Effect of MWCNTs Functionalization on Thermal, Electrical, and Ammonia-Sensing Properties of MWCNTs/PMMA and PHB/MWCNTs/PMMA Thin Films Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Functionalization of MWCNTs
2.3. Fabrication of Multiwalled Carbon Nanotubes (MWCNTs)/Polymethylmethacrylate (PMMA) Nanocomposite
2.4. Fabrication of Poly(3-Hydroxybutyrate) (PHB)/Multiwalled Carbon Nanotubes (MWCNTs)/Poly(Methyl Methacrylate) (PMMA)
2.5. Gas-Sensing Set-Up
2.6. Material Characterization
3. Results and Discussion
3.1. FTIR Analysis
3.2. Morphological Characterization
3.3. Electrical Properties
Energy Storage Properties
3.4. Thermogravimetric Analysis (TGA)
3.5. Analysis of Ammonia Gas Sensing Properties
3.5.1. PMMA/MWCNTs Nanocomposites based Ammonia Gas Sensors
3.5.2. PMMA/MWCNTs(4 wt%)/PHB Nanocomposites based Ammonia Gas Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choudhary, V.; Gupta, A. Polymer/carbon nanotube nanocomposites. Carbon Nanotub.-Polym. Nanocomposites 2011, 2011, 65–90. [Google Scholar]
- Bezzon, V.D.; Montanheiro, T.L.; de Menezes, B.R.; Ribas, R.G.; Righetti, V.A.; Rodrigues, K.F.; Thim, G.P. Carbon nanostructure-based sensors: A brief review on recent advances. Adv. Mater. Sci. Eng. 2019, 2019, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, A.; Carlotti, S. The effect of hybridized carbon nanotubes, silica nanoparticles, and core-shell rubber on tensile, fracture mechanics and electrical properties of epoxy nanocomposites. Nanomaterials 2019, 9, 1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidd, J.; Bi, Y.; Hanigan, D.; Herckes, P.; Westerhoff, P. Yttrium residues in MWCNT enable assessment of MWCNT removal during wastewater treatment. Nanomaterials 2019, 9, 670. [Google Scholar] [CrossRef] [Green Version]
- Tamburri, E.; Orlanducci, S.; Terranova, M.; Valentini, F.; Palleschi, G.; Curulli, A.; Brunetti, F.; Passeri, D.; Alippi, A.; Rossi, M. Modulation of electrical properties in single-walled carbon nanotube/conducting polymer composites. Carbon 2005, 43, 1213–1221. [Google Scholar] [CrossRef]
- Gong, S.; Zhu, Z.; Meguid, S. Anisotropic electrical conductivity of polymer composites with aligned carbon nanotubes. Polymer 2015, 56, 498–506. [Google Scholar] [CrossRef]
- Sun, W.; Tomita, H.; Hasegawa, S.; Kitamura, Y.; Nakano, M.; Suehiro, J. An array of interdigitated parallel wire electrodes for preparing a large-scale nanocomposite film with aligned carbon nanotubes. J. Phys. D Appl. Phys. 2011, 44, 445303. [Google Scholar] [CrossRef]
- Xie, X.-L.; Mai, Y.-W.; Zhou, X.-P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. R Rep. 2005, 49, 89–112. [Google Scholar] [CrossRef]
- Tang, R.; Shi, Y.; Hou, Z.; Wei, L. Carbon nanotube-based chemiresistive sensors. Sensors 2017, 17, 882. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Jornet, J.M. Electromagnetic wireless nanosensor networks. Nano Commun. Netw. 2010, 1, 3–19. [Google Scholar] [CrossRef]
- Zaporotskova, I.V.; Boroznina, N.P.; Parkhomenko, Y.N.; Kozhitov, L.V. Carbon nanotubes: Sensor properties. A review. Mod. Electron. Mater. 2016, 2, 95–105. [Google Scholar] [CrossRef]
- Klein, H.; Mani, K.A.; Chauhan, V.; Yaakov, N.; Grzegorzewski, F.; Domb, A.J.; Mechrez, G. Covalent Immobilization of Polyaniline Doped with Ag+ or Cu2+ on Carbon Nanotubes for Ethylene Chemical Sensing. Nanomaterials 2021, 11, 1993. [Google Scholar] [CrossRef]
- Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon nanotube chemical sensors. Chem. Rev. 2018, 119, 599–663. [Google Scholar] [CrossRef] [PubMed]
