Nano-Physical Characterization of Chemical Vapor Deposition-Grown Monolayer Graphene for High Performance Electrode: Raman, Surface-Enhanced Raman Spectroscopy, and Electrostatic Force Microscopy Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Graphene Synthesis on Cu and Transfer onto SiO2/Si Substrate
2.2. Optical Characterization of CVD-MG on Cu and SiO2/Si Substrate
2.3. Electrostatic Force Microscopy (EFM) Measurement
3. Applications and Characteristic Interests
3.1. Mechanical Strain Effect by Raman Spectroscopy and Microscopy of CVD-MG on Cu and SiO2/Si Substrate
3.2. Surface-Enhanced Raman Spectroscopy (SERS) of CVD-MG with Nanoparticle-on Mirror (NPoM) System
3.3. Employment of Electrostatic Force Microscope (EFM) Technique
3.4. Enhancement of Electrical Property by Controlling Cooling Rate during CVD Process
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Geim, A.K.; Novoselov, K.S. The rise of graphene, Nanoscience and technology: A collection of reviews from nature journals. World Scientific 2010, 20, 11–19. [Google Scholar]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, I.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.R.; Song, Y.I. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, C.; Reichardt, S.; Venezuela, P.; Drögeler, M.; Banszerus, L.; Schmitz, M.; Watanabe, K.; Taniguchi, T.; Mauri, F.; Beschoten, B.; et al. Raman spectroscopy as probe of nanometre-scale strain variations in grapheme. Nat. Commun. 2015, 6, 8429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, W.-H.; Jung, M.; Moon, J.-S.; Park, W.; Kim, T.; Lee, J.; Joo, M.; Park, K.H. Experimental observation of a suspended single layer graphene film on Cu foil grown via chemical vapor deposition method. Phys. Status Solidi B 2013, 250, 1874–1877. [Google Scholar] [CrossRef]
- Nie, S.; Emory, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef] [PubMed]
- Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Bosnick, K.; Maillard, M.; Brus, L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B 2003, 107, 9964–9972. [Google Scholar] [CrossRef]
- Moskovits, M. Surface-enhanced Raman spectroscopy: A brief perspective, Surface-Enhanced Raman Scattering. Surf.-Enhanc. Raman Scatt. 2006, 103, 1–17. [Google Scholar]
- Stockman, M.I. Electromagnetic Theory of SERS Surface-Enhanced Raman Scattering; Springer: New York, NY, USA, 2006; pp. 47–65. [Google Scholar]
- Fromm, D.P.; Sundaramurthy, A.; Kinkhabwala, A.; Schuck, P.J.; Kino, G.S.; Moerner, W. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J. Chem. Phys. 2006, 124, 061101. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, J.R.; Birke, R.L. A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 2009, 42, 734–742. [Google Scholar] [CrossRef] [Green Version]
- Campion, A.; Ivanecky, J., III; Child, C.; Foster, M. On the mechanism of chemical enhancement in surface-enhanced Raman scattering. J. Am. Chem. Soc. 1995, 117, 11807–11808. [Google Scholar] [CrossRef]
- Campion, A.; Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27, 241–250. [Google Scholar] [CrossRef]
- Hu, X.; Wang, T.; Wang, L.; Dong, S. Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in the sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition. J. Phys. Chem. C 2007, 111, 6962–6969. [Google Scholar] [CrossRef]
- Shegai, T.; Vaskevich, A.; Rubinstein, I.; Haran, G. Raman spectroelectrochemistry of molecules within individual electromagnetic hot spots. J. Am. Chem. Soc. 2009, 131, 14390–14398. [Google Scholar] [CrossRef]
- Park, W.-H.; Ahn, S.-H.; Kim, Z.H. Surface-Enhanced Raman Scattering from a Single Nanoparticle–Plane Junction. ChemPhysChem 2008, 9, 2491–2494. [Google Scholar] [CrossRef]
