SBA-Pr-Is-TAP Functionalized Nanostructured Silica as a Highly Selective Fluorescent Chemosensor for Fe3+ and Cr2O72− Ions in Aqueous Media
Abstract
:1. Introduction
2. Results and Discussion
3. Fluorescence Response of SBA-Pr-Is-TAP to Fe3+
4. Conclusions
5. Experimental Section
5.1. Synthesis of SBA-15, SBA-Pr-Cl, and SBA-Pr-Is
5.2. Synthesis of SBA-Pr-Is-TAP
6. Calculation of Detection Limit (DL)
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, D. Ordered mesoporous silica materials with complicated structures. Curr. Opin. Chem. Eng. 2012, 1, 129–137. [Google Scholar] [CrossRef]
- Ying, J.Y.; Mehnert, C.P.; Wong, M.S. Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Ed. 1999, 38, 56–77. [Google Scholar] [CrossRef]
- Schüth, F. Non-siliceous mesostructured and mesoporous materials. Chem. Mater. 2001, 13, 3184–3195. [Google Scholar] [CrossRef]
- Wan, Y.; Zhao, D. On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 2007, 107, 2821–2860. [Google Scholar] [CrossRef]
- Zhao, D.; Sun, J.; Li, Q.; Stucky, G.D. Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 2000, 12, 275–279. [Google Scholar] [CrossRef]
- Klimova, T.; Esquivel, A.; Reyes, J.; Rubio, M.; Bokhimi, X.; Aracil, J. Factorial design for the evaluation of the influence of synthesis parameters upon the textural and structural properties of SBA-15 ordered materials. Microporous Mesoporous Mater. 2006, 93, 331–343. [Google Scholar] [CrossRef]
- Boahene, P.E.; Soni, K.K.; Dalai, A.K.; Adjaye, J. Application of different pore diameter SBA-15 supports for heavy gas oil hydrotreatment using FeW catalyst. Appl. Catal. A General. 2011, 402, 31–40. [Google Scholar] [CrossRef]
- Lei, Z.; Gao, L.; Shui, H.; Chen, W.; Wang, Z.; Ren, S. Hydrotreatment of heavy oil from a direct coal liquefaction process on sulfided Ni–W/SBA-15 catalysts. Fuel Process. Technol. 2011, 92, 2055–2060. [Google Scholar] [CrossRef]
- Mouli, K.C.; Soni, K.; Dalai, A.; Adjaye, J. Effect of pore diameter of Ni–Mo/Al-SBA-15 catalysts on the hydrotreating of heavy gas oil. Appl. Catal. A General. 2011, 404, 21–29. [Google Scholar] [CrossRef]
- Mohajer, F.; Mohammadi Ziarani, G.; Badiei, A. The synthesis of [email protected] Pd and its application as a highly dynamic, eco-friendly heterogeneous catalyst for Suzuki–Miyaura cross-coupling reaction. Res. Chem. Intermed. 2020, 46, 4909–4922. [Google Scholar] [CrossRef]
- Moradi, R.; Mohammadi Ziarani, G.; Badiei, A.; Mohajer, F. Synthesis and characterization of mesoporous organosilica supported palladium (SBA-Pr-NCQ-Pd) as an efficient nanocatalyst in the Mizoroki–Heck coupling reaction. Appl. Organomet. Chem. 2020, 34, e5916. [Google Scholar] [CrossRef]
- Mohajer, F.; Mohammadi Ziarani, G.; Anafch, M.; Badiei, A. Experimental and Computational Study of Acridine-1,8-Dione Derivative in Etoh as a Fluorescent Sensor for Fe(III). In Proceedings of the International Conference on Sustainable Energy and Energy Calculations, Online Live Conference, 4–5 September 2020; Available online: http://www.greenconferences.org/program.html (accessed on 14 September 2021).
