Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions
Abstract
:1. Introduction
2. Computational Details and Modeling Approach
3. Results and Discussion
3.1. General Topological Analysis of Eventual Pd-Core/Au-Shell Segregation
3.2. Pd Surface Concentration as a Function of Pd Fraction in the Core
3.3. Ordered PdAu3 Structures Surrounded by Au Outer Shell
3.4. Enrichment of Subsurface Shell by Pd Prior to Formation of Pd Surface Monomers
3.5. Ordered PdAu Bulk-Like Structure
3.6. Generalization to Larger Particles: NP586 and NP1289
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrando, R.; Jellinek, J.; Johnston, R.L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910. [Google Scholar] [CrossRef]
- Chen, M.; Kumar, D.; Yi, C.-W.; Goodman, D.W. The promotional effect of gold in catalysis by palladium-gold. Science 2005, 310, 291–293. [Google Scholar] [CrossRef] [Green Version]
- Yi, C.-W.; Luo, K.; Wei, T.; Goodman, D.W. The composition and structure of Pd-Au surfaces. J. Phys. Chem. B 2005, 109, 18535–18540. [Google Scholar] [CrossRef]
- McCue, A.J.; Anderson, J.A. CO induced surface segregation as a means of improving surface composition and enhancing performance of CuPd bimetallic catalysts. J. Catal. 2015, 329, 538–546. [Google Scholar] [CrossRef]
- Meyer, R.J.; Zhang, Q.; Kryczka, A.; Gomez, C.; Todorovic, R. Perturbation of reactivity with geometry: How far can we go? ACS Catal. 2018, 8, 566–570. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, N.S.; Markov, P.V.; Baeva, G.N.; Rassolov, A.V.; Mashkovsky, I.S.; Bukhtiyarov, A.V.; Prosvirin, I.P.; Panafidin, M.A.; Zubavichus, Y.V.; Bukhtiyarov, V.I.; et al. CO-induced segregation as an efficient tool to control the surface composition and catalytic performance of PdAg3/Al2O3 catalyst. Mendeleev Commun. 2019, 29, 547−549. [Google Scholar] [CrossRef]
- Reocreux, R.; Uhlman, M.B.; Thuening, T.; Kress, P.L.; Hannagan, R.T.; Stamatakis, M.; Sykes, E.C.H. Efficient and selective carbon-carbon coupling on coke-resistant PdAu single-atom alloys. Chem. Commun. 2019, 55, 15085. [Google Scholar] [CrossRef]
- Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Chang, X.; Lin, X.; Zhao, Z.-J.; Gong, J. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 2020, 49, 8156–8178. [Google Scholar] [CrossRef]
- Sykes, E.C.H.; Christopher, P. Recent advances in single-atom catalysts and single-atom alloys: Opportunities for exploring the uncharted phase space in-between. Current Opin. Chem. Eng. 2020, 29, 67–73. [Google Scholar] [CrossRef]
- Hannagan, R.T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E.C.H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088. [Google Scholar] [CrossRef] [PubMed]
- Calvo, F. Thermodynamics of nanoalloys. Phys. Chem. Chem. Phys. 2015, 17, 27922–27939. [Google Scholar] [CrossRef] [PubMed]
- Bukhtiyarov, A.V.; Prosvirin, I.P.; Saraev, A.A.; Klyushin, A.Y.; Knop-Gericke, A.; Bukhtiyarov, V.I. In situ formation of the active sites in Pd-Au bimetallic nanocatalysts for CO Oxidation: NAP (Near Ambient Pressure) XPS and MS study. Faraday Discuss. 2018, 208, 255–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamatkulov, M.; Yudanov, I.V.; Bukhtiyarov, A.V.; Prosvirin, I.P.; Bukhtiyarov, V.I.; Neyman, K.M. Pd segregation on the surface of bimetallic PdAu nanoparticles induced by low coverage of adsorbed CO. J. Phys. Chem. C 2019, 123, 8037–8046. [Google Scholar] [CrossRef]
- Wolfbeisser, A.; Kovács, G.; Kozlov, S.M.; Föttinger, K.; Bernardi, J.; Klötzer, B.; Neyman, K.M.; Rupprechter, G. Surface composition changes of CuNi-ZrO2 during methane decomposition: An operando NAP-XPS and Density Functional study. Catal. Today 2017, 283, 134–143. [Google Scholar] [CrossRef]
