A Lipid-Coated Nanoconstruct Composed of Gold Nanoparticles Noncovalently Coated with Small Interfering RNA: Preparation, Purification and Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Core Nanoparticles
2.3. Preparation of a Lipid Film
2.4. Synthesis of a Peptide Conjugate with Stearic Acid
2.5. Assembly of the MLNC
2.6. Purification of the MLNCs by Banding Centrifugation
2.7. Examination of the Composition and Quality of the Samples
2.7.1. Optical Extinction Spectra
2.7.2. DLS
2.7.3. TEM
2.8. Cytotoxicity Assays of Glycerol and Sucrose
2.9. Statistical Analysis
3. Results
3.1. The Mechanism of MLNC Formation
3.2. Assembly of the Core Nanoparticles: AuNP-siRNA
3.3. Fabrication of the Lipid Film
3.4. Doping of the Lipid Envelope of MLNCs with the Peptide
3.5. Fractionation of MLNCs via Centrifugation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kulkarni, J.A.; Witzigmann, D.; Thomson, S.B.; Chen, S.; Leavitt, B.R.; Cullis, P.R.; van der Meel, R. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 2021, 630, 630–643. [Google Scholar] [CrossRef] [PubMed]
- Margus, H.; Arukuusk, P.; Langel, Ü.; Pooga, M. Characteristics of Cell-Penetrating Peptide/Nucleic Acid Nanoparticles. Mol. Pharm. 2015, 13, 172–179. [Google Scholar] [CrossRef]
- Elsabahy, M.; Nazarali, A.; Foldvari, M. Non-Viral Nucleic Acid Delivery: Key Challenges and Future Directions. Curr. Drug Deliv. 2011, 8, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Chen, W.; Cole, J.; Zhu, G. Delivery of nucleic acid therapeutics for cancer immunotherapy. Med. Drug Dicovery 2020, 6, 100023. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Andresen, A.J.; Manan, R.S.; Langer, R. Nucleic Acid Delivery for Therapeutic Applications. Adv. Drug Deliv. Rev. 2021. Ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Lechanteur, A.; Evrard, B.; Piel, G. Innovative lipoplexes formulations with enhanced siRNA efficacy for cancer treatment: Where are we now? Int. J. Pharm. 2021, 605, 120851. [Google Scholar] [CrossRef] [PubMed]
- Rinoldi, C.; Zargarian, S.S.; Nakielski, P.; Li, X.; Liguori, A.; Petronella, F.; Presutti, D.; Wang, Q.; Costantini, M.; De Sio, L.; et al. Nanotechnology-Assisted RNA Delivery: From Nucleic Acid Therapeutics to COVID-19 Vaccines. Small Methods 2021, 5, 2100402. [Google Scholar] [CrossRef]
- Aghamiri, S.H.; Raee, P.; Talaei, S.; Mohammadi-Yeganeh, S.; Bayat, S.H.; Rezaee, D.; Ghavidel, A.A.; Teymouri, A.; Roshanzamiri, S.; Farhadi, S.H.; et al. Nonviral siRNA delivery systems for pancreatic cancer therapy. Biotechnol. Bioeng. 2021, 118, 3669–3690. [Google Scholar] [CrossRef]
- Shaabani, E.; Sharifiaghdam, M.; De Keersmaecker, H.; De Rycke, R.; De Smedt, S.; Faridi-Majidi, R.; Braeckmans, K.; Fraire, J.C. Layer by Layer Assembled Cihitosan-Coated Gold Nanoparticles for Enhanced siRNA Delivery and Silencing. Int. J. Mol. Sci. 2021, 22, 831. [Google Scholar] [CrossRef]
- Sharifiaghdam, M.; Shaabani, E.; Sharifiaghdam, Z.; De Keersmaecker, H.; De Rycke, R.; De Smedt, S.; Faridi-Majidi, R.; Braeckmans, K.; Fraire, J.C. Enhanced siRNA Delivery and Selective Apoptosis Induction in H1299 Cancer Cells by Layer-by-Layer-Assembled Se Nanocomplexes: Toward More Efficient Cancer Therapy. Front. Mol. Biosci. 2021, 8, 639184. [Google Scholar] [CrossRef]
- Bonoiu, A.C.; Mahajan, S.D.; Ding, H.; Roy, I.; Yong, K.-T.; Kumar, R.; Hu, R.; Bergey, E.J.; Schwartz, S.A.; Prasad, P.N. Nanotechnology approach for drug addiction therapy: Gene silencing using delivery of gold nanorodsiRNA nanoplex in dopaminergic neurons. Proc. Natl. Acad. Sci. USA 2009, 106, 5546–5550. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Wang, Y.; Song, Z.; Feng, Y.; Chen, Y.; Zhang, D.; Feng, L. The Basic Properties of Gold Nanoparticles and their Applications in Tumor Diagnosis and Treatment. Int. J. Mol. Sci. 2020, 21, 2480. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Cao, Z.H.; Liu, R.; Liu, L.; Lia, H.; Li, X.; Chen, Y.; Lu, C.H.; Liu, Y. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. Artif. Cells Nanomed. Biotechnol. 2019, 47, 4222–4233. [Google Scholar] [CrossRef] [Green Version]