- Stevens, W.J.; Lebeau, K.; Mertens, M.; Van Tendeloo, G.; Cool, P.; Vansant, E.F. Investigation of the morphology of the mesoporous SBA-16 and SBA-15 materials. J. Phys. Chem. B 2006, 110, 9183–9187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yan, Y.; Yang, H.; Meng, Y.; Yu, C.; Tu, B.; Zhao, D. Understanding effect of wall structure on the hydrothermal stability of mesostructured silica SBA-15. J. Phys. Chem. B 2005, 109, 8723–8732. [Google Scholar] [CrossRef] [PubMed]
- Rahmat, N.; Abdullah, A.Z.; Mohamed, A.R. Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: A critical review. Renew. Sustain. Energy Rev. 2010, 14, 987–1000. [Google Scholar] [CrossRef]
- Zhao, L.; Sui, D.; Wang, Y. Fluorescence chemosensors based on functionalized SBA-15 for detection of Pb2+ in aqueous media. RSC Adv. 2015, 5, 16611–16617. [Google Scholar] [CrossRef]
- Hosseini, M.; Gupta, V.K.; Ganjali, M.R.; Rafiei-Sarmazdeh, Z.; Faridbod, F.; Goldooz, H.; Badiei, A.R.; Norouzi, P. A novel dichromate-sensitive fluorescent nano-chemosensor using new functionalized SBA-15. Anal. Chim. Acta. 2012, 715, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Lashgari, N.; Mohammadi Ziarani, G. Synthesis of heterocyclic compounds based on isatin through 1,3-dipolar cycloaddition reactions. Ark. Online J. Org. Chem. 2012. [Google Scholar] [CrossRef]
- Mohammadi Ziarani, G.; Moradi, R.; Lashgari, N. Asymmetric synthesis of chiral 3,3-disubstituted oxindoles using isatin as starting material. Tetrahedron Asymmetry 2015, 26, 517–541. [Google Scholar] [CrossRef]
- Mohammadi Ziarani, G.; Moradi, R.; Lashgari, N. Synthesis of spiro-fused heterocyclic scaffolds through multicomponent reactions involving isatin. Ark. Online J. Org. Chem. 2016. [Google Scholar] [CrossRef][Green Version]
- Andrews, N.C. Disorders of iron metabolism. N. Engl. J. Med. 1999, 341, 1986–1995. [Google Scholar] [CrossRef]
- Hyman, L.M.; Franz, K.J. Probing oxidative stress: Small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols. Coord. Chem. Rev. 2012, 256, 2333–2356. [Google Scholar] [CrossRef][Green Version]
- Zhao, Q.; Li, F.; Huang, C. Phosphorescent chemosensors based on heavy-metal complexes. Chem. Soc. Rev. 2010, 39, 3007–3030. [Google Scholar] [CrossRef]
- O’Connor, T.P. Mussel Watch results from 1986 to 1996. Mar. Pollut. Bull. 1998, 37, 14–19. [Google Scholar] [CrossRef]
- Mohammadi Ziarani, G.; Akhgar, M.; Mohajer, F.; Badiei, A. SBA-Pr-IS-MN synthesis and its application as Ag+ optical sensor in aqueous media. Res. Chem. Intermed. 2021, 47, 2845–2855. [Google Scholar] [CrossRef]
- Mohammadi Ziarani, G.; Ebrahimi, Z.; Mohajer, F.; Badiei, A. A Fluorescent Chemosensor Based on Functionalized Nanoporous Silica (SBA-15 SBA-IC-MN) for Detection of Hg2+ in Aqueous Media. Arab. J. Sci. Eng. 2021, 1–10. [Google Scholar] [CrossRef]
- Mohajer, F.; Mohammadi Ziarani, G.; Badiei, A.; Ghasemi, J.B. SBA-Pr-Imine-Furan as an environmental adsorbent of Pd (II) in aqueous solutions. Environ. Chall. 2021, 3, 100032. [Google Scholar] [CrossRef]
- Lashgari, N.; Badiei, A.; Mohammadi Ziarani, G. A novel functionalized nanoporous SBA-15 as a selective fluorescent sensor for the detection of multianalytes (Fe3+ and Cr2O72−) in water. J. Phys. Chem Solids 2017, 103, 238–248. [Google Scholar] [CrossRef]