- Verga, L.G.; Skylaris, C.K. DFT modeling of metallic nanoparticles. In Computational Modelling of Nanoparticles, Series: Frontiers of Nanoscience; Bromley, S.T., Woodley, S.M., Eds.; Elsevier: Oxford, UK, 2019; Volume 12. [Google Scholar] [CrossRef]
- Soini, T.M.; Rösch, N. Size-dependent properties of transition metal clusters: From molecules to crystals and surfaces—Computational studies with the program PARAGAUSS. Phys. Chem. Chem. Phys. 2015, 17, 28463–28483. [Google Scholar] [CrossRef]
- Yudanov, I.V.; Genest, A.; Schauermann, S.; Freund, H.-J.; Rösch, N. Size-dependence of the adsorption energy of CO on metal nanoparticles: A DFT search for the minimum value. Nano Lett. 2012, 12, 2134–2139. [Google Scholar] [CrossRef]
- Marchal, R.; Genest, A.; Krüger, S.; Rösch, N. Structure of Pd/Au alloy nanoparticles from a Density Functional Theory-based embedded-atom potential. J. Phys. Chem. C 2013, 117, 21810–21822. [Google Scholar] [CrossRef]
- Kozlov, S.M.; Kovács, G.; Ferrando, R.; Neyman, K.M. How to determine accurate chemical ordering in several nanometer large bimetallic crystallites from electronic structure calculations. Chem. Sci. 2015, 6, 3868–3880. [Google Scholar] [CrossRef] [Green Version]
- Kovács, G.; Kozlov, S.M.; Neyman, K.M. Versatile optimization of chemical ordering in bimetallic nanoparticles. J. Phys. Chem. C 2017, 121, 10803–10808. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, I.; Hou, M. Equilibrium ordering properties of Au-Pd alloys and nanoalloys. Surf. Sci. 2009, 603, 2639–2651. [Google Scholar] [CrossRef]
- Yudanov, I.V.; Neyman, K.M. Stabilization of Au at edges of bimetallic PdAu nanocrystallites. Phys. Chem. Chem. Phys. 2010, 12, 5094–5100. [Google Scholar] [CrossRef] [PubMed]
- Timoshenko, J.; Wrasman, C.J.; Luneau, M.; Shirman, T.; Cargnello, M.; Bare, S.R.; Aizenberg, J.; Friend, C.M.; Frenkel, A.I. Probing atomic distributions in mono- and bimetallic nanoparticles by supervised machine learning. Nano Lett. 2019, 19, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Bruma, A.; Ismail, R.; Paz-Borbón, L.O.; Arslan, H.; Barcaro, G.; Fortunelli, A.; Li, Z.Y.; Johnston, R.L. DFT study of the structures and energetics of 98-atom AuPd clusters. Nanoscale 2013, 5, 646–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahm, J.M.; Erhart, P. Understanding chemical ordering in bimetallic nanoparticles from atomic-scale simulations: The competition between bulk, surface, and strain. J. Phys. Chem. C 2018, 122, 28439–28445. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semicon-ductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector Augmented-Wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the Projector Augmented-Wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation made simple. Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef] [Green Version]
- Viñes, F.; Illas, F.; Neyman, K.M. On the mechanism of formation of metal nanowires by self-assembly. Angew. Chem. Int. Ed. 2007, 46, 7094–7097. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, S.M.; Aleksandrov, H.A.; Goniakowski, J.; Neyman, K.M. Effect of MgO(100) support on structure and properties of Pd and Pt nanoparticles with 49-155 Atoms. J. Chem. Phys. 2013, 139, 084701. [Google Scholar] [CrossRef] [PubMed]
- Yudanov, I.V.; Sahnoun, R.; Neyman, K.M.; Rösch, N. Carbon monoxide adsorption on palladium nano-par-ticles: A relativistic density functional study. J. Chem. Phys. 2002, 117, 9887–9896. [Google Scholar] [CrossRef]
