Thickness Dependence of Superconductivity in Layered Topological Superconductor β-PdBi2
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majorana, E. Teoria simmetrica dell’elettrone e del positrone. Nuovo Cimento. 1937, 14, 171. [Google Scholar] [CrossRef]
- Kitaev, A.Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 2001, 44, 131. [Google Scholar] [CrossRef]
- Elliott, S.R.; Franz, M. Colloquium: Majorana fermions in nuclear, particle, and solid-state physics. Rev. Mod. Phys. 2015, 87, 137. [Google Scholar] [CrossRef] [Green Version]
- Hor, Y.S.; Williams, A.J.; Checkelsky, J.G.; Roushan, P.; Seo, J.; Xu, Q.; Zandbergen, H.W.; Yazdani, A.; Ong, N.P.; Cava, R.J. Superconductivity in CuxBi2Se3 and its Implications for Pairing in the Undoped Topological Insulator. Phys. Rev. Lett. 2010, 104, 057001. [Google Scholar] [CrossRef] [Green Version]
- Kriener, M.; Segawa, K.; Ren, Z.; Sasaki, S.; Ando, Y. Bulk Superconducting Phase with a Full Energy Gap in the Doped Topological Insulator CuxBi2Se3. Phys. Rev. Lett. 2011, 106, 127004. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, S.; Ren, Z.; Taskin, A.A.; Segawa, K.; Fu, L.; Ando, Y. Odd-Parity Pairing and Topological Superconductivity in a Strongly Spin-Orbit Coupled Semiconductor. Phys. Rev. Lett. 2012, 109, 217004. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Wray, L.A.; Xia, Y.; Xu, S.; Jia, S.; Cava, R.J.; Bansil, A.; Hasan, M.Z. Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat. Mater. 2010, 9, 546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Kim, S.; Liu, M.; Cevallos, F.A.; Cava, R.J.; Ong, N.P. Evidence for an edge supercurrent in the Weyl superconductor MoTe2. Science 2020, 368, 534. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.-Y.; Chen, P.-J.; Chu, M.-W.; Sankar, R.; Chou, F.; Jeng, H.-T.; Chang, C.-S.; Chuang, T.-M. Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2. Sci. Adv. 2016, 2, e1600894. [Google Scholar] [CrossRef] [Green Version]
- Sakano, M.; Okawa, K.; Kanou, M.; Sanjo, H.; Okuda, T.; Sasagawa, T.; Ishizaka, K. Topologically protected surface states in a centrosymmetric superconductor β-PdBi2. Nat. Commun. 2015, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Iwaya, K.; Kohsaka, Y.; Okawa, K.; Machida, T.; Bahramy, M.; Hanaguri, T.; Sasagawa, T. Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2. Nat. Commun. 2017, 8, 976. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.F.; Wang, W.L.; Zhang, Y.M.; Ding, H.; Li, W.; Wang, L.L.; He, K.; Song, C.L.; Ma, X.C.; Xue, Q.K. Experimental signature of topological superconductivity and Majorana zero modes on β-Bi2Pd thin films. Sci. Bull. 2017, 62, 852. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.-Y.; Kong, L.; Zhou, L.-Q.; Zhong, Y.-G.; Li, H.; Liu, H.-J.; Tang, C.-Y.; Yan, D.-Y.; Yang, F.-Z.; Huang, Y.-B.; et al. Experimental evidence of anomalously large superconducting gap on topological surface state of β-Bi2Pd film. Sci. Bull. 2019, 64, 1215. [Google Scholar] [CrossRef] [Green Version]
- Matthias, B.T.; Geballe, T.H.; Compton, V.B. Superconductivity. Rev. Mod. Phys. 1963, 35, 414. [Google Scholar] [CrossRef]
