Gd/Y Hydroxide Nanosheets as Highly Efficient T1/T2 MRI Contrast Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Gd/Y Hydroxide Nanosheets with Different Gd/Ln Ratios
2.2. Measurements
3. Results
3.1. Characterization of Gd-Nanosheets
3.2. r1 and r2 Relaxivity Measurement and MRI in vitro
3.3. Cell Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grobner, T. Gadolinium-a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol. Dial. Transplant. 2006, 21, 1104–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marckmann, P.; Skov, L.; Rossen, K.; Dupont, A.; Damholt, M.B.; Heaf, J.G.; Thomsen, H.S. Nephrogenic systemic fibrosis: Suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J. Am. Soc. Nephrol. 2006, 17, 2359–2421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, D.L.; Bu, W.B.; Ehlerding, E.B.; Cai, W.B.; Shi, J.L. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem. Soc. Rev. 2017, 46, 7438–7468. [Google Scholar] [CrossRef] [PubMed]
- Bleuzen, A.; Foglia, F.; Furet, E.; Helm, L.; Merbach, A.; Weber, J. Second Coordination Shell Water Exchange Rate and Mechanism Experiments and Modeling on Hexaaquachromium(III). J. Am. Chem. Soc. 1996, 118, 12777–12787. [Google Scholar] [CrossRef]
- Li, F.; Zhi, D.; Luo, Y.; Zhang, J.; Nan, X.; Zhang, Y.; Zhou, W.; Qiu, B.; Wen, L.; Liang, G. Core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual modal MRI contrast agents. Nanoscale 2016, 8, 12826–12859. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, L.; Zhou, Z.; Wang, X.; Zhang, Y.; Wang, J.; Mi, P.; Liu, G.; Zhou, L. Gadolinium hybrid iron oxide nanocomposites for dual T1- and T2-weighted MR imaging of cell labeling. Biomater. Sci. 2016, 5, 50–56. [Google Scholar] [CrossRef]
- Shen, Z.; Song, J.; Zhou, Z.; Yung, B.C.; Aronova, M.A.; Li, Y.; Dai, Y.; Fan, W.; Liu, Y.; Li, Z.; et al. Dotted Core-Shell Nanoparticles for T1 -Weighted MRI of Tumors. Adv. Mater. 2018, e1803163. [Google Scholar] [CrossRef]
- Fatehbasharzad, P.; Stefania, R.; Carrera, C.; Hawala, I.; Delli Castelli, D.; Baroni, S.; Colombo, M.; Prosperi, D.; Aime, S. Relaxometric Studies of Gd-Chelate Conjugated on the Surface of Differently Shaped Gold Nanoparticles. Nanomaterials 2020, 10, 1115. [Google Scholar] [CrossRef]
- Eom, S.; Choi, G.; Nakamura, H.; Choy, J. 2-Dimensional Nanomaterials with Imaging and Diagnostic Functions for Nanomedicine; A Review. Bull. Chem. Soc. Jpn. 2020, 93, 1–12. [Google Scholar] [CrossRef]
- Usman, M.; Hussein, M.; Fakurazi, S.; Masarudin, M.; Saad, F. Gadolinium-Doped Gallic Acid-Zinc/Aluminium-Layered Double Hydroxide/Gold Theranostic Nanoparticles for a Bimodal Magnetic Resonance Imaging and Drug Delivery System. Nanomaterials 2017, 7, 244. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.I.; Lee, K.S.; Lee, J.H.; Lee, I.S.; Byeon, S.H. Synthesis of colloidal aqueous suspensions of a layered gadolinium hydroxide: A potential MRI contrast agent. Dalton Trans. 2009, 14, 2490–2495. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Lee, B.; Lee, K.; Im, G.; Byeon, S.; Lee, J.; Lee, I. Surface Modification of Exfoliated Layered Gadolinium Hydroxide for the Development of Multimodal Contrast Agents for MRI and Fluorescence Imaging. Adv. Funct. Mater. 2009, 19, 3375–3380. [Google Scholar] [CrossRef]
