Graphene Quantum Dots and Cu(I) Liquid Crystal for Advanced Electrochemical Detection of Doxorubicine in Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Working Paste Electrode
2.3. Structural and Morphological Characterization
2.4. Electrochemical Experiments
3. Results and Discussion
3.1. Morphological Characterization
3.2. Electrochemical Behavior of Carbon-Based Electrodes in the Presence of Supporting Electrolyte and 5 mg·L−1 DOX
3.2.1. Mechanistic Aspects—Influence of the Scan Rate
3.2.2. Optimization of DOX Detection at GRQD Based Paste Electrode
Voltammetric Detection of DOX at GRQD-Based Paste Electrodes
Preconcentration Step Prior to Detection
Amperometric Detection of DOX at GRQD-Based Paste Electrodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [Green Version]
- Jureczko, M.; Kalka, J. Cytostatic pharmaceuticals as water contaminants. Eur. J. Pharmacol. 2020, 866, 172816–172826. [Google Scholar] [CrossRef] [PubMed]
- Nassour, C.; Barton, S.J.; Nabhani-Gebara, S.; Saab, Y.; Barker, J. Occurrence of anticancer drugs in the aquatic environment: A systematic review. Environ. Sci. Pollut. Res. 2019, 27, 1339–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Chang, V.W.C.; Giannis, A.; Wang, J.-Y. Removal of cytostatic drugs from aquatic environment: A review. Sci. Total Environ. 2013, 445–446, 281–298. [Google Scholar] [CrossRef]
- Santana-Viera, S.; Montesdeoca-Esponda, S.; Sosa-Ferrera, Z.; Santana-Rodriguez, J.J. Cytostatic drugs in environmental samples: An update on the extraction and determination procedures. Trends Analyt. Chem. 2016, 80, 373–386. [Google Scholar] [CrossRef]
- Booker, V.; Halsall, C.; Llewellyn, N.; Johnson, A.; Williams, R. Prioritising anticancer drugs for environmental monitoring and risk assessment purposes. Sci. Total Environ. 2014, 473–474, 159–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, M.; Bourner, L.; Ali, S.; Al-Enazy, S.; Youssef, M.; Fisler, M.; Rytting, E. HPLC Method Development for Quantification of Doxorubicin in Cell Culture and Placental Perfusion Media. Separations 2018, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Daeihamed, M.; Haeri, A.; Dadashzadeh, S. A Simple and Sensitive HPLC Method for Fluorescence Quantitation of Doxorubicin in Micro-volume Plasma: Applications to Ph armacokinetic Studies in Rats. Iran J. Pharm. Res. 2015, 14, 33–42. [Google Scholar] [PubMed]
- Choi, W.-G.; Kim, D.K.; Shin, Y.; Park, R.; Cho, Y.-Y.; Lee, J.Y.; Lee, H.S. Liquid Chromatography–Tandem Mass Spectrometry for the Simultaneous Determination of Doxorubicin and its Metabolites Doxorubicinol, Doxorubicinone, Doxorubicinolone, and 7-Deoxydoxorubicinone in Mouse Plasma. Molecules 2020, 25, 1254. [Google Scholar] [CrossRef] [Green Version]
- Rus, I.; Tertis, M.; Barbalata, C.; Porfire, A.; Tomuta, I.; Sandulescu, R.; Cristea, C. An Electrochemical Strategy for the Simultaneous Detection of Doxorubicin and Simvastatin for Their Potential Use in the Treatment of Cancer. Biosensors 2021, 11, 15. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, Y.; Zhao, Q.; Shuang, S.; Dong, C. Electrochemical Sensor for Ultrasensitive Determination of Doxorubicin and Methotrexate Based on Cyclodextrin-Graphene Hybrid Nanosheets. Electroanalysis 2011, 23, 2400–2407. [Google Scholar] [CrossRef]
- Haghshenas, E.; Madrakian, T.; Afkhami, A. Electrochemically oxidized multiwalled carbon nanotube/glassy carbon electrode as a probe for simultaneous determination of dopamine and doxorubicin in biological samples. Anal. Bioanal. Chem. 2016, 408, 2577–2586. [Google Scholar] [CrossRef]
