Helium Isotopes Quantum Sieving through Graphtriyne Membranes
Abstract
:1. Introduction
2. Theoretical Approach
2.1. The Interaction Potential
2.2. Wave Packet Propagation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Details of Wave Packet Calculations
x | y | z | |
---|---|---|---|
Box (Å) | (−10.41,10.41) | (−6.010,6.010) | ( −30.0, 55.0) |
Number of points | 128 | 128 | 1024 |
Gaussian Parameters | Time Propagation | Wave Packet Splitting | Flux Surface | |||||
---|---|---|---|---|---|---|---|---|
(Å) | (Å) | () | () | () | (Å) | (Å) | (Å) | |
0.014 | 40 | [3.3–15.0] | 0.083 | [15.0–18.75] | 0.326 | [45–55] | [0.005–0.05] | [−2.5–−1.5] |
References
- Tan, C.; Cao, X.; Wu, X.J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.H.; et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev. 2017, 117, 6225–6331. [Google Scholar] [CrossRef]
- Khan, K.; Tareen, A.K.; Aslam, M.; Wang, R.; Zhang, Y.; Mahmood, A.; Ouyang, Z.; Zhang, H.; Guo, Z. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 2020, 8, 387–440. [Google Scholar] [CrossRef]
- Yeo, J.; Jung, G.S.; Martín-Martínez, F.J.; Beem, J.; Qin, Z.; Buehler, M.J. Multiscale design of graphyne-based materials for high-performance separation membranes. Adv. Mater. 2019, 1805665, 1–24. [Google Scholar] [CrossRef]
- Jia, Z.; Li, Y.; Zuo, Z.; Liu, H.; Huang, C.; Li, Y. Synthesis and properties of 2D carbon-graphdiyne. Acc. Chem. Res. 2017, 50, 2470–2478. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, R.; Fukui, N.; Maeda, H.; Matsuoka, R.; Toyoda, R.; Nishihara, H. The Accelerating World of Graphdiynes. Adv. Mater. 2019, 31, 1804211. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Wei, Z.; Li, J. Graphyne and Its Family: Recent Theoretical Advances. ACS Appl. Mater. Interfaces 2019, 11, 2692–2706. [Google Scholar] [CrossRef]
- Huang, C.; Li, Y.; Wang, N.; Xue, W.; Zuo, Z.; Liu, H.; Li, Y. Progress in Research into 2D Graphdiyne-Based Materials. Chem. Rev. 2018, 118, 7744–7803. [Google Scholar] [CrossRef]
- Baughman, R.H.; Eckhardt, H.; Kertesz, M. Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms. J. Chem. Phys. 1987, 87, 6687–6699. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, X.; Liu, R.; Xie, Z.; Yang, J.; Zhang, S.; Zhang, G.; Liu, H.; Li, Y.; Zhang, J.; et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 2015, 137, 7596–7599. [Google Scholar] [CrossRef]
- Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline Graphdiyne Nanosheets Produced at a Gas/Liquid or Liquid/Liquid Interface. J. Am. Chem. Soc. 2017, 139, 3145–3152. [Google Scholar] [CrossRef] [PubMed]
- Owais, C.; James, A.; John, C.; Dhali, R.; Swathi, R.S. Selective permeation through one-atom-thick nanoporous carbon membranes: Theory Reveals excellent design strategies! J. Phys. Chem. B 2018, 122, 5127–5146. [Google Scholar] [CrossRef] [PubMed]
- James, A.; John, C.; Owais, C.; Myakala, S.N.; Chandra Shekar, S.; Choudhuri, J.R.; Swathi, R.S. Graphynes: Indispensable nanoporous architectures in carbon flatland. RSC Adv. 2018, 8, 22998–23018. [Google Scholar] [CrossRef] [Green Version]