- Yudanov, I.V.; Sahnoun, R.; Neyman, K.M.; Rösch, N.; Hoffmann, J.; Schauermann, S.; Johánek, V.; Unterhalt, H.; Rupprechter, G.; Libuda, J.; et al. CO adsorption on Pd nanoparticles: Density functional and vibrational spectroscopy studies. J. Phys. Chem. B 2003, 107, 255–264. [Google Scholar] [CrossRef]
- Neyman, K.M.; Sahnoun, R.; Inntam, C.; Hengrasmee, S.; Rösch, N. Computational study of model Pd-Zn nanoclusters and their adsorption complexes with CO molecules. J. Phys. Chem. B 2004, 108, 5424–5430. [Google Scholar] [CrossRef]
- Laletina, S.S.; Mamatkulov, M.; Shor, E.A.; Kaichev, V.V.; Genest, A.; Yudanov, I.V.; Rösch, N. Size-dependence of the adsorption energy of CO on Pt nanoparticles: Tracing two intersecting trends by DFT calculations. J. Phys. Chem. C 2017, 121, 17371–17377. [Google Scholar] [CrossRef]
- Kovács, G.; Kozlov, S.M.; Matolínová, I.; Vorokhta, M.; Matolín, V.; Neyman, K.M. Revealing chemical ordering in Pt-Co nanoparticles using electronic structure calculations and X-Ray photoelectron spectroscopy. Phys. Chem. Chem. Phys. 2015, 17, 28298–28310. [Google Scholar] [CrossRef]
- Vorokhta, M.; Khalakhan, I.; Václavů, M.; Kovács, G.; Kozlov, S.M.; Kúš, P.; Skála, T.; Tsud, N.; Lavková, J.; Potin, V.; et al. Surface composition of magnetron sputtered Pt-Co thin film catalyst for proton exchange membrane fuel cells. Appl. Surf. Sci. 2016, 365, 245–251. [Google Scholar] [CrossRef]
- Neitzel, A.; Kovács, G.; Lykhach, Y.; Kozlov, S.M.; Tsud, N.; Skála, T.; Vorokhta, M.; Matolín, V.; Neyman, K.M.; Libuda, J. Atomic ordering and Sn segregation in Pt-Sn nanoalloys supported on CeO2 thin films. Top. Catal. 2017, 60, 522–532. [Google Scholar] [CrossRef]
- Khalakhan, I.; Vega, L.; Vorokhta, M.; Skála, T.; Viñes, F.; Yakovlev, Y.V.; Neyman, K.M.; Matolínová, I. Irreversible structural dynamics on the surface of bimetallic PtNi alloy catalyst under alternating oxidizing and reducing environments. Appl. Catal. B Envir. 2020, 264, 118476. [Google Scholar] [CrossRef]
- Olobardi, S.; Vega, L.; Fortunelli, A.; Stener, M.; Viñes, F.; Neyman, K.M. Optical properties and chemical ordering of Ag-Pt nanoalloys: A computational study. J. Phys. Chem. C 2019, 123, 25482–25491. [Google Scholar] [CrossRef]
- Vega, L.; Aleksandrov, H.A.; Neyman, K.M. Using density functional calculations to elucidate atomic ordering of Pd-Rh nanoparticles at sizes relevant for catalytic applications. Chin. J. Catal. 2019, 40, 1749–1757. [Google Scholar] [CrossRef]
- Rahm, J.M. Thermodynamics and Optical Response of Palladium-Gold Nanoparticles. Master’s Thesis, Department of Physics,Chalmers University of Technology, Gothenburg, Sweden, 2016. [Google Scholar]
- Nelayah, J.; Nguyen, N.T.; Alloyeau, D.; Wang, G.Y.; Ricolleau, C. Long-range chemical orders in Au-Pd nanoparticles revealed by aberration-corrected electron microscopy. Nanoscale 2014, 6, 10423–10430. [Google Scholar] [CrossRef] [PubMed]
- Sluiter, M.H.F.; Colinet, C.; Pasturel, A. Ab initio calculation of the phase stability in Au-Pd and Ag-Pt alloys. Phys. Rev. B 2006, 73, 174204. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Wang, Y.L.; Goodman, D.W. CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: The critical role of contiguous Pd atoms. J. Am. Chem. Soc. 2009, 131, 5734–5735. [Google Scholar] [CrossRef]
- Sitja, G.; Henry, C.R. Molecular beam study of the CO adsorption on a regular array of PdAu clusters on alumina. J. Phys. Chem. C 2019, 123, 7961–7967. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, Q.; Sun, Y.; Chen, S.; Wan, J.-