- Imai, Y.; Nabeshima, F.; Yoshinaka, T.; Miyatani, K.; Kondo, R.; Komiya, S.; Tsukada, I.; Maeda, A. Superconductivity at 5.4 K in β-Bi2Pd. J. Phys. Soc. Jpn. 2012, 81, 113708. [Google Scholar] [CrossRef] [Green Version]
- Pristáš, G.; Orendáč, M.; Gabáni, S.; Kačmarčík, J.; Gažo, E.; Pribulová, Z.; Orellana, A.C.; Herrera, E.; Suderow, H.; Samuely, P. Pressure effect on the superconducting and the normal state of β-Bi2Pd. Phys. Rev. B 2018, 97, 134505. [Google Scholar] [CrossRef] [Green Version]
- Xia, F.; Wang, H.; Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458. [Google Scholar] [CrossRef] [Green Version]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [Green Version]
- Staley, N.E.; Wu, J.; Eklund, P.; Liu, Y. Electric field effect on superconductivity in atomically thin flakes of NbSe2. Phys. Rev. B 2009, 80, 184505. [Google Scholar] [CrossRef]
- Wang, B.T.; Margine, E.R. Evolution of the topologically protected surface states in superconductor β-Bi2Pd from the three-dimensional to the two-dimensional limit. J. Phys. Condens. Matter 2017, 29, 325501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.-F.; Li, J.; Tu, X.-H.; Yin, H.; Sa, B.; Zhang, J.; Singh, D.J.; Wang, B.-T. Prediction of superconductivity and topological aspects in single-layerβ-Bi2Pd. Phys. Rev. B 2020, 102, 155406. [Google Scholar] [CrossRef]
- Xi, X.; Wang, Z.; Zhao, W.I.; Park, J.-H.; Law, K.T.; Berger, H.; Forró, L.; Shan, J.; Mak, K.F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2015, 12, 139. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Moratalla, E.; Island, J.O.; Manas-Valero, S.; Pinilla-Cienfuegos, E.; Castellanos-Gomez, A.; Quereda, J.; Rubio-Bollinger, G.; Chirolli, L.; Silva-Guillen, J.A.; Agraıt, N. Enhanced superconductivity in atomically thin TaS2. Nat. Commun. 2016, 7, 11043. [Google Scholar] [CrossRef] [Green Version]
- Goldman, A.M.; Markovic, N. Superconductor-Insulator Transitions in the Two-Dimensional Limit. Phys. Today 1998, 51, 39. [Google Scholar] [CrossRef]
- Frindt, R.F. Superconductivity in Ultrathin NbSe2 Layers. Phys. Rev. Lett. 1972, 28, 299. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.-F.; Bao, X.-Y.; Han, T.-Z.; Tang, Z.; Zhang, L.-X.; Zhu, W.-G.; Wang, E.G.; Niu, Q.; Qiu, Z.Q.; et al. Superconductivity Modulated by Quantum Size Effects. Science 2004, 306, 1915. [Google Scholar] [CrossRef]
- Kolapo, A.; Li, T.; Hosur, P.; Miller, J.H., Jr. Possible transport evidence for three-dimensional topological superconductivity in doped β-PdBi2. Sci. Rep. 2019, 9, 12504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kǎcmarcık, J.; Pribulova, Z.; Samuely, T.; Szabo, P.; Cambe, V.; Soltys, J.; Herrera, E.; Suderow, H.; Correa-Orellana, A.; Prabhakaran, D.; et al. Single-gap superconductivity in β-Bi2Pd. Phys. Rev. B 2016, 93, 144502. [Google Scholar] [CrossRef] [Green Version]
- Yan, R.; Khalsa, G.; Schaefer, B.T.; Jarjour, A.; Rouvimov, S.; Nowack, K.C.; Xing, H.G.; Jena, D. Thickness dependence of superconductivity in ultrathin NbS2. Appl. Phys. Express 2019, 12, 023008. [Google Scholar] [CrossRef] [Green Version]
- Okuma, S.; Terashima, T.; Kokubo, N. Anomalous magnetoresistance near the superconductor-insulator transition in ultrathin films of a−MoxSi1−x. Phys. Rev. B 1998, 58, 2816. [Google Scholar] [CrossRef]