- Park, S.M.; Aalipour, A.; Vermesh, O.; Yu, J.H.; Gambhir, S.S. Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2017, 2, 17014. [Google Scholar] [CrossRef] [PubMed]
- Courant, T.; Roullin, V.; Cadiou, C.; Callewaert, M.; Andry, M.; Portefaix, C.; Hoeffel, C.; de Goltstein, M.; Port, M.; Laurent, S. Hydrogels Incorporating GdDOTA:Towards Highly Efficient Dual T1/T2 MRI Contrast Agents. Angew. Chem. Int. Ed. 2012, 51, 9119–9122. [Google Scholar] [CrossRef]
- Shen, Z.; Fan, W.; Yang, Z.; Liu, Y.; Bregadze, V.I.; Mandal, S.K.; Yung, B.C.; Lin, L.; Liu, T.; Tang, W.; et al. Exceedingly Small Gadolinium Oxide Nanoparticles with Remarkable Relaxivities for Magnetic Resonance Imaging of Tumors. Small 2019, 15, e1903422. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.Y.; Zhao, K.; Tang, J.; Wang, X.Y.; Li, L.D.; Chen, N.X.; Wang, Y.J.; Shi, S.; Zhang, X.; Malaisamy, S.; et al. Gd-Dots with Strong Ligand-Water Interaction for Ultrasensitive Magnetic Resonance Renography. ACS Nano 2017, 11, 3642–3650. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiang, D.; Xia, J.; Li, C.; Zhang, N.; Li, Q. Novel luminescent yttrium oxide nanosheets doped with Eu3+ and Tb3+. RSC Adv. 2014, 4, 17648–17652. [Google Scholar] [CrossRef]
- Bae, Y.H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release 2011, 153, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Pirollo, K.F.; Chang, E.H. Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol. 2008, 26, 552–560. [Google Scholar] [CrossRef]
- Sasaki, T. Fabrication of nanostructured functional materials using exfoliated nanosheets as a building block. J. Ceram. Soc. Jpn. 2007, 115, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Choy, J.; Kwak, S.; Jeong, Y.; Park, J. Inorganic Layered Double Hydroxides as Nonviral Vectors. Angew. Chem. Int. Ed. 2000, 39, 4042–4045. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, L.; Gao, J.; Chen, X. Structure-Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging. Adv Mater. 2019, 31, e1804567. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Sun, L.; Zheng, T.; Dong, H.; Li, Y.; Wang, Y.; Yan, C. PAA-capped GdF3 nanoplates as dual-mode MRI and CT contrast agents. Sci. Bull. 2015, 60, 1092–1100. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Hu, R.; Wang, L.; Sun, C.; Fu, G.; Gao, J. Water bridge coordination on the metal-rich facets of Gd2O3 nanoplates confers high T1 relaxivity. Nanoscale 2016, 8, 17887–17894. [Google Scholar] [CrossRef] [Green Version]
- Brooks, R.; Moiny, F.; Gillis, P. On T2-shortening by weakly magnetized particles the chemical exchange model. Magn. Reson. Med. 2001, 45, 1014–1020. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Li, J.G.; Zhu, Q.; Li, J.; Ma, R.; Sasaki, T.; Li, X.; Sun, X.; Sakka, Y. The effects of Gd3+ substitution on the crystal structure, site symmetry, and photoluminescence of Y/Eu layered rare-earth hydroxide (LRH) nanoplates. Dalton Trans. 2012, 41, 1854–1861. [Google Scholar] [CrossRef]