- Vajdle, O.; Zbiljic, J.; Tasic, B.; Jovic, D.; Guzsvany, V.; Djordjevic, A. Voltammetric behavior of doxorubicin at a renewable silver-amalgam film electrode and its determination in human urine. Electrochim. Acta 2014, 132, 49–57. [Google Scholar] [CrossRef]
- Chekin, F.; Myshin, V.; Ye, R.; Melinte, S.; Singh, S.K.; Kurungot, S.; Szunerits, S. Graphene-modified electrodes for sensing doxorubicin hydrochloride in human plasma. Anal. Bioanal. Chem. 2019, 411, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Soleymani, J.; Hasanzadeh, M.; Shadjou, N.; Khoubnasab Jafari, M.; Gharamaleki, J.V.; Yadollahi, M.; Jouyban, A. A new kinetic–mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Mater. Sci. Eng. C 2016, 61, 638–650. [Google Scholar] [CrossRef] [PubMed]
- Omanovic, D.; Garnier, C.; Gibbon–Walsh, K.; Pizeta, I. Electroanalysis in environmental monitoring: Tracking trace metals—A mini review. Electrochem. Commun. 2015, 61, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Remes, A.; Manea, F.; Motoc, S.; Baciu, A.; Szerb, E.I.; Gascon, J.; Gug, G. Highly Sensitive Non-Enzymatic Detection of Glucose at MWCNT-CuBTC Composite Electrode. Appl. Sci. 2020, 10, 8419. [Google Scholar] [CrossRef]
- Negrea, S.; Diaconu, L.A.; Nicorescu, V.; Motoc, S.; Orha, C.; Manea, F. Graphene Oxide Electroreduced onto Boron-Doped Diamond and Electrodecorated with Silver (Ag/GO/BDD) Electrode for Tetracycline Detection in Aqueous Solution. Nanomaterials 2021, 11, 1566. [Google Scholar] [CrossRef]
- Motoc, S.; Cretu, C.; Costisor, O.; Baciu, A.; Manea, F.; Szerb, E.I. Cu(I) Coordination Complex Precursor for Randomized CuOx Microarray Loaded on Carbon Nanofiber with Excellent Electrocatalytic Performance for Electrochemical Glucose Detection. Sensors 2019, 19, 5353. [Google Scholar] [CrossRef] [Green Version]
- Motoc, S.; Manea, F.; Orha, C.; Pop, A. Enhanced Electrochemical Response of Diclofenac at a Fullerene–Carbon Nanofiber Paste Electrode. Sensors 2019, 19, 1332. [Google Scholar] [CrossRef] [Green Version]
- Uslu, B.; Ozkan, S. Electroanalytical Application of Carbon Based Electrodes to the Pharmaceuticals. Anal. Lett. 2007, 40, 817–853. [Google Scholar] [CrossRef]
- Torrinha, A.; Oliveira, T.M.B.F.; Ribeiro, F.W.P.; Correia, A.N.; Lima-Neto, P.; Morais, S. Application of Nanostructured Carbon-Based Electrochemical (Bio)Sensors for Screening of Emerging Pharmaceutical Pollutants in Waters and Aquatic Species: A Review. Nanomaterials 2020, 10, 1268. [Google Scholar] [CrossRef]
- Fan, H.; Yu, X.; Wang, K.; Yin, Y.; Tang, Y.; Tang, Y.; Liang, X. Graphene quantum dots (GQDs)-based nanomaterials for improving photodynamic therapy in cancer treatment. Eur. J. Med. Chem. 2019, 182, 111620. [Google Scholar] [CrossRef]
- Tajik, S.; Dourandish, Z.; Zhang, K.; Beitollahi, H.; Le, Q.V.; Jang, H.W.; Shokouhimehr, M. Carbon and graphene quantum dots: A review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv. 2020, 10, 15406–15429. [Google Scholar] [CrossRef] [Green Version]
- Tian, P.; Tang, L.; Teng, K.S.; Lau, S.P. Graphene quantum dots from chemistry to applications. Mater. Today Chem. 2018, 10, 221–258. [Google Scholar] [CrossRef]
- Campuzano, S.; Yanez-Sedeno, P.; Pingarrón, J.M. Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing. Nanomaterials 2019, 9, 634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Lv, G.; Hu, W.; Li, D.; Chen, S.; Dai, Z. Synthesis and applications of graphene quantum dots: A review. Nanotechnol. Rev. 2018, 7, 157–185. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Hashemzadeh, N.; Shadjou, N.; Eivazi-Ziaei, J.; Khoubnasabjafari, M.; Jouyban, A. Sensing of doxorubicin hydrochloride using graphene quantum dot modified glassy carbon electrode. J. Mol. Liq. 2016, 221, 354–357. [Google Scholar] [CrossRef]
