Fabricating Femtosecond Laser-Induced Periodic Surface Structures with Electrophysical Anisotropy on Amorphous Silicon
Abstract
1. Introduction
2. Materials and Methods
3. Theoretical Modeling of the LIPSS Formation
4. Experimental Results and Discussion
4.1. LIPSS Formation on the a-Si:H Film Surface
4.2. Raman Spectra Analysis for Irradiated and Unirradiated a-Si:H Films
4.3. Modeling of the LIPSS Formation on a-Si:H Surfaces
4.4. Electrical and Photoelectrical Properties of the Modified a-Si:H Surface
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hong, L.; Wang, X.C.; Zheng, H.Y.; He, L.; Wang, H.; Yu, H.Y. Femtosecond laser induced nanocone structure and simultaneous crystallization of 1.6 μm amorphous silicon thin film for photovoltaic application. J. Phys. D Appl. Phys. 2013, 46, 195109. [Google Scholar] [CrossRef]
- Differt, D.; Soleymanzadeh, B.; Lükermann, F.; Strüber, C.; Pfeiffer, W.; Stiebig, H. Enhanced light absorption in nanotextured amorphous thin-film silicon caused by femtosecond-laser materials processing. Sol. Energy Mater. Sol. Cells 2015, 135, 72–77. [Google Scholar] [CrossRef]
- Guo, A.; Ilyas, N.; Song, Y.; Lei, R.; Zhong, H.; Li, D.; Li, W. Irradiation Effect on Ag-Dispersed Amorphous Silicon Thin Films by Femtosecond Laser. Proc. SPIE 2019, 11046, 1104629. [Google Scholar] [CrossRef]
- Emelyanov, A.; Kazanskii, A.; Kashkarov, P.; Konkov, O.; Terukov, E.; Forsh, P.; Khenkin, M.; Kukin, A.; Beresna, M.; Kazansky, P. Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties. Semiconductors 2012, 46, 749–754. [Google Scholar] [CrossRef]
- Kang, M.J.A.; Park, T.S.; Kim, M.; Hwang, E.S.; Kim, S.H.; Shin, S.T.; Cheong, B.-H. Periodic surface texturing of amorphous-Si thin film irradiated by UV nanosecond laser. Opt. Mater. Express 2019, 9, 4247–4255. [Google Scholar] [CrossRef]
- Zhan, X.-P.; Hou, M.-Y.; Ma, F.-S.; Su, Y.; Chen, J.-Z.; Xu, H.-L. Room temperature crystallization of amorphous silicon film by ultrashort femtosecond laser pulses. Opt. Laser. Technol. 2019, 112, 363–367. [Google Scholar] [CrossRef]
- Ionin, A.A.; Kudryashov, S.I.; Samokhin, A.A. Material surface ablation produced by ultrashort laser pulses. Phys. Uspekhi 2017, 60, 149–160. [Google Scholar] [CrossRef]
- Huang, J.; Jiang, L.; Li, X.; Wang, A.; Wang, Z.; Wang, Q.; Hu, J.; Qu, L.; Cui, T.; Lu, Y. Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification. Nanophotonics 2019, 8, 869–878. [Google Scholar] [CrossRef]
- Dostovalov, A.; Bronnikov, K.; Korolkov, V.; Babin, S.; Mitsai, E.; Mironenko, A.; Tutov, M.; Zhang, D.; Sugioka, K.; Maksimovic, J.; et al. Hierarchical anti-reflective laser-induced periodic surface structures (LIPSS) on amorphous Si films for sensing applications. Nanoscale 2020, 12, 13431–13441. [Google Scholar] [CrossRef]
- Zhang, D.S.; Sugioka, K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids. Opto Electron. Adv. 2019, 2, 190002. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, H.; Ji, L.; Lin, W.; Hong, M. Realization of ∼10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air. Nano Lett. 2020, 20, 4947–4952. [Google Scholar] [CrossRef] [PubMed]