- Özütok, F.; Er, I.K.; Acar, S.; Demiri, S. Enhancing the Co gas sensing properties of ZnO thin films with the decoration of MWCNTs. J. Mater. Sci. Mater. Electron. 2019, 30, 259–265. [Google Scholar] [CrossRef]
- Tserengombo, B.; Jeong, H.; Dolgor, E.; Delgado, A.; Kim, S. Effects of Functionalization in Different Conditions and Ball Milling on the Dispersion and Thermal and Electrical Conductivity of MWCNTs in Aqueous Solution. Nanomaterials 2021, 11, 1323. [Google Scholar] [CrossRef]
- Den Hoed, F.; Pucci, A.; Picchioni, F.; Raffa, P. Design of a pH-responsive conductive nanocomposite based on MWCNTs stabilized in water by amphiphilic block copolymers. Nanomaterials 2019, 9, 1410. [Google Scholar] [CrossRef] [Green Version]
- Lourie, O.; Wagner, H. Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension. Appl. Phys. Lett. 1998, 73, 3527–3529. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Winey, K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006, 39, 5194–5205. [Google Scholar] [CrossRef]
- Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401. [Google Scholar] [CrossRef]
- Bhattacharya, M. Polymer nanocomposites—A comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 2016, 9, 262. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, K.; Dixit, A.R. Carbon nanotube-and graphene-reinforced multiphase polymeric composites: Review on their properties and applications. J. Mater. Sci. 2020, 55, 2682–2724. [Google Scholar] [CrossRef]
- Vicentini, N.; Gatti, T.; Salerno, M.; Gomez, Y.S.H.; Bellon, M.; Gallio, S.; Marega, C.; Filippini, F.; Menna, E. Effect of different functionalized carbon nanostructures as fillers on the physical properties of biocompatible poly(l-lactic acid) composites. Mater. Chem. Phys. 2018, 214, 265–276. [Google Scholar] [CrossRef]
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 2019, 58, 50–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avella, M.; Martuscelli, E.; Pascucci, B.; Raimo, M.; Focher, B.; Marzetti, A. A new class of biodegradable materials: Poly-3-hydroxy-butyrate/steam exploded straw fiber composites. I. Thermal and impact behavior. J. Appl. Polym. Sci. 1993, 49, 2091–2103. [Google Scholar] [CrossRef]
- Macagnano, A.; Perri, V.; Zampetti, E.; Bearzotti, A.; De Cesare, F. Humidity effects on a novel eco-friendly chemosensor based on electrospun PANi/PHB nanofibres. Sens. Actuators B Chem. 2016, 232, 16–27. [Google Scholar] [CrossRef]
- Kim, K.J.; Doi, Y.; Abe, H. Effects of residual metal compounds and chain-end structure on thermal degradation of poly(3-hydroxybutyric acid). Polym. Degrad. Stab. 2006, 91, 769–777. [Google Scholar] [CrossRef]
- Pizzoli, M.; Scandola, M.; Ceccorulli, G. Crystallization and melting of isotactic poly(3-hydroxy butyrate) in the presence of a low molecular weight diluent. Macromolecules 2002, 35, 3937–3941. [Google Scholar] [CrossRef]
- Pachekoski, W.M.; Agnelli, J.A.M.; Belem, L.P. Thermal, mechanical and morphological properties of poly(hydroxybutyrate) and polypropylene blends after processing. Mater. Res. 2009, 12, 159–164. [Google Scholar] [CrossRef]
- Lai, S.M.; Sun, W.W.; Don, T.M. Preparation and characterization of biodegradable polymer blends from poly(3-hydroxybutyrate)/poly(vinyl acetate)-modified corn starch. Polym. Eng. Sci. 2015, 55, 1321–1329. [Google Scholar] [CrossRef]
- Mousavioun, P.; Doherty, W.O.; George, G. Thermal stability and miscibility of poly(hydroxybutyrate) and soda lignin blends. Ind. Crops Prod. 2010, 32, 656–661. [Google Scholar] [CrossRef]