- Geng, F.; Xin, H.; Matsushita, Y.; Ma, R.; Tanaka, M.; Izumi, F.; Iyi, N.; Sasaki, T. New layered rare-earth hydroxides with anion-exchange properties. Chem. Eur. J. 2008, 14, 9255–9305. [Google Scholar] [CrossRef]
- Cheong, S.; Ferguson, P.; Feindel, K.W.; Hermans, I.F.; Callaghan, P.T.; Meyer, C.; Slocombe, A.; Su, C.H.; Cheng, F.Y.; Yeh, C.S.; et al. Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. Angew. Chem. Int. Ed. 2011, 50, 4206–4215. [Google Scholar] [CrossRef]
- Duan, H.; Kuang, M.; Wang, X.; Wang, Y.; Mao, H.; Nie, S. Reexamining the Effects of Particle Size and Surface Chemistry on the Magnetic Properties of Iron Oxide Nanocrystals: New Insights into Spin Disorder and Proton Relaxivity. J. Phys. Chem. A 2008, 112, 8127–8131. [Google Scholar] [CrossRef]
Reference | Simple Code | Field | Magnetic Materials | r1 (mM−1 s−1) | r2 (mM−1 s−1) |
---|---|---|---|---|---|
This study | 100% Gd-NS 30% Gd-NS 10% Gd-NS 5% Gd-NS | 3.0 T | monolayers LGdH nanosheets | 44.44 79.05 103.60 65.46 | 96.00 289.75 372.86 236.87 |
Qiu et al. [5] | Fe3O4/Gd2O3 nanocubes | 1.5 T | core–shell iron and gadolinium oxide | 45.24 | 186.51 |
Wu and Chen et al. [15] | ES-GON-PAA,< 2 nm | 1.5 T | Gd2O3 | 72.10 | 72.16 |
Chen and Wu et al. [7] | FeGd-HN3-RGD2, 8.5 nm | 1.5 T | core–shell Fe3O4 and Gd2O3, | 70.0 | 139.2 |
Gao et al. [24] | Gd2O3 nanoplates | 0.5 T | Gd2O3 | 14.5 | / |
Chuburu et al. [14] | GdDOTA ⊂ NPs | 1.5 T | Hydrogels Incorporating Gd chelates | 72.3 | 177.5 |
Zhou et al. [6] | GdIO | 0.5 T | gadolinium hybrid iron oxide | 70.10 | 173.55 |
Wang, Sun and Yan et al. [16] | PAA-capped GdOF NPs, 2.1 nm | 0.5 T | NaGdF4 | 75 | 81 |
Lee et al. [12] | LGdH-FS-PEGP | 3.0 T | layered gadolinium hydroxide | 1.72 | 31.56 |
Byeon et al. [11] | LGdH | 3.0 T | [Gd2(OH)(H20)x]CI | 2.20 | 6.92 |
Yan et al. [23] | PAA-capped GdF3 Nanoplates | 0.5 T | GdF3 | 15.8 | 19.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Xue, Z.; Xia, J.; Zhou, G.; Jiang, D.; Dai, M.; Wang, W.; Miu, J.; Heng, Y.; Yu, C.; et al. Gd/Y Hydroxide Nanosheets as Highly Efficient T1/T2 MRI Contrast Agents. Nanomaterials 2021, 11, 17. https://doi.org/10.3390/nano11010017
Li X, Xue Z, Xia J, Zhou G, Jiang D, Dai M, Wang W, Miu J, Heng Y, Yu C, et al. Gd/Y Hydroxide Nanosheets as Highly Efficient T1/T2 MRI Contrast Agents. Nanomaterials. 2021; 11(1):17. https://doi.org/10.3390/nano11010017
Chicago/Turabian StyleLi, Xin, Zhenhai Xue, Jinfeng Xia, Guohong Zhou, Danyu Jiang, Mengting Dai, Wenhui Wang, Jiayan Miu, Yuerong Heng, Cuiyan Yu, and et al. 2021. "Gd/Y Hydroxide Nanosheets as Highly Efficient T1/T2 MRI Contrast Agents" Nanomaterials 11, no. 1: 17. https://doi.org/10.3390/nano11010017
APA StyleLi, X., Xue, Z., Xia, J., Zhou, G., Jiang, D., Dai, M., Wang, W., Miu, J., Heng, Y., Yu, C., & Li, Q. (2021). Gd/Y Hydroxide Nanosheets as Highly Efficient T1/T2 MRI Contrast Agents. Nanomaterials, 11(1), 17. https://doi.org/10.3390/nano11010017