- Shuleiko, D.V.; Potemkin, F.V.; Romanov, I.A.; Parhomenko, I.N.; Pavlikov, A.V.; Presnov, D.E.; Zabotnov, S.V.; Kazanskii, A.G.; Kashkarov, P.K. Femtosecond laser pulse modification of amorphous silicon films: Control of surface anisotropy. Laser Phys. Lett. 2018, 15, 056001. [Google Scholar] [CrossRef]
- Martsinovskiĭ, G.A.; Shandybina, G.D.; Smirnov, D.S.; Zabotnov, S.V.; Timoshenko, V.Y.; Kashkarov, P.K. Ultrashort Excitations of Surface Polaritons and Waveguide Modes in Semiconductors. Opt. Spectrosc. 2008, 105, 67–72. [Google Scholar] [CrossRef]
- Bencherif, H.; Dehimi, L.; Pezzimenti, F.; Della Corte, F.G. Improving the efficiency of a-Si:H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating. Optik 2019, 182, 682–693. [Google Scholar] [CrossRef]
- Amasev, D.V.; Khenkin, M.V.; Drevinskas, R.; Kazansky, P.; Kazanskii, A.G. Anisotropy of optical, electrical, and photoelectrical properties of amorphous hydrogenated silicon films modified by femtosecond laser irradiation. Tech. Phys. 2017, 62, 925–929. [Google Scholar] [CrossRef]
- Drevinskas, R.; Beresna, M.; Gecevičius, M.; Khenkin, M.; Kazanskii, A.G.; Matulaitienė, I.; Niaura, G.; Konkov, O.I.; Terukov, E.I.; Svirko, Y.P.; et al. Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon. Appl. Phys. Lett. 2015, 106, 171106. [Google Scholar] [CrossRef]
- Emelyanov, A.V.; Khenkin, M.V.; Kazanskii, A.G.; Forsh, P.A.; Kashkarov, P.K.; Lyubin, E.V.; Khomich, A.A.; Gecevicius, M.; Beresna, M.; Kazansky, P.G. Structural and electrophysical properties of femtosecond laser exposed hydrogenated amorphous silicon films. Proc. SPIE 2012, 8438, 84381I. [Google Scholar] [CrossRef]
- Lipatiev, A.S.; Fedotov, S.S.; Okhrimchuk, A.G.; Lotarev, S.V.; Vasetsky, A.M.; Stepko, A.A.; Shakhgildyan GYu Piyanzina, K.I.; Glebov, I.S.; Sigaev, V.N. Multilevel data writing in nanoporous glass by a few femtosecond laser pulses. Appl. Optics 2018, 57, 978–982. [Google Scholar] [CrossRef]
- Fedotov, S.S.; Okhrimchuk, A.G.; Lipatiev, A.S.; Stepko, A.A.; Piyanzina, K.I.; Shakhgildyan, G.Y.; Presniakov, M.Y.; Glebov, I.S.; Lotarev, S.V.; Sigaev, V.N. 3-bit writing of information in nanoporous glass by a single sub-microsecond burst of femtosecond pulses. Opt. Lett. 2018, 43, 851–854. [Google Scholar] [CrossRef]
- Lotarev, S.V.; Fedotov, S.S.; Kurina, A.I.; Lipatiev, A.S.; Sigaev, V.N. Ultrafast laser-induced nanogratings in sodium germanate glasses. Opt. Lett. 2019, 44, 1564–1567. [Google Scholar] [CrossRef]
- Shuleiko, D.V.; Kashaev, F.V.; Potemkin, F.V.; Zabotnov, S.V.; Zoteev, A.V.; Presnov, D.E.; Parkhomenko, I.N.; Romanov, I.A. Structural Anisotropy of Amorphous Silicon Films Modified by Femtosecond Laser Pulses. Opt. Spectrosc. 2018, 124, 801–807. [Google Scholar] [CrossRef]
- Dyukin, R.V.; Martsinovskii, G.A.; Shandybina, G.D.; Yakovlev, E.B. Electrophysical phenomena accompanying femtosecond impacts of laser radiation on semiconductors. J. Opt. Technol. 2011, 78, 88–92. [Google Scholar] [CrossRef]
- Ambrosone, G.; Coscia, U.; Lettieri, S.; Maddalena, P.; Minarini, C. Optical, structural and electrical properties of μc-Si:H films deposited by SiH4+H2. Mater. Sci. Eng. B 2003, 101, 236–241. [Google Scholar] [CrossRef]
