśiewski, R. Hydrostatic high pressure studies of polymer thick-film resistors. Microelectron. Reliab. 1998, 38, 1893–1898. [Google Scholar] [CrossRef]
- Haruta, M.; Daté, M. Advances in the catalysis of Au nanoparticles. Appl. Catal. A Gen. 2001, 222, 427–437. [Google Scholar] [CrossRef]
Wavelength (nm) | Input Current (A) | Input Current per LED (mA) | Saturation Temperature (°C) | Measured Light Intensity (mW/cm2) |
---|---|---|---|---|
365 | 1.1 | 55 | 40 | 106.0 |
365 | 1.7 | 85 | 48 | 171.1 |
365 | 2.3 | 115 | 57 | 230.0 |
365 | 3.1 | 155 | 69 | 301.0 |
385 | 1 | 50 | 33 | 168.1 |
385 | 1.3 | 65 | 35 | 226.8 |
385 | 1.7 | 85 | 37 | 301.8 |
Post-Treatment Conditions | (111) Plan | |||
---|---|---|---|---|
2θ (Degree) | d (Å) | FWHM (Degree) | Grain Size (nm) | |
90 °C, 10 min | 38.232 | 2.3522 | 0.779 | 10.79 |
120 °C, 10 min | 38.216 | 2.3531 | 0.738 | 11.39 |
150 °C, 10 min | 38.194 | 2.3544 | 0.624 | 13.47 |
150 °C, 30 min | 38.17 | 2.3559 | 0.535 | 15.71 |
150 °C, 5 0min | 38.175 | 2.3556 | 0.497 | 16.91 |
Post-Treatment Conditions | (111) Plan | |||
---|---|---|---|---|
2θ (Degree) | d (Å) | FWHM (Degree) | Grain Size (nm) | |
100 mW/cm2, 10 min | 38.167 | 2.3560 | 0.742 | 11.33 |
170 mW/cm2, 10 min | 38.211 | 2.3535 | 0.736 | 11.42 |
230 mW/cm2, 10 min | 38.157 | 2.3567 | 0.606 | 13.87 |
300 mW/cm2, 10 min | 38.167 | 2.3560 | 0.542 | 15.51 |
300 mW/cm2, 30 min | 38.181 | 2.3552 | 0.456 | 18.44 |
300 mW/cm2, 50 min | 38.198 | 2.3542 | 0.393 | 21.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Jee, H.; Lee, J. Photo-Sintered Silver Thin Films by a High-Power UV-LED Module for Flexible Electronic Applications. Nanomaterials 2021, 11, 2840. https://doi.org/10.3390/nano11112840
Kim M, Jee H, Lee J. Photo-Sintered Silver Thin Films by a High-Power UV-LED Module for Flexible Electronic Applications. Nanomaterials. 2021; 11(11):2840. https://doi.org/10.3390/nano11112840
Chicago/Turabian StyleKim, Minha, Hongsub Jee, and Jaehyeong Lee. 2021. "Photo-Sintered Silver Thin Films by a High-Power UV-LED Module for Flexible Electronic Applications" Nanomaterials 11, no. 11: 2840. https://doi.org/10.3390/nano11112840
APA StyleKim, M., Jee, H., & Lee, J. (2021). Photo-Sintered Silver Thin Films by a High-Power UV-LED Module for Flexible Electronic Applications. Nanomaterials, 11(11), 2840. https://doi.org/10.3390/nano11112840