- Soleymani Eil Bakhtiari, S.; Bakhsheshi-Rad, H.R.; Karbasi, S.; Tavakoli, M.; Razzaghi, M.; Ismail, A.F.; RamaKrishna, S.; Berto, F. Polymethyl methacrylate-based bone cements containing carbon nanotubes and graphene oxide: An overview of physical, mechanical, and biological properties. Polymers 2020, 12, 1469. [Google Scholar] [CrossRef]
- Mishra, S.K.; Tripathi, S.N.; Choudhary, V.; Gupta, B.D. SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens. Actuators B Chem. 2014, 199, 190–200. [Google Scholar] [CrossRef]
- Abou-Aiad, T. Morphology and dielectric properties of polyhydroxybutyrate (PHB)/poly(methylmethacrylate)(PMMA) blends with some antimicrobial applications. Polym.-Plast. Technol. Eng. 2007, 46, 435–439. [Google Scholar] [CrossRef]
- He, Y.; Shuai, X.; Kasuya, K.-I.; Doi, Y.; Inoue, Y. Enzymatic degradation of atactic poly(R,S-3-hydroxybutyrate) induced by amorphous polymers and the enzymatic degradation temperature window of an amorphous polymer system. Biomacromolecules 2001, 2, 1045–1051. [Google Scholar] [CrossRef]
- Liao, H.-T.; Wu, C.-S. Poly(3-hydroxybutyrate)/multi-walled carbon nanotubes nanocomposites: Preparation and characterizations. Des. Monomers Polym. 2013, 16, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Huh, M.; Jung, M.H.; Park, Y.S.; Kim, B.-J.; Kang, M.S.; Holden, P.J.; Yun, S.I. Effect of carbon nanotube functionalization on the structure and properties of poly(3-hydroxybutyrate)/MWCNTs biocomposites. Macromol. Res. 2014, 22, 765–772. [Google Scholar] [CrossRef]
- Lim, S.T.; Hyun, Y.H.; Lee, C.H.; Choi, H.J. Preparation and characterization of microbial biodegradable poly(3-hydroxybutyrate)/organoclay nanocomposite. J. Mater. Sci. Lett. 2003, 22, 299–302. [Google Scholar] [CrossRef]
- Sanchez-Garcia, M.; Gimenez, E.; Lagaron, J. Morphology and barrier properties of nanobiocomposites of poly(3-hydroxybutyrate) and layered silicates. J. Appl. Polym. Sci. 2008, 108, 2787–2801. [Google Scholar] [CrossRef]
- Bordes, P.; Pollet, E.; Bourbigot, S.; Averous, L. Structure and Properties of PHA/Clay Nano-Biocomposites Prepared by Melt Intercalation. Macromol. Chem. Phys. 2008, 209, 1473–1484. [Google Scholar] [CrossRef]
- Eren, O.; Ucar, N.; Onen, A.; Karacan, I.; Kızıldag, N.; Demirsoy, N.; Vurur, O.F.; Borazan, I. Effect of differently functionalized carbon nanotubes on the properties of composite nanofibres. Indian J. Fibre Text. 2016, 41, 138–144. [Google Scholar]
- Negahdary, M.; Behjati-Ardakani, M.; Heli, H. An electrochemical troponin T aptasensor based on the use of a macroporous gold nanostructure. Microchim. Acta 2019, 186, 377. [Google Scholar] [CrossRef]
- Yu, H.-Y.; Qin, Z.-Y.; Sun, B.; Yang, X.-G.; Yao, J.-M. Reinforcement of transparent poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by incorporation of functionalized carbon nanotubes as a novel bionanocomposite for food packaging. Compos. Sci. Technol. 2014, 94, 96–104. [Google Scholar] [CrossRef]
- Lotti, N.; Pizzoli, M.; Ceccorulli, G.; Scandola, M. Binary blends of microbial poly(3-hydroxybutyrate) with polymethacrylates. Polymer 1993, 34, 4935–4940. [Google Scholar] [CrossRef]
- Peng, H.; Alemany, L.B.; Margrave, J.L.; Khabashesku, V.N. Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J. Am. Chem. Soc. 2003, 125, 15174–15182. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Wu, K.; Yang, Y.; Liu, L.; Gan, T.; Xie, X. Synthesis and electrochemical probing of water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes. Nanotechnology 2008, 19, 085716. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yang, Z.; Hu, Y.; Li, J.; Fan, X. Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl. Surf. Sci. 2013, 276, 476–481. [Google Scholar] [CrossRef]