- Choi, T.Y.; Hwang, D.J.; Grigoropoulos, C.P. Ultrafast laser-induced crystallization of amorphous silicon films. Opt. Eng. 2003, 42, 3383–3388. [Google Scholar] [CrossRef]
- Sipe, J.; Young, J.F.; Preston, J.; Van Driel, H. Laser-induced periodic surface structure. I. Theory. Phys. Rev. B 1983, 27, 1141–1154. [Google Scholar] [CrossRef]
- Bonse, J.; Rosenfeld, A.; Krüger, J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J. Appl. Phys. 2009, 106, 104910. [Google Scholar] [CrossRef]
- Bonse, J.; Munz, M.; Sturm, H. Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses. J. Appl. Phys. 2005, 97, 013538. [Google Scholar] [CrossRef]
- Bonse, J.; Rosenfeld, A.; Krüger, J. Femtosecond laser-induced periodic surface structures: Eecent approaches to explain their subwavelength periodicities. Proc. SPIE 2011, 7994, 79940M. [Google Scholar] [CrossRef]
- Volodin, V.A.; Kachko, A.S.; Cherkov, A.G.; Latyshev, A.V.; Koch, J.; Chichkov, B. Femtosecond pulse crystallization of thin amorphous hydrogenated films on glass substrates using near ultraviolet laser radiation. JETP Lett. 2011, 93, 603–606. [Google Scholar] [CrossRef]
- Viera, G.; Huet, S.; Boufendi, L. Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy. J. Appl. Phys. 2001, 90, 4175–4183. [Google Scholar] [CrossRef]
- Bergren, M.R.; Simonds, B.J.; Yan, B.; Yue, G.; Ahrenkiel, R.; Furtak, T.E.; Collins, R.T.; Taylor, P.C.; Beard, M.C. Electron transfer in hydrogenated nanocrystalline silicon observed by time-resolved terahertz spectroscopy. Phys. Rev. B 2013, 87, 081301. [Google Scholar] [CrossRef]
- Lui, K.P.H.; Hegmann, F.A. Fluence- and temperature-dependent studies of carrier dynamics in radiation-damaged silicon-on-sapphire and amorphous silicon. J. Appl. Phys. 2003, 93, 9012–9018. [Google Scholar] [CrossRef]
- Bezhanov, S.G.; Ionin, A.A.; Kanavin, A.P.; Kudryashov, S.I.; Makarov, S.V.; Seleznev, L.V.; Sinitsyn, D.V.; Uryupin, S.A. Reflection of a probe pulse and thermal emission of electrons produced by an aluminum film heated by a femtosecond laser pulse. J. Exp. Theor. Phys. 2015, 120, 937–945. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Ionin, A.A. Multi-scale fluence-dependent dynamics of front-side femtosecond laser heating, melting and ablation of thin supported aluminum film. Int. J. Heat Mass Transf. 2016, 99, 383–390. [Google Scholar] [CrossRef]
- Huang, M.; Zhao, F.; Cheng, Y.; Xu, N.; Xu, Z. Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser. ACS Nano 2009, 3, 4062–4070. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.P.; Gupta, R.; Agarwal, S.C. Electrical conduction and Meyer–Neldel Rule in nanocrystalline silicon thin films. J. Non-Cryst. Solids 2013, 364, 69–76. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics, 4rd ed.; Pergamon Press: Oxford, UK, 1968. [Google Scholar]
- Ionin, A.A.; Kudryashov, S.I.; Levchenko, A.O.; Nguyen, L.V.; Saraeva, I.N.; Rudenko, A.A.; Ageev, E.I.; Potorochin, D.V.; Veiko, V.P.; Borisov, E.V.; et al. Correlated topographic and structural modification on Si surface during multi-shot femtosecond laser exposures: Si nanopolymorphs as potential local structural nanomarkers. Appl. Surf. Sci. 2017, 416, 988–995. [Google Scholar] [CrossRef]