- Qin, S.; Kim, J.; Niu, Q.; Shih, C.-K. Superconductivity at the two-dimensional limit. Science 2009, 324, 1314. [Google Scholar] [CrossRef]
- Dynes, R.C.; Garno, J.P.; Rowell, J.M. Two-Dimensional Electrical Conductivity in Quench-Condensed Metal Films. Phys. Rev. Lett. 1978, 40, 479. [Google Scholar] [CrossRef]
- Adkins, C.J.; Thomas, J.M.D.; Young, M.W. Increased resistance below the superconducting transition in granular metals. J. Phys. C: Solid State Phys. 1980, 13, 3427. [Google Scholar] [CrossRef]
- Haviland, D.B.; Jaeger, H.M.; Orr, B.G.; Goldman, A.M. Onset of superconductivity in ultrathin granular metal films. Phys. Rev. B 1989, 40, 182. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.H.; Adams, P.W. Superconductor-Insulator Transition in a Parallel Magnetic Field. Phys. Rev. Lett. 1994, 73, 1412. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Kumar, N.; Chan, M.H.W. Evidence of local superconductivity in granular Bi nanowires fabricated by electrodeposition. Phys. Rev. B 2008, 78, 045417. [Google Scholar] [CrossRef] [Green Version]
- Barber, R.P., Jr.; Merchant, L.M.; la Porta, A.; Dynes, R.C. Tunneling into granular Pb films in the superconducting and insulating regimes. Phys. Rev. B 1994, 49, 3409. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.Y.; Yuan, H.T.; Xie, Y.W.; Lu, D.; Inoue, H.; Hikita, Y.; Bell, C.; Hwang, H.Y. Dual-Gate Modulation of Carrier Density and Disorder in an Oxide Two-Dimensional Electron System. Nano Lett. 2016, 16, 6130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.Y.; Swartz, A.G.; Yoon, H.; Inoue, H.; Merz, T.A.; Lu, D.; Xie, Y.W.; Yuan, H.T.; Hikita, Y.; Hwang, S.R.H.Y. Carrier density and disorder tuned superconductor-metal transition in a two-dimensional electron system. Nat. Commun. 2018, 9, 4008. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chang, C.Z.; Li, H.; He, K.; Zhang, D.; Singh, M.; Ma, X.C.; Samarth, N.; Xie, M.; Xue, Q.K.; et al. Interplay between topological insulators and superconductors. Phys. Rev. B 2012, 85, 045415. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Lv, B.; Xue, Y.-Y.; Zhu, X.-Y.; Deng, L.Z.; Wu, Z.; Chu, C.W. Chemical doping and high-pressure studies of layered β-PdBi2 single crystals. Phys. Rev. B 2015, 92, 174404. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, H.; Gao, W.; Chen, Z.; Han, Y.; Zhu, X.; Tian, M. Thickness Dependence of Superconductivity in Layered Topological Superconductor β-PdBi2. Nanomaterials 2021, 11, 2826. https://doi.org/10.3390/nano11112826
Li H, Wang H, Gao W, Chen Z, Han Y, Zhu X, Tian M. Thickness Dependence of Superconductivity in Layered Topological Superconductor β-PdBi2. Nanomaterials. 2021; 11(11):2826. https://doi.org/10.3390/nano11112826
Chicago/Turabian StyleLi, Huijie, Huanhuan Wang, Wenshuai Gao, Zheng Chen, Yuyan Han, Xiangde Zhu, and Mingliang Tian. 2021. "Thickness Dependence of Superconductivity in Layered Topological Superconductor β-PdBi2" Nanomaterials 11, no. 11: 2826. https://doi.org/10.3390/nano11112826
APA StyleLi, H., Wang, H., Gao, W., Chen, Z., Han, Y., Zhu, X., & Tian, M. (2021). Thickness Dependence of Superconductivity in Layered Topological Superconductor β-PdBi2. Nanomaterials, 11(11), 2826. https://doi.org/10.3390/nano11112826