- Karimi, M.; Badieia, A.; Mohammadi Ziarani, G. Fluorescence-enhanced optical sensor for detection of Al3+ in water based on functionalised nanoporous silica type SBA-15. Chem. Pap. 2016, 70, 1431–1438. [Google Scholar] [CrossRef]
- Shiravand, G.; Badiei, A.; Mohammadi Ziarani, G. Carboxyl-rich g-C3N4 nanoparticles: Synthesis, characterization and their application for selective fluorescence sensing of Hg2+ and Fe3+ in aqueous media. Sens. Act. B Chem. 2017, 242, 244–252. [Google Scholar] [CrossRef]
- Afshani, J.; Badiei, A.; Lashgari, N.; Mohammadi Ziarani, G. A simple nanoporous silica-based dual mode optical sensor for detection of multiple analytes (Fe3+, Al3+ and CN−) in water mimicking XOR logic gate. RSC Adv. 2016, 6, 5957–5964. [Google Scholar] [CrossRef]
- Yadavi, M.; Badiei, A.; Mohammadi Ziarani, G. A novel Fe3+ ions chemosensor by covalent coupling fluorene onto the mono, di-and tri-ammonium functionalized nanoporous silica type SBA-15. Appl. Surf. Sci. 2013, 279, 121–128. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef][Green Version]
- Karimi, M.; Badiei, A.; Mohammadi Ziarani, G. A click-derived dual organic-inorganic hybrid optical sensor based on SBA-15 for selective recognition of Zn2+ and CN− in water. Inorg. Chim. Acta 2016, 450, 346–352. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 5, 751–767. [Google Scholar] [CrossRef]
- Badiei, A.; Yadavi, M.; Karimi, M. A novel diethyl 2-(9-fluorenyl) malonate functionlized SBA-15 for selective optical sensing of Iron. J. Nanostruct. 2019, 1, 146–153. [Google Scholar] [CrossRef]
- Minoru, S.; Saito, K.; Ogawa, M. Host–guest chemistry of mesoporous silicas: Precise design of location, density and orientation of molecular guests in mesopores. Sci. Technol. Adv. Mater. 2015. [Google Scholar] [CrossRef][Green Version]
- Zhang, Y.; Xiao, Y.; Zhang, Y.; Wang, Y. Carbon quantum dots as fluorescence turn-off-on probe for detecting Fe3+ and ascorbic acid. J. Nanosci. Nanotechnol. 2020, 1, 3340–3347. [Google Scholar] [CrossRef] [PubMed]
- Salahshoor, Z.; Ghasemi, J.B.; Shahbazi, A.; Badiei, A. Highly selective silica-based fluorescent nanosensor for ferric ion (Fe3+) detection in aqueous media. Spectrochim. Acta A Mol. 2019, 5, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Kordi, Z.K.; Mohammadi Ziarani, G.; Badiei, A.; Lashgari, N. Synthesis of 1, 4-Dihydropyridine as a Fluorescent and Colorimetric Chemosensor for Detection of Fe3+ Ion. Sensor Lett. 2019, 17, 747–754. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, L.; Zhuo, J.; Xu, B.; Li, X.; Zhang, J.; Zhang, Z.; Chi, H.; Dong, Y.; Lu, G. A pyrene-based dual chemosensor for colorimetric detection of Cu2+ and fluorescent detection of Fe3+. Tet. Lett. 2017, 58, 3951–3956. [Google Scholar] [CrossRef]
- Ravichandiran, P.; Prabakaran, D.S.; Maroli, N.; Kim, A.R.; Park, B.H.; Han, M.K.; Ramesh, T.; Ponpandian, S.; Yoo, D.J. Mitochondria-targeted acridine-based dual-channel fluorescence chemosensor for detection of Sn4+ and Cr2O72− ions in water and its application in discriminative detection of cancer cells. J. Hazard. Mater. 2021, 16, 126409. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Y.H.; Xiao, Q.Q.; Cui, G.H. Three luminescent Cd (II) coordination polymers containing aromatic dicarboxylate and flexible bis (benzimidazole) ligands as highly sensitive and selective sensors for detection of Cr2O72– oxoanions in water. Polyhedron 2020, 187, 114648. [Google Scholar] [CrossRef]