- Lopes, T.S.; Alves, G.G.; Pereira, M.R.; Granjeiro, J.M.; Leite, P.E.C. Advances and potential application of gold nanoparticles in Nanomedicine. J. Cell Biochem. 2019, 120, 16370–16378. [Google Scholar] [CrossRef]
- Poletaeva, J.; Dovydenko, I.; Epanchintseva, A.; Korchagina, K.; Pyshnyi, D.; Apartsin, E.; Ryabchikova, E.; Pyshnaya, I. Non-Covalent Associates of siRNAs and AuNPs Enveloped with Lipid Layer and Doped with Amphiphilic Peptide for Efficient siRNA Delivery. Int. J. Mol. Sci. 2018, 19, 2096. [Google Scholar] [CrossRef] [Green Version]
- Tschuch, C.; Schulz, A.; Pscherer, A.; Werft, W.; Benner, A.; Hotz-Wagenblatt, A.; Barrionuevo, L.S.; Lichter, P.; Mertens, D. Off-target effects of siRNA specific for GFP. BMC Mol. Biol. 2008, 9, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlova, A.S.; Yakovleva, K.I.; Epanchitseva, A.V.; Kupryushkin, M.S.; Pyshnaya, I.A.; Pyshnyi, D.V.; Ryabchikova, E.I.; Dovydenko, I.S. An Influence of Modification with Phosphoryl Guanidine Combined with a 20-O-Methyl or 20-Fluoro Group on the Small-Interfering-RNA Effect. Int. J. Mol. Sci. 2021, 22, 9784. [Google Scholar] [CrossRef] [PubMed]
- Shashkova, V.V.; Epanchintseva, A.V.; Vorobjev, P.E.; Razum, K.V.; Ryabchikova, E.I.; Pyshnyi, D.V.; Pyshnaya, I.A. Multilayer Associates Based on Oligonucleotides and Gold Nanoparticles. Rus. J. Bioorg. Chem. 2017, 43, 64–70. [Google Scholar] [CrossRef]
- Epanchintseva, A.; Vorobjev, P.; Pyshnyi, D.; Pyshnaya, I. Fast and Strong Adsorption of Native Oligonucleotides on Citrate-Coated Gold Nanoparticles. Langmuir 2018, 34, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Atwater, M.; Wang, J.; Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B 2007, 58, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Rodrı´guez-Corrales, J.A.; Josan, J.A. Resazurin Live Cell Assay: Setup and Fine-Tuning for Reliable Cytotoxicity Results. Methods Mol. Biol. 2017, 1647, 207–219. [Google Scholar]
- Epanchintseva, A.V.; Poletaeva, J.E.; Pyshnyi, D.V.; Ryabchikova, E.I.; Pyshnaya, I.A. Long-term stability and scale-up of noncovalently bound gold nanoparticle-siRNA suspensions. Beilstein J. Nanotechnol. 2019, 10, 2568–2578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epanchintseva, A.; Dolodoev, A.; Grigoreva, A.; Chelobanov, B.; Pyshnyi, D.; Ryabchikova, E.; Pyshnaya, I. Non-covalent binding of nucleic acids with gold nanoparticles provides their stability and effective desorption in environment mimicking biological media. Nanotechnology 2018, 29, 355601. [Google Scholar] [CrossRef] [PubMed]
- Menhaj, A.B.; Smith, B.D.; Liu, J. Exploring the thermal stability of DNA-linked gold nanoparticles in ionic liquids and molecular solvents. Chem. Sci. 2012, 3, 3216. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, H.; Zhang, F.; Wu, Y.; Guo, Z.; Zhou, L.; Li, J. Investigation of halide-induced aggregation of Au nanoparticles into spongelike gold. Langmuir 2014, 30, 2648–2659. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Kelly, E.Y.; Liu, J. Cation-size-dependent DNA adsorption kinetics and packing density on gold nanoparticles: An opposite trend. Langmuir 2014, 30, 13228–13234. [Google Scholar] [CrossRef] [Green Version]
- Federal Medical & Biological Agency. Research Institute of Physical-Chemical Medicine. Website of Extracellular Vesicles Research Group. Centrifugation Calculator. Available online: http://vesicles.niifhm.ru (accessed on 30 September 2021).