- Park, W.-H.; Kim, Z.H. Charge transfer enhancement in the SERS of a single molecule. Nano Lett. 2010, 10, 4040–4048. [Google Scholar] [CrossRef]
- Park, W.-H. Quantification of the relative z-polarized electromagnetic field contribution and associated investigation of asymmetric shape of layer breathing mode from Au nanoparticle–graphene–Au thin film junctions. J. Phys. Chem. C 2014, 118, 6989–6993. [Google Scholar] [CrossRef]
- Park, W.-H.; Jung, M.; Moon, J.-S.; Noh, S.H.; Kim, T.; Joo, M.H.; Park, K.H. Erratum: “Experimental identification of the out-of-plane phonon mode of a few layered graphene from individual Au nanoparticle-Au film junctions” [Appl. Phys. Lett. 103, 071903 (2013)]. Appl. Phys. Lett. 2015, 107, 149902. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.-H.; Park, W.-H.; Kim, Z.H. Nano-optical investigation of enhanced field at gold nanosphere-gold plane junctions. Bull. Korean Chem. Soc. 2007, 28, 2200–2202. [Google Scholar]
- Baumberg, J.J.; Aizpurua, J.; Mikkelsen, M.H.; Smith, D.R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 2019, 18, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Braun, G.; Lee, S.J.; Dante, M.; Nguyen, T.Q.; Moskovits, M.; Reich, N. Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J. Am. Chem. Soc. 2007, 129, 6378–6379. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.H.; Park, W.-H. Experimental identification of tilted bending formation of graphene monolayer with gap-plasmon. RSC Adv. 2014, 4, 51966–51969. [Google Scholar] [CrossRef]
- Min, Y.H.; Park, W.-H. Exploring the relative bending of a CVD graphene monolayer with gap-plasmons. Nanoscale 2014, 6, 9763–9766. [Google Scholar] [CrossRef]
- Chen, C.-C.; Zhou, Y.; Baker, L.A. Scanning ion conductance microscopy. Annu. Rev. Anal. Chem. 2012, 5, 207–228. [Google Scholar] [CrossRef]
- Girard, P. Electrostatic force microscopy: Principles and some applications to semiconductors. Nanotechnology 2001, 12, 485. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Muñoz, M.; Steplecaru, C.; Hao, C.; Bai, M.; Garcia, N.; Schindler, K.; Esquinazi, P. Electrostatic force microscopy on oriented graphite surfaces: Coexistence of insulating and conducting behaviors. Phys. Rev. Lett. 2006, 97, 076805. [Google Scholar] [CrossRef] [Green Version]
- Park, W.-H.; Noh, S.H.; Joo, M.H.; Kim, T.H.; Park, W.; Jung, M.; Moon, J.-S.; Park, K.H. Characterization of local charge distribution of polyethylene terephthalate film and influence as a graphene substrate. Appl. Phys. Lett. 2013, 103, 033107. [Google Scholar] [CrossRef]
- Datta, S.S.; Strachan, D.R.; Mele, E.; Johnson, A.C. Surface potentials and layer charge distributions in few-layer graphene films. Nano Lett. 2009, 9, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Castellanos-Gomez, A.; Smit, R.H.; Agraït, N.; Rubio-Bollinger, G. Spatially resolved electronic inhomogeneities of graphene due to subsurface charges. Carbon 2012, 50, 932–938. [Google Scholar] [CrossRef] [Green Version]
- Park, W.-H.; Park, S.-G.; Kang, M.; Hyun, M.S.; Choi, N.; Kim, D.-H.; Choo, J. Direct visualization of a surface-enhanced Raman spectroscopy nano-gap via electrostatic force microscopy: Dependence on charge transfer from the underlying surface nano-gap distance. Appl. Surf. Sci. 2019, 479, 874–878. [Google Scholar] [CrossRef]
- Park, W.-H.; Kim, M.; Choo, J.; Cheong, H. Experimental investigation of surface morphology of a chemical vapor deposition-grown graphene monolayer mediating with a gap-plasmonic system and the related ripple shape study. J. Appl. Phys. 2018, 124, 223101. [Google Scholar] [CrossRef]