- Yao, Z.Q.; Li, G.Y.; Xu, J.; Hu, T.L.; Bu, X.H. A Water-Stable Luminescent ZnII Metal-Organic Framework as Chemosensor for High-Efficiency Detection of Cr VI-Anions (Cr2O72− and CrO42−) in Aqueous Solution. Chem. Eur. J. 2018, 24, 3192–3198. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Tu, Z.; Liu, Y.; Tai, Q.; Guo, Z.; Liu, S. Dual-emission carbon dots-stabilized copper nanoclusters for ratiometric and visual detection of Cr2O72− ions and Cd2+ ions. J. Hazardous Mater. 2020, 386, 121654. [Google Scholar] [CrossRef] [PubMed]
- Shiravand, G.; Badiei, A.; Goldooz, H.; Karimi, M.; Mohammadi Ziarani, G.; Faridbod, F.; Ganjali, M.R. A Fluorescent g-C3N4 nanosensor for detection of dichromate ions. Curr. Anal. Chem. 2020, 16, 593–601. [Google Scholar] [CrossRef]
- Rong, M.; Lin, L.; Song, X.; Wang, Y.; Zhong, Y.; Yan, J.; Feng, Y.; Zeng, X.; Chen, X. Fluorescence Sensing of Chromium (VI) and Ascorbic Acid Using Graphitic Carbon Nitride Nanosheets as a Fluorescent “Switch”. Biosens. Bioelectron. 2015, 68, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Xie, Z.; Qu, D.; Li, D.; Du, P.; Jing, X.; Sun, Z. On-Off-On Fluorescent Carbon Dot Nanosensor for Recognition of Chromium(VI) and Ascorbic Acid Based on the Inner Filter Effect. ACS Appl. Mater. Interfaces. 2013, 5, 13242–13247. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Badiei, A.; Mohammadi Ziarani, G. SBA-15 functionalized with naphthalene derivative for selective optical sensing of Cr2O72− in water. Anal. Sci. 2016, 32, 511–516. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chen, W.; Cao, F.; Zheng, W.; Tian, Y.; Xianyu, Y.; Xu, P.; Zhang, W.; Wang, Z.; Deng, K.; Jiang, X. Detection of the nanomolar level of total Cr[(iii) and (vi)] by functionalized gold nanoparticles and a smartphone with the assistance of theoretical calculation models. Nanoscale 2015, 7, 2042–2049. [Google Scholar] [CrossRef]
Sample | SBET (m2·g−1) | V (cm3·g−1) | DBJH (nm) |
---|---|---|---|
SBA-15 | 672 | 0.69 | 4.6 |
SBA-Pr-Is | 550 | 0.64 | 4.1 |
SBA-Pr-Is-TAP | 250 | 0.37 | 0.8 |
Compound | Ion | DL |
---|---|---|
Carbon quantum dot [39] | Fe3+ | 2.78 × 10−6 M |
SBA-15-DNPH [40] | Fe3+ | 29 × 10−6 M |
1,4-Dihydropyridine Colorimetric [41] | Fe3+ | 8.3 × 10−6 M |
A pyrene-based dual chemosensor [42] | Fe3+ | 2.0 × 10−6 M |
Compound | Ion | DL |
---|---|---|
Mitochondria-targeted acridine-based [43] | Cr2O72− | 1.6 × 10−7 M |
{[Cd(TCPA)(L)]·H2O}n [44] | Cr2O72− | 4 × 10−7 M |
ZnII-MOF [45] | Cr2O72− | 3 × 10−7 M |
[email protected] NCs [46] | Cr2O72− | 9 × 10−7 M |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziarani, G.M.; Akhgar, M.; Mohajer, F.; Badiei, A.; Luque, R. SBA-Pr-Is-TAP Functionalized Nanostructured Silica as a Highly Selective Fluorescent Chemosensor for Fe3+ and Cr2O72− Ions in Aqueous Media. Nanomaterials 2021, 11, 2533. https://doi.org/10.3390/nano11102533
Ziarani GM, Akhgar M, Mohajer F, Badiei A, Luque R. SBA-Pr-Is-TAP Functionalized Nanostructured Silica as a Highly Selective Fluorescent Chemosensor for Fe3+ and Cr2O72− Ions in Aqueous Media. Nanomaterials. 2021; 11(10):2533. https://doi.org/10.3390/nano11102533
Chicago/Turabian StyleZiarani, Ghodsi Mohammadi, Maryam Akhgar, Fatemeh Mohajer, Alireza Badiei, and Rafael Luque. 2021. "SBA-Pr-Is-TAP Functionalized Nanostructured Silica as a Highly Selective Fluorescent Chemosensor for Fe3+ and Cr2O72− Ions in Aqueous Media" Nanomaterials 11, no. 10: 2533. https://doi.org/10.3390/nano11102533