- Bustarret, E.; Ligeon, M.; Ortega, L. Visible light emission at room temperature from partially oxidized amorphous silicon. Solid State Commun. 1992, 83, 461–464. [Google Scholar] [CrossRef]
- Emelyanov, A.V.; Kazanskii, A.G.; Khenkin, M.V.; Forsh, P.A.; Kashkarov, P.K.; Gecevicius, M.; Beresna, M.; Kazansky, P.G. Visible luminescence from hydrogenated amorphous silicon modified by femtosecond laser radiation. Appl. Phys. Lett. 2012, 101, 081902. [Google Scholar] [CrossRef]
- Boyd, I.W.; Wilson, J.I.B. Oxidation of silicon surfaces by CO2 lasers. Appl. Phys. Lett. 1982, 41, 162–164. [Google Scholar] [CrossRef]
- Pierce, D.T.; Spicer, W.E. Electronic Structure of Amorphous Si from Photoemission and Optical Studies. Phys. Rev. B 1972, 5, 3017–3029. [Google Scholar] [CrossRef]
- Green, M.A. Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients. Sol. Energ. Mat. Sol. C 2008, 92, 1305–1310. [Google Scholar] [CrossRef]
Sample | Scanning Mode (Figure 1c) | Laser Pulse Fluence Q (J/cm2) | Laser Spot Diameter D (μm) | Number of Laser Pulses n |
---|---|---|---|---|
1 | A | 0.5 | 150 | 30 |
2 | B | 750 |
Sample | LIPSS Period (μm) | LIPSS Direction Relative to Polarization | N (cm−3) | ε |
---|---|---|---|---|
1 | 0.88 ± 0.03 | 9.3∙× 1021 | −2.3 + 0.4i | |
2 | 1.12 ± 0.02 | 6.5 × 1021 | 1.3 + 0.3i |
Sample | Direction of E | Dark Conductivity (10−6 S/cm) | Photoconductivity (10−6 S/cm) |
---|---|---|---|
1 | ⊥ LIPSS, ‖ scan lines | 11 ± 2 | 0.8 ± 0.2 |
‖ LIPSS, ⊥ scan lines | 2.7 ± 0.1 | 1.0 ± 0.1 | |
2 | ‖ LIPSS | 12 ± 2 | 0. 96 ± 0.05 |
⊥ LIPSS | 6.59 ± 0.06 | 0.6 ± 0.1 | |
a-Si:H | – | 0.018 ± 0.001 | 3.7 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuleiko, D.; Martyshov, M.; Amasev, D.; Presnov, D.; Zabotnov, S.; Golovan, L.; Kazanskii, A.; Kashkarov, P. Fabricating Femtosecond Laser-Induced Periodic Surface Structures with Electrophysical Anisotropy on Amorphous Silicon. Nanomaterials 2021, 11, 42. https://doi.org/10.3390/nano11010042
Shuleiko D, Martyshov M, Amasev D, Presnov D, Zabotnov S, Golovan L, Kazanskii A, Kashkarov P. Fabricating Femtosecond Laser-Induced Periodic Surface Structures with Electrophysical Anisotropy on Amorphous Silicon. Nanomaterials. 2021; 11(1):42. https://doi.org/10.3390/nano11010042
Chicago/Turabian StyleShuleiko, Dmitrii, Mikhail Martyshov, Dmitrii Amasev, Denis Presnov, Stanislav Zabotnov, Leonid Golovan, Andrei Kazanskii, and Pavel Kashkarov. 2021. "Fabricating Femtosecond Laser-Induced Periodic Surface Structures with Electrophysical Anisotropy on Amorphous Silicon" Nanomaterials 11, no. 1: 42. https://doi.org/10.3390/nano11010042
APA StyleShuleiko, D., Martyshov, M., Amasev, D., Presnov, D., Zabotnov, S., Golovan, L., Kazanskii, A., & Kashkarov, P. (2021). Fabricating Femtosecond Laser-Induced Periodic Surface Structures with Electrophysical Anisotropy on Amorphous Silicon. Nanomaterials, 11(1), 42. https://doi.org/10.3390/nano11010042