- Koenig, S.P.; Wang, L.; Pellegrino, J.; Bunch, J.S. Selective Molecular Sieving through Porous Graphene. Nat. Nanotechnol. 2012, 7, 728–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, Y.; Du, A.; Hankel, M.; Smith, S.C. Modelling Carbon Membranes for Gas and Isotope Separation. Phys. Chem. Chem. Phys. 2013, 15, 4832–4843. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, M.; Li, C.; Shi, G. Graphene-Based Membranes for Molecular Separation. J. Phys. Chem. Lett. 2015, 6, 2806–2815. [Google Scholar] [CrossRef]
- Schrier, J. Helium Separation Using Porous Graphene Membranes. J. Phys. Chem. Lett. 2010, 1, 2284–2287. [Google Scholar] [CrossRef]
- Hauser, A.W.; Schwerdtfeger, P. Nanoporous Graphene Membranes for Efficient 3He/4He Separation. J. Phys. Chem. Lett. 2012, 3, 209–213. [Google Scholar] [CrossRef]
- Apriliyanto, Y.B.; Faginas Lago, N.; Lombardi, A.; Evangelisti, S.; Bartolomei, M.; Leininger, T.; Pirani, F. Nanostructure Selectivity for Molecular Adsorption and Separation: The Case of Graphyne Layers. J. Phys. Chem. C 2018, 122. [Google Scholar] [CrossRef]
- Cho, A. Helium-3 Shortage Could Put Freeze on Low-Temperature Research. Science 2009, 326, 778–779. [Google Scholar] [CrossRef]
- Nuttall, W.J.; Clarke, R.H.; Glowacki, B.A. Resources: Stop Squandering Helium. Nature 2012, 485, 573–575. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Xing, Y.; Zhao, X. Quantum Sieving: Feasibility and Challenges for the Separation of Hydrogen Isotopes in Nanoporous Materiasls. RSC Adv. 2012, 2, 8579–8586. [Google Scholar] [CrossRef]
- Hauser, A.W.; Schrier, J.; Schwerdtfeger, P. Helium Tunneling through Nitrogen-Functionalized Graphene Pores: Pressure- and Temperature-Driven Approaches to Isotope Separation. J. Phys. Chem. C 2012, 116, 10819–10827. [Google Scholar] [CrossRef]
- Mandrà, S.; Schrier, J.; Ceotto, M. Helium Isotope Enrichment by Resonant Tunneling through Nanoporous Graphene Bilayers. J. Phys. Chem. A 2014, 118, 6457–6465. [Google Scholar] [CrossRef]
- Bartolomei, M.; Carmona-Novillo, E.; Hernández, M.I.; Campos-Martínez, J.; Pirani, F.; Giorgi, G. Graphdiyne Pores: “Ad Hoc” Openings for Helium Separation Applications. J. Phys. Chem. C 2014, 118, 29966–29972. [Google Scholar] [CrossRef] [Green Version]
- Hernández, M.I.; Bartolomei, M.; Campos-Martínez, J. Transmission of helium isotopes through graphdiyne pores: Tunneling versus zero point energy effects. J. Phys. Chem. A 2015, 119, 10743–10749. [Google Scholar] [CrossRef] [Green Version]
- Lalitha, M.; Lakshmipathi, S.; Bhatia, S.K. Defect-Mediated Reduction in Barrier for Helium Tunneling through Functionalized Graphene Nanopores. J. Phys. Chem. C 2015, 119, 20940–20948. [Google Scholar] [CrossRef]
- Li, F.; Qu, Y.; Zhao, M. Efficient Helium Separation of Graphitic Carbon Nitride Membrane. Carbon 2015, 95, 51–57. [Google Scholar] [CrossRef]
- Qu, Y.; Li, F.; Zhou, H.; Zhao, M. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation. Sci. Rep. 2016, 6, 19952. [Google Scholar] [CrossRef]
- Truhlar, D.G.; Kuppermann, A. Exact and Approximate Quantum Mechanical Reaction Probabilities and Rate Constants for the Collinear H + H2 Reaction. J. Chem. Phys. 1972, 56, 2232–2252. [Google Scholar] [CrossRef] [Green Version]
- Garret, B.C.; Truhlar, D.G. Accuracy of Tunneling Corrections to Transition State Theory for Thermal Rate Constants of Atom Transfer Reactions. J. Phys. Chem. 1979, 83, 200–203. [Google Scholar] [CrossRef]