- Singh, B.P.; Choudhary, V.; Teotia, S.; Gupta, T.K.; Nand, V.; Singh, S.R.D.; Mathur, R.B. Solvent free, efficient, industrially viable, fast dispersion process based amine modified MWCNT reinforced epoxy composites of superior mechanical properties. Adv. Mater. Lett. 2015, 6, 104–113. [Google Scholar] [CrossRef]
- Schreiber, K.C. Infrared spectra of sulfones and related compounds. Anal. Chem. 1949, 21, 1168–1172. [Google Scholar] [CrossRef]
- Amirian, M.; Chakoli, A.N.; Cai, W.; Sui, J. Effect of functionalized multiwalled carbon nanotubes on thermal stability of poly (L-LACTIDE) biodegradable polymer. Sci. Iran. 2013, 20, 1023–1027. [Google Scholar]
- Mathur, R.; Pande, S.; Singh, B. Properties of PMMA/carbon nanotubes nanocomposites. Polym. Nanotub. Nanocomposites Synth. Prop. Appl. 2010, 11, 177. [Google Scholar]
- Thakre, P.R.; Bisrat, Y.; Lagoudas, D.C. Electrical and mechanical properties of carbon nanotube-epoxy nanocomposites. J. Appl. Polym. Sci. 2010, 116, 191–202. [Google Scholar] [CrossRef]
- Weber, M.; Kamal, M.R. Estimation of the volume resistivity of electrically conductive composites. Polym. Compos. 1997, 18, 711–725. [Google Scholar] [CrossRef]
- Sandler, J.; Shaffer, M.; Prasse, T.; Bauhofer, W.; Schulte, K.; Windle, A. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999, 40, 5967–5971. [Google Scholar] [CrossRef]
- Song, S.; Xia, S.; Jiang, S.; Lv, X.; Sun, S.; Li, Q. A facile strategy to enhance the dielectric and mechanical properties of MWCNTs/PVDF composites with the aid of MMA-co-GMA copolymer. Materials 2018, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Menon, A.V.; Madras, G.; Bose, S. Phase specific dispersion of functional nanoparticles in soft nanocomposites resulting in enhanced electromagnetic screening ability dominated by absorption. Phys. Chem. Chem. Phys. 2017, 19, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Pawar, S.; Shinde, K.; Bhosale, A.; Pawar, S. Studies on electric and dielectric properties of porous Sm0.5Sr0.5CoO3−δ. J. Mater. 2013, 2013, 987328. [Google Scholar] [CrossRef]
- Zaki, H. AC conductivity and frequency dependence of the dielectric properties for copper doped magnetite. Phys. B Condens. Matter 2005, 363, 232–244. [Google Scholar] [CrossRef]
- Lazarenko, A.; Vovchenko, L.; Prylutskyy, Y.; Matzuy, L.; Ritter, U.; Scharff, P. Mechanism of thermal and electrical conductivity in polymer-nanocarbon composites. Mater. Werkst. Entwickl. Fert. Prüfung Eig. Anwend. Tech. Werkst. 2009, 40, 268–272. [Google Scholar] [CrossRef]
- Nayak, S.; Sahoo, B.; Chaki, T.K.; Khastgir, D. Development of polyurethane–titania nanocomposites as dielectric and piezoelectric material. RSC Adv. 2013, 3, 2620–2631. [Google Scholar] [CrossRef]
- Alhusaiki-Alghamdi, H. Thermal and electrical properties of graphene incorporated into polyvinylidene fluoride/polymethyl methacrylate nanocomposites. Polym. Compos. 2017, 38, E246–E253. [Google Scholar] [CrossRef]
- Chu, L.; Xue, Q.; Sun, J.; Xia, F.; Xing, W.; Xia, D.; Dong, M. Porous graphene sandwich/poly (vinylidene fluoride) composites with high dielectric properties. Compos. Sci. Technol. 2013, 86, 70–75. [Google Scholar] [CrossRef]