- Park, W.-H.; Jo, J.; Hong, B.H.; Cheong, N. Controlling the ripple density and heights: A new way to improve the electrical performance of CVD-grown grapheme. Nanoscale 2016, 8, 9822–9827. [Google Scholar] [CrossRef]
- Deng, B.; Pang, Z.; Chen, S.; Li, X.; Meng, C.; Li, J.; Liu, M.; Wu, J.; Qi, Y.; Dang, W.; et al. Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates. ACS Nano 2017, 11, 12337–12345. [Google Scholar] [CrossRef] [Green Version]
- Bissett, M.A.; Izumida, W.; Saito, R.; Ago, H. Effect of domain boundaries on the Raman spectra of mechanically strained grapheme. ACS Nano 2012, 6, 10229–10238. [Google Scholar] [CrossRef]
- Cançado, L.G.; Jorio, A.; Ferreira, E.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.; Ferrari, A.C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef] [Green Version]
- Pócsik, I.; Hundhausen, M.; Koós, M.; Ley, L. Origin of the D peak in the Raman spectrum of microcrystalline graphite. J. Non-Cryst. Solids 1998, 227, 1083–1086. [Google Scholar] [CrossRef]
- Li, B.-W.; Luo, D.; Zhu, L.; Zhang, X.; Jin, S.; Huang, M.; Ding, F.; Ruoff, R.S. Orientation-Dependent Strain Relaxation and Chemical Functionalization of Graphene on a Cu(111) Foil. Adv. Mater. 2018, 30, 1706504. [Google Scholar] [CrossRef]
- Yuan, G.; Lin, D.; Wang, Y.; Huang, X.; Chen, W.; Xie, X.; Zong, J.; Yuan, Q.-Q.; Zheng, H.; Wang, D.; et al. Proton-assisted growth of ultra-flat graphene films. Nature 2020, 577, 204–208. [Google Scholar] [CrossRef]
- Yu, V.; Whiteway, E.; Maassen, J.; Hilke, M. Raman spectroscopy of the internal strain of a graphene layer grown on copper tuned by chemical vapor deposition. Phys. Rev. B 2011, 84, 205407. [Google Scholar] [CrossRef] [Green Version]
- Park, W.-H. Electrical performance of chemical vapor deposition graphene on PET substrate tailored by Cu foil surface morphology. EPJ Appl. Phys. 2014, 67, 30701. [Google Scholar] [CrossRef]
- Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar] [CrossRef] [Green Version]
- Malard, L.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M. Raman spectroscopy in grapheme. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Ferreira, E.M.; Moutinho, M.V.; Stavale, F.; Lucchese, M.M.; Capaz, R.B.; Achete, C.A.; Jorio, A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 2010, 82, 125429. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Lei, D.Y.; Chai, Y. Effects of surface roughness of Ag thin films on surface-enhanced Raman spectroscopy of graphene: Spatial nonlocality and physisorption strain. Nanoscale 2014, 6, 1311–1317. [Google Scholar] [CrossRef]
- Suk, J.W.; Kitt, A.; Magnuson, C.W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A.K.; Goldberg, B.B.; Ruoff, R.S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916–6924. [Google Scholar] [CrossRef]
- Wu, R.; Pan, J.; Ou, X.; Zhang, Q.; Ding, Y.; Sheng, P.; Luo, Z. Concurrent fast growth of sub-centimeter single-crystal graphene with controlled nucleation density in a confined channel. Nanoscale 2017, 9, 9631–9640. [Google Scholar] [CrossRef]
- Choi, D.S.; Kim, K.S.; Kim, H.; Kim, Y.; Kim, Y.; Rhy, S.H.; Yang, C.-M.; Yoon, D.H.; Yang, W.S. Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst. ACS Appl. Mater. Interfaces 2014, 6, 19574–19578. [Google Scholar] [CrossRef]
- Lee, J.E.; Ahn, G.; Shim, J.; Lee, Y.S.; Ryu, S. Optical separation of mechanical strain from charge doping in grapheme. Nat. Commun. 2012, 3, 1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huh, H.; Trinh, H.D.; Lee, D.; Yoon, S. How does a plasmon-induced hot charge carrier break a C–C bond? ACS Appl. Mater. Interfaces 2019, 11, 24715–24724. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Yoon, S. Plasmonic Switching: Hole Transfer Opens an Electron-Transfer Channel in Plasmon-Driven Reactions. J. Phys. Chem. C 2020, 124, 15879–15885. [Google Scholar] [CrossRef]