- Beenakker, J.J.M.; Borman, V.D.; Krylov, S.Y. Molecular Transport in Subnanometer Pores: Zero-Point Energy, Reduced Dimensionality and Quantum Sieving. Chem. Phys. Lett. 1995, 232, 379–382. [Google Scholar] [CrossRef]
- Hankel, M.; Zhang, H.; Nguyen, T.X.; Bhatia, S.K.; Gray, S.K.; Smith, S.C. Kinetic Modelling of Molecular Hydrogen Transport in Microporous Carbon Materials. Phys. Chem. Chem. Phys. 2011, 13, 7834–7844. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.V.A.; Bathia, S.K. Quantum Effect Induced Reverse Kinetic Molecular Sieving in Microporous Materials. Phys. Rev. Lett. 2005, 95, 245901. [Google Scholar] [CrossRef] [Green Version]
- Schrier, J.; McClain, J. Thermally-Driven Isotope Separation across Nanoporous Graphene. Chem. Phys. Lett. 2012, 521, 118–124. [Google Scholar] [CrossRef]
- Zhao, X.; Villar-Rodil, S.; Fletcher, A.J.; Thomas, K.M. Kinetic Isotope Effect for H2 and D2 Quantum Molecular Sieving in Adsorption/Desorption on Porous Carbon Materials. J. Phys. Chem. B 2006, 110, 9947–9955. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Jobic, H.; Bathia, S.K. Microscopic Observation of Kinetic Molecular Sieving of Hydrogen Isotopes in a Nanoporous Material. Phys. Rev. Lett. 2010, 105, 085901. [Google Scholar] [CrossRef]
- Gijón, A.; Campos-Martínez, J.; Hernández, M.I. Wave Packet Calculations of the Quantum Transport of Atoms through Nanoporous Membranes. J. Phys. Chem. C 2017, 121, 19751–19757. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Li, J.; Chen, Y.; Zuo, Z.; Li, Y.; Liu, H.; Li, Y. Architecture and properties of a novel two-dimensional carbon material- graphtetrayne. Nano Energy 2018, 43, 192–199. [Google Scholar] [CrossRef]
- Pan, Q.; Chen, S.; Wu, C.; Shao, F.; Sun, J.; Sun, L.; Zhang, Z.; Man, Y.; Li, Z.; He, L.; et al. Direct Synthesis of Crystalline Graphtetrayne—A New Graphyne Allotrope. CCS Chem. 2020, 2, 1368–1375. [Google Scholar] [CrossRef]
- Yinnon, A.T.; Kosloff, R. A Quantum-Mechanical Time-Dependent Simulation of the Scattering from a Stepped Surface. Chem. Phys. Lett. 1983, 102, 216–223. [Google Scholar] [CrossRef]
- Miller, W.H. Quantum Mechanical Transition State Theory and a New Semiclassical Model for Reaction Rate Constants. J. Chem. Phys. 1974, 61, 1823–1834. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, J.Z.H. Full-Dimensional Time-Dependent Treatment for Diatom-Diatom Reactions: The H2+OH Reaction. J. Chem. Phys. 1991, 101, 1146–1156. [Google Scholar] [CrossRef]
- Bartolomei, M.; Carmona-Novillo, E.; Hernández, M.I.; Campos-Martínez, J.; Pirani, F. Global Potentials for the Interaction Between Rare Gases and Graphene-Based Surfaces: An Atom-Bond Pairwise Additive Representation. J. Phys. Chem. C 2013, 117, 10512–10522. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, M.; Kang, F. Graphene derivatives: Graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2014, 2. [Google Scholar] [CrossRef]
- Pirani, F.; Brizi, S.; Roncaratti, L.; Casavecchia, P.; Cappelletti, D.; Vecchiocattivi, F. Beyond the Lennard-Jones Model: A Simple and Accurate Potential Function Probed by High Resolution Scattering Data Useful for Molecular Dynamics Simulations. Phys. Chem. Chem. Phys 2008, 10, 5489–5503. [Google Scholar] [CrossRef]