- Hashemzadeh, N.; Hasanzadeh, M.; Shadjou, N.; Eivazi-Ziaei, J.; Khoubnasabjafari, M.; Jouyban, A. Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma. J. Pharm. Anal. 2016, 6, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Wu, L.; Wei, W.; Qu, X. Recent advances in graphene quantum dots for sensing. Mater. Today 2013, 26, 433–442. [Google Scholar] [CrossRef]
- Manea, F.; Motoc, S.; Pop, A.; Remes, A.; Schoonman, J. Silver-functionalized carbon nanofiber composite electrodes for ibuprofen detection. Nanoscale Res. Lett. 2012, 7, 331–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pop, A.; Manea, F.; Orha, C.; Motoc, S.; Ilinoiu, E.; Vaszilcsin, N.; Schoonman, J. Copper-decorated carbon nanotubes-based composite electrodes for nonenzymatic detection of glucose. Nanoscale Res. Lett. 2012, 266–270. [Google Scholar] [CrossRef] [Green Version]
- Motoc, S.; Manea, F.; Pop, A.; Pode, R.; Burtica, G. Determination of Ibuprofen in Water Using Ag-Doped Zeolite-Expanded Graphite Composite Electrode. Adv. Sci. Eng. Med. 2011, 3, 7–12. [Google Scholar] [CrossRef]
- Cretu, C.; Andelescu, A.-A.; Candreva, A.; Crispini, A.; Szerb, E.I.; La Deda, M. Bisubstituted-Biquinoline Cu(I) complexes: Synthesis, mesomorphism and photophysical studies in solution and condensed states. J. Mater. Chem. C 2018, 6, 10073–10082. [Google Scholar] [CrossRef]
- Motoc, S.; Manea, F.; Iacob, A.; Martinez-Joaristi, A.; Gascon, J.; Pop, A.; Schoonman, J. Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution Using HKUST-1 Metal-Organic Framework-Carbon Nanofiber Composite Electrode. Sensors 2016, 16, 1719. [Google Scholar] [CrossRef] [Green Version]
- Tucureanu, V.; Matei, A.; Avram, A.M. FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef]
- Szerb, E.I.; Domokos, R.-A.; Creţu, C.; La Deda, M.; Chiş, V. Vibrational and Nuclear Magnetic Resonance Properties of 2,2′-Biquinolines: Experimental and Computational Spectroscopy Study. J. Nanosci. Nanotechnol. 2021, 21, 2404–2412. [Google Scholar] [CrossRef]
- Sigman, D.S.; Mazumder, A.; Perrin, D.M. Chemical Nucleases. Chem. Rev. 1993, 93, 2295–2316. [Google Scholar] [CrossRef]
- Manea, F.; Radovan, C.; Schoonman, J. Amperometric determination of thiourea in alkaline media on a copper oxide–copper electrode. J. Appl. Electrochem. 2006, 36, 1075–1081. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y. Electrochemical behavior of adriamycin at an electrode modified with silver nanoparticles and multi-walled carbon nanotubes, and its application. Microchim. Acta 2010, 169, 161–165. [Google Scholar] [CrossRef]
- Chaney, E.N.; Baldwin, R.P. Electrochemical determination of adriamycin compounds in urine by preconcentration at carbon paste electrodes. Anal. Chem. 1982, 54, 2556–2560. [Google Scholar] [CrossRef]
- Baldwin, R.P.; Packett, D.; Woodcock, T.M. Electrochemical behavior of adriamycin at carbon paste electrodes. Anal. Chem. 1981, 53, 540–542. [Google Scholar] [CrossRef]
- Evtugyn, G.; Porfireva, A.; Stepanova, V.; Budnikov, H. Electrochemical Biosensors Based on Native DNA and Nanosized Mediator for the Detection of Anthracycline Preparations. Electroanalysis 2015, 27, 629–637. [Google Scholar] [CrossRef]
- Hajian, R.; Tayebi, Z.; Shams, N. Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA. J. Pharm. Anal. 2017, 7, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Manasa, E.; Vanitha Prakash, K.; Ravi Pratap, P.; Susena, S. Method development and validation of doxorubicin HCL in API and its formulation by spectrophotometry. Int. J. Pharm. Chem. Biol. Sci. 2013, 3, 1006–1009. [Google Scholar]