- Huynh, L.T.M.; Trinh, H.F.; Lee, S.; Yoon, S. Plasmon-driven protodeboronation reactions in nanogaps. Nanoscale 2020, 12, 24062–24069. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99. [Google Scholar] [CrossRef]
- Robinson, J.A.; Puls, C.P.; Staley, N.E.; Stitt, J.P.; Fanton, M.A.; Emtsev, K.V.; Seyller, Y.; Liu, Y. Raman topography and strain uniformity of large-area epitaxial grapheme. Nano Lett. 2009, 9, 964–968. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.Y.; Kim, K.S. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat. Nanotechnol. 2008, 3, 408–412. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, C.; Guo, W. Magnetoelectric effect in graphene nanoribbons on substrates via electric bias control of exchange splitting. Phys. Rev. Lett. 2009, 103, 187204. [Google Scholar] [CrossRef]
- Jung, M.; Moon, J.-S.; Park, W.-H. Observation of a scrolled graphene nanoribbons with gap-plasmonic system. Appl. Phys. Lett. 2016, 108, 133101. [Google Scholar] [CrossRef]
- Lee, M.-S.; Lee, K.; Kim, S.-Y.; Lee, H.; Park, J.; Choi, K.-H.; Kim, H.-K.; Kim, D.-G.; Lee, D.-Y.; Nam, S.; et al. High-performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures. Nano Lett. 2013, 13, 2814–2821. [Google Scholar] [CrossRef]
- Park, W.-H.; Jung, M.; Park, W.; Moon, J.-S.; Lee, J.; Noh, S.H.; Joo, M.; Kim, T.; Park, K. Experimental observation of local electrical signature of suspended graphene grown via chemical vapour deposition method. J. Phys. D 2013, 47, 015306. [Google Scholar] [CrossRef]
- Yoon, D.; Son, Y.-W.; Cheong, H. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 2011, 11, 3227–3231. [Google Scholar] [CrossRef] [Green Version]
- Laitinen, A.; Oksanen, M.; Fay, A.; Cox, D.; Tomi, M.; Virtanen, P.; Hakonen, P.J. Electron–phonon coupling in suspended graphene: Supercollisions by ripples. Nano Lett. 2014, 14, 3009–3013. [Google Scholar] [CrossRef] [Green Version]
- Yoon, D.; Son, Y.-W.; Cheong, H. Strain-dependent splitting of the double-resonance Raman scattering band in grapheme. Phys. Rev. Lett. 2011, 106, 155502. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S.K.; Waghmare, U.V.; Novoselov, K.S.; Krishnamurthy, H.R.; Geim, A.K.; Ferrari, A.C. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, W.-H. Nano-Physical Characterization of Chemical Vapor Deposition-Grown Monolayer Graphene for High Performance Electrode: Raman, Surface-Enhanced Raman Spectroscopy, and Electrostatic Force Microscopy Studies. Nanomaterials 2021, 11, 2839. https://doi.org/10.3390/nano11112839
Park W-H. Nano-Physical Characterization of Chemical Vapor Deposition-Grown Monolayer Graphene for High Performance Electrode: Raman, Surface-Enhanced Raman Spectroscopy, and Electrostatic Force Microscopy Studies. Nanomaterials. 2021; 11(11):2839. https://doi.org/10.3390/nano11112839
Chicago/Turabian StylePark, Won-Hwa. 2021. "Nano-Physical Characterization of Chemical Vapor Deposition-Grown Monolayer Graphene for High Performance Electrode: Raman, Surface-Enhanced Raman Spectroscopy, and Electrostatic Force Microscopy Studies" Nanomaterials 11, no. 11: 2839. https://doi.org/10.3390/nano11112839
APA StylePark, W.-H. (2021). Nano-Physical Characterization of Chemical Vapor Deposition-Grown Monolayer Graphene for High Performance Electrode: Raman, Surface-Enhanced Raman Spectroscopy, and Electrostatic Force Microscopy Studies. Nanomaterials, 11(11), 2839. https://doi.org/10.3390/nano11112839