- Garcia, O.P.; De Albuquerque, M.C.C.; Aquino, K.A.D.S.; Araujo, P.; Araujo, E. Use of lead (II) sulfide nanoparticles as stabilizer for PMMA exposed to gamma irradiation. Mater. Res. 2015, 18, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Huskić, M.; Žigon, M. PMMA/MMT nanocomposites prepared by one-step in situ intercalative solution polymerization. Eur. Polym. J. 2007, 43, 4891–4897. [Google Scholar] [CrossRef]
- Meneghetti, P.; Qutubuddin, S. Synthesis of poly (methyl methacrylate) nanocomposites via emulsion polymerization using a zwitterionic surfactant. Langmuir 2004, 20, 3424–3430. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, T.; Inaba, A.; Brown, J.E.; Hatada, K.; Kitayama, T.; Masuda, E. Effects of weak linkages on the thermal and oxidative degradation of poly (methyl methacrylates). Macromolecules 1986, 19, 2160–2168. [Google Scholar] [CrossRef]
- Demir, M.M.; Memesa, M.; Castignolles, P.; Wegner, G. PMMA/zinc oxide nanocomposites prepared by in-situ bulk polymerization. Macromol. Rapid Commun. 2006, 27, 763–770. [Google Scholar] [CrossRef] [Green Version]
- Mathur, R.; Pande, S.; Singh, B.; Dhami, T. Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polym. Compos. 2008, 29, 717–727. [Google Scholar] [CrossRef]
- Ishaq, M.; Saeed, K.; Shakirullah, M.; Ahmad, I.; Rehman, T. Effect of Coal Ash on the Morphological, Thermal and Mechanical Properties of Poly(methyl methacrylate). J. Chil. Chem. Soc. 2012, 57, 992–994. [Google Scholar] [CrossRef] [Green Version]
- Kandare, E.; Deng, H.; Wang, D.; Hossenlopp, J.M. Thermal stability and degradation kinetics of poly(methyl methacrylate)/layered copper hydroxy methacrylate composites. Polym. Adv. Technol. 2006, 17, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Advincula, R.; University of Houston System. Polymer Nanocomposite Precursors with Carbon Nanotubes And/or Graphene and Related Thin Films and Patterning. U.S. Patent 8,932,671, 13 January 2015. [Google Scholar]
- Madhukar, K.; Sainath, A.V.S.; Bikshamaiah, N.; Srinivas, Y.; Babu, N.M.; Ashok, B.; Kumar, D.S.; Rao, B.S. Thermal properties of single walled carbon nanotubes composites of polyamide 6/poly(methyl methacrylate) blend system. J. Therm. Anal. Calorim. 2014, 115, 345–354. [Google Scholar] [CrossRef]
- Zhijiang, C.; Cong, Z.; Ping, X.; Jie, G.; Kongyin, Z. Calcium alginate-coated electrospun polyhydroxybutyrate/carbon nanotubes composite nanofibers as nanofiltration membrane for dye removal. J. Mater. Sci. 2018, 53, 14801–14820. [Google Scholar] [CrossRef]
- Ndiaye, A.L.; Varenne, C.; Bonnet, P.; Petit, E.; Spinelle, L.; Brunet, J.; Pauly, A.; Lauron, B. Elaboration of single wall carbon nanotubes-based gas sensors: Evaluating the bundling effect on the sensor performance. Thin Solid Film 2012, 520, 4465–4469. [Google Scholar] [CrossRef]
- Abraham, J.K.; Philip, B.; Witchurch, A.; Varadan, V.K.; Reddy, C.C. A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor. Smart Mater. Struct. 2004, 13, 1045. [Google Scholar] [CrossRef]
- Freeman, D.D.; Choi, K.; Yu, C. N-type thermoelectric performance of functionalized carbon nanotube-filled polymer composites. PLoS ONE 2012, 7, e47822. [Google Scholar] [CrossRef] [PubMed]
- Aulenta, F.; Fuoco, M.; Canosa, A.; Petrangeli Papini, M.; Majone, M. Use of poly-β-hydroxy-butyrate as a slow-release electron donor for the microbial reductive dechlorination of TCE. Water Sci. Technol. 2008, 57, 921–925. [Google Scholar] [CrossRef] [PubMed]
- Vaseashta, A.; Khudaverdyan, S. Advanced Sensors for Safety and Security; Springer: Berlin, Germany, 2013. [Google Scholar]