MLNC Sample ID | PB Concentration, mM | PDI | Hydrodynamic Diameter, nm |
---|---|---|---|
1 | 100 | 0.203 ± 0.012 | 749.2 ± 177 |
2 | 10 | 0.256 ± 0.010 | 169 ± 88 |
3 | 3 | 0.275 ± 0.015 | 137.7 ± 65 |
4 | 1 | 0.209 ± 0.009 | 158.7 ± 74 |
Sample | Magnesium Salt | ζ Potential, mV | Hydrodynamic Diameter, nm | PDI |
---|---|---|---|---|
Core nanoparticles | none | −44 ± 1 | 25 ± 9 | 0.212 ± 0.011 |
Core nanoparticles | 0.1 mM Mg(Ac)2 | −45 ± 1 | 27 ± 11 | 0.416 ± 0.041 |
Core nanoparticles | 0.1 mM MgSO4 | −39 ± 1 | 25 ± 9 | 0.266 ± 0.050 |
Core nanoparticles | 0.4 mM MgSO4 | −40 ± 2 | 90 ± 85 | 0.565 ± 0.316 |
Sample | Hydrodynamic Diameter, nm | PDI | Gold Content, % |
---|---|---|---|
Optimized MLNCs | 152 ± 75 | 0.205 ± 0.008 | - |
Upper fraction | 215 ± 108 | 0.198 ± 0.011 | 12 |
Middle fraction | 397 ± 163 | 0.160 ± 0.005 | 32 |
Bottom fraction | 1259 ± 461 | 0.097 ± 0.009 | 24 |
Total gold content | 68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Epanchintseva, A.V.; Poletaeva, J.E.; Dovydenko, I.S.; Chelobanov, B.P.; Pyshnyi, D.V.; Ryabchikova, E.I.; Pyshnaya, I.A. A Lipid-Coated Nanoconstruct Composed of Gold Nanoparticles Noncovalently Coated with Small Interfering RNA: Preparation, Purification and Characterization. Nanomaterials 2021, 11, 2775. https://doi.org/10.3390/nano11112775
Epanchintseva AV, Poletaeva JE, Dovydenko IS, Chelobanov BP, Pyshnyi DV, Ryabchikova EI, Pyshnaya IA. A Lipid-Coated Nanoconstruct Composed of Gold Nanoparticles Noncovalently Coated with Small Interfering RNA: Preparation, Purification and Characterization. Nanomaterials. 2021; 11(11):2775. https://doi.org/10.3390/nano11112775
Chicago/Turabian StyleEpanchintseva, Anna V., Julia E. Poletaeva, Ilya S. Dovydenko, Boris P. Chelobanov, Dmitrii V. Pyshnyi, Elena I. Ryabchikova, and Inna A. Pyshnaya. 2021. "A Lipid-Coated Nanoconstruct Composed of Gold Nanoparticles Noncovalently Coated with Small Interfering RNA: Preparation, Purification and Characterization" Nanomaterials 11, no. 11: 2775. https://doi.org/10.3390/nano11112775
APA StyleEpanchintseva, A. V., Poletaeva, J. E., Dovydenko, I. S., Chelobanov, B. P., Pyshnyi, D. V., Ryabchikova, E. I., & Pyshnaya, I. A. (2021). A Lipid-Coated Nanoconstruct Composed of Gold Nanoparticles Noncovalently Coated with Small Interfering RNA: Preparation, Purification and Characterization. Nanomaterials, 11(11), 2775. https://doi.org/10.3390/nano11112775