Paste Electrode Type | Weight Ratio, % | |||
---|---|---|---|---|
Paraffin Oil (oil) | Carbon Nanotubes (CNT) | Graphene Quantum Dots (GRQD) | Homoleptic Ionic Cu(I) Coordination Complex Based on 2,2′-Biquinoline Ligand Functionalized with Long Alkyl Chains (Cu) | |
CNT | 66 | 44 | - | - |
GRQD/CNT | 50 | 35 | 15 | - |
Cu/GRQD/CNT | 24.27 | 6.02 | 4.24 | 65 |
Electrode Type | Supporting Electrolyte | Anodic | Cathodic | ∆E, V vs. Ag/AgCl | |||
---|---|---|---|---|---|---|---|
E/V vs. Ag/AgCl | Sensitivity/ A/mg·L−1 | E/V vs. Ag/AgCl | Sensitivity/ A/mg·L−1 | ||||
Cu/GRQD/CNT | 0.1 M NaOH | +0.28 | 0.12 | +0.25 | 0.13 | 0.03 | 0.92 |
+0.60 | 0.16 | - ** | |||||
GRQD/CNT * | 0.1 M Na2SO4 | +0.66 | 0.71 | +0.53 | 0.46 | 0.20 | 1.54 |
CNT | 0.1 M Na2SO4 | +0.35 | 0.24 | +0.22 | 0.06 | 0.29 | 4 |
Electrode Used | Technique | Potential Detection/V vs. Ag/AgCl | Sensitivity/µA mg·L−1 | Correlation Coefficient/R2 | LOD (a)/mg·L−1 | LQ (a)/mg·L−1 | RSD (b) (%) |
---|---|---|---|---|---|---|---|
GRQD/CNT | CV | 0.660 | 0.706 | 0.989 | 0.065 | 0.217 | 0.194 |
0.530 Cathodic branch | 0.451 | 0.998 | 0.233 | 0.778 | 0.507 | ||
DPV | 0.390 | 2572.68 | 0.962 | 8.35 × 10−5 | 2.78 × 10−4 | 0.05 | |
SWV | 0.510 | 673.77 | 0.962 | 1.7 × 10−4 | 5.9 × 10−4 | 0.01 | |
Preconc. DPV | 0.390 | 216,105 | 0.962 | 9.94 × 10−7 | 3.31 × 10−6 | 0.05 | |
Cu/GRQD/CNT | CV | 0.280 | 0.119 | 0.992 | 3.781 | 12.605 | 6.67 |
0.600 | 0.165 | 0.998 | 2.758 | 9.192 | 5.49 | ||
0.220 Cathodic branch | 0.131 | 0.999 | 1.172 | 3.907 | 4.90 | ||
CA | 0.280 | 0.026 | 0.996 | 2.316 | 7.721 | 2.99 | |
0.600 | 0.026 | 0.980 | 0.371 | 1.236 | 7.78 | ||
MPA | 0.280 | 0.041 | 0.998 | 0.470 | 1.568 | 0.79 | |
0.500 | 0.037 | 0.991 | 3.123 | 10.411 | 0.53 |
Method | Electrode | Modifier | LOD (µM) | Matrix | References |
---|---|---|---|---|---|
CV, DPV | GCE | MWCNT/AgNPs | 0.002 | - | [40] |
DPV | GCE | PS/Fe3O4-GO-SO3H | 0.0049 | plasma | [15] |
DPV | CPE | Carbon paste | 0.01 | - | [41] |
DPV, Impedimetric | GCE | DNA sensors | 0.0001 | Drugs, artificial plasma | [42] |
SWV | HMDE | - | 0.1 | - | [43] |
CV, DPV | GCE | GQD | 0.016 | plasma | [28] |
CV | Pt | MWCNT | 0.003 | plasma | [44] |
DPV | GRQD/CNT | - | 1.53 × 10−4 | water | This work |
Preconc. DPW | GRQD/CNT | - | 1.83 × 10−6 | water | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motoc Ilies, S.; Schinteie, B.; Pop, A.; Negrea, S.; Cretu, C.; Szerb, E.I.; Manea, F. Graphene Quantum Dots and Cu(I) Liquid Crystal for Advanced Electrochemical Detection of Doxorubicine in Aqueous Solutions. Nanomaterials 2021, 11, 2788. https://doi.org/10.3390/nano11112788
Motoc Ilies S, Schinteie B, Pop A, Negrea S, Cretu C, Szerb EI, Manea F. Graphene Quantum Dots and Cu(I) Liquid Crystal for Advanced Electrochemical Detection of Doxorubicine in Aqueous Solutions. Nanomaterials. 2021; 11(11):2788. https://doi.org/10.3390/nano11112788
Chicago/Turabian StyleMotoc Ilies, Sorina, Bianca Schinteie, Aniela Pop, Sorina Negrea, Carmen Cretu, Elisabeta I. Szerb, and Florica Manea. 2021. "Graphene Quantum Dots and Cu(I) Liquid Crystal for Advanced Electrochemical Detection of Doxorubicine in Aqueous Solutions" Nanomaterials 11, no. 11: 2788. https://doi.org/10.3390/nano11112788
APA StyleMotoc Ilies, S., Schinteie, B., Pop, A., Negrea, S., Cretu, C., Szerb, E. I., & Manea, F. (2021). Graphene Quantum Dots and Cu(I) Liquid Crystal for Advanced Electrochemical Detection of Doxorubicine in Aqueous Solutions. Nanomaterials, 11(11), 2788. https://doi.org/10.3390/nano11112788