- Assen, A.H.; Yassine, O.; Shekhah, O.; Eddaoudi, M.; Salama, K.N. MOFs for the sensitive detection of ammonia: Deployment of fcu-MOF thin films as effective chemical capacitive sensors. ACS Sens. 2017, 2, 1294–1301. [Google Scholar] [CrossRef]
- Garg, N.; Kumar, M.; Kumari, N.; Deep, A.; Sharma, A.L. Chemoresistive Room-Temperature Sensing of Ammonia Using Zeolite Imidazole Framework and Reduced Graphene Oxide (ZIF-67/rGO) Composite. ACS Omega 2020, 5, 27492–27501. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Pauly, A.; Brunet, J.; Varenne, C.; Ndiaye, A.L. MWCNTs/PMMA/PS composites functionalized PANI: Electrical characterization and sensing performance for ammonia detection in a humid environment. Sens. Actuators B Chem. 2020, 320, 128364. [Google Scholar]
- Maity, D.; Kumar, R.T.R. Polyaniline anchored MWCNTs on fabric for high performance wearable ammonia sensor. ACS Sens. 2018, 3, 1822–1830. [Google Scholar] [CrossRef]
- Eising, M.; Cava, C.E.; Salvatierra, R.V.; Zarbin, A.J.G.; Roman, L.S. Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sens. Actuators B Chem. 2017, 245, 25–33. [Google Scholar] [CrossRef]
- Ahmad, N.; Kausar, A.; Muhammad, B. An investigation on 4-aminobenzoic acid modified polyvinyl chloride/graphene oxide and PVC/graphene oxide based nanocomposite membranes. J. Plast. Film Sheeting 2016, 32, 419–448. [Google Scholar] [CrossRef]
Samples | T5/°C | T10/°C | T50/°C | Tmax/°C | Tend/°C | Residual Material at 400 °C |
---|---|---|---|---|---|---|
PMMA | 154 | 170 | 317 | 368 | 396 | 1.07% |
PHB | - | - | - | - | 314 | 0% |
p-MWCNTs(4 wt%)/PMMA | 156.8 | 180.4 | 339.4 | 375 | 395 | 4.4% |
a-MWCNTs(4 wt%)/PMMA | 128 | 163.5 | 375.7 | 383 | 411 | 15% |
f-MWCNTs(4 wt%)/PMMA | 123 | 150.31 | 378.2 | 385.4 | 414 | 16% |
g-MWCNs(4 wt%)/PMMA | 123 | 148.4 | 378 | 385 | 414 | 17% |
PHB/p-MWCNTs(4 wt%)/PMMA | 123.5 | 271.3 | 376 | 388.6 | 425 | 21% |
PHB/a-MWCNTs(4 wt%)/PMMA | 113 | 264 | 339.4 | 389 | 425 | 22% |
PHB/f-MWCNTs(4 wt%)/PMMA | 281 | 296 | 382.5 | 393 | 424 | 23% |
PHB/g-MWCNs(4 wt%)/PMMA | 149 | 287 | 379 | 390 | 424 | 21% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qazi, R.A.; Khattak, R.; Ali Shah, L.; Ullah, R.; Khan, M.S.; Sadiq, M.; Hessien, M.M.; El-Bahy, Z.M. Effect of MWCNTs Functionalization on Thermal, Electrical, and Ammonia-Sensing Properties of MWCNTs/PMMA and PHB/MWCNTs/PMMA Thin Films Nanocomposites. Nanomaterials 2021, 11, 2625. https://doi.org/10.3390/nano11102625
Qazi RA, Khattak R, Ali Shah L, Ullah R, Khan MS, Sadiq M, Hessien MM, El-Bahy ZM. Effect of MWCNTs Functionalization on Thermal, Electrical, and Ammonia-Sensing Properties of MWCNTs/PMMA and PHB/MWCNTs/PMMA Thin Films Nanocomposites. Nanomaterials. 2021; 11(10):2625. https://doi.org/10.3390/nano11102625
Chicago/Turabian StyleQazi, Raina Aman, Rozina Khattak, Luqman Ali Shah, Rizwan Ullah, Muhammad Sufaid Khan, Muhammad Sadiq, Mahmoud M. Hessien, and Zeinhom M. El-Bahy. 2021. "Effect of MWCNTs Functionalization on Thermal, Electrical, and Ammonia-Sensing Properties of MWCNTs/PMMA and PHB/MWCNTs/PMMA Thin Films Nanocomposites" Nanomaterials 11, no. 10: 2625. https://doi.org/10.3390/nano11102625
APA StyleQazi, R. A., Khattak, R., Ali Shah, L., Ullah, R., Khan, M. S., Sadiq, M., Hessien, M. M., & El-Bahy, Z. M. (2021). Effect of MWCNTs Functionalization on Thermal, Electrical, and Ammonia-Sensing Properties of MWCNTs/PMMA and PHB/MWCNTs/PMMA Thin Films Nanocomposites. Nanomaterials, 11(10), 2625. https://doi.org/10.3390/nano11102625