- Pitonák, M.; Hesselmann, A. Accurate Intermolecular Interaction Energies from a Combination of MP2 and TDDFT Response Theory. J. Chem. Theory Comput. 2010, 6, 168–178. [Google Scholar] [CrossRef]
- Feit, M.D.; Fleck, J.A.; Steiger, A. Solution of the Schrödinger Equation by a Spectral Method. J. Comput. Phys. 1982, 47, 412–433. [Google Scholar] [CrossRef]
- Kosloff, D.; Kosloff, R. A Fourier Method Solution for the Time Dependent Schrödinger Equation as a Tool in Molecular Dynamics. J. Comp. Phys. 1983, 52, 35–53. [Google Scholar] [CrossRef]
- Heller, E.J. Time-Dependent Approach to Semiclassical Dynamics. J. Chem. Phys. 1975, 62, 1544–1555. [Google Scholar] [CrossRef]
- Heather, R.; Metiu, H. An Efficient Procedure for Calculating the Evolution of the Wave Function by Fast Fourier Transform Methods for Systems with Spatially Extended Wave Function and Localized Potential. J. Chem. Phys. 1987, 86, 5009–5017. [Google Scholar] [CrossRef]
- Pernot, P.; Lester, W.A. Multidimensional Wave-Packet Analysis: Splitting Method for Time-Resolved Property Determination. Int. J. Quantum Chem. 1991, 40, 577–588. [Google Scholar] [CrossRef]
- di Domenico, D.; Hernández, M.I.; Campos-Martínez, J. A Time-Dependent Wave Packet Approach for Reaction and Dissociation in H2+H2. Chem. Phys. Lett. 2001, 342, 177–184. [Google Scholar] [CrossRef]
- Zhou, Z. Permeance Should Be Used to Characterize the Productivity of a Polymeric Gas Separation Membrane. J. Membr. Sci. 2006, 281, 754–756. [Google Scholar] [CrossRef]
- Estermann, I.; Stern, O. Beugung von Molekularstrahlen. Z. Phys. 1930, 61, 95–125. [Google Scholar] [CrossRef]
- Lennard-Jones, J.; Devonshire, A. Diffraction and Selective Adsorption of Atoms at Crystal Surfaces. Nature 1936, 137, 1069–1070. [Google Scholar] [CrossRef]
- Hernández, M.I.; Campos-Martínez, J.; Miret-Artés, S.; Coalson, R.D. Lifetimes of Selective-Adsorption Resonances in Atom-Surface Elastic Scattering. Phys. Rev. B 1994, 49, 8300–8309. [Google Scholar] [CrossRef] [Green Version]
- Mondelo-Martell, M.; Huarte-Larrañaga, F.; Manthe, U. Quantum dynamics of H2 in a carbon nanotube: Separation of time scales and resonance enhanced tunneling. J. Chem. Phys. 2017, 147, 084103. [Google Scholar] [CrossRef] [Green Version]
He-C | |
---|---|
(Å) | 3.663 |
(meV) | 1.289 |
7.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, M.I.; Bartolomei, M.; Campos-Martínez, J. Helium Isotopes Quantum Sieving through Graphtriyne Membranes. Nanomaterials 2021, 11, 73. https://doi.org/10.3390/nano11010073
Hernández MI, Bartolomei M, Campos-Martínez J. Helium Isotopes Quantum Sieving through Graphtriyne Membranes. Nanomaterials. 2021; 11(1):73. https://doi.org/10.3390/nano11010073
Chicago/Turabian StyleHernández, Marta I., Massimiliano Bartolomei, and José Campos-Martínez. 2021. "Helium Isotopes Quantum Sieving through Graphtriyne Membranes" Nanomaterials 11, no. 1: 73. https://doi.org/10.3390/nano11010073
APA StyleHernández, M. I., Bartolomei, M., & Campos-Martínez, J. (2021). Helium Isotopes Quantum Sieving through Graphtriyne Membranes. Nanomaterials, 11(1), 73. https://doi.org/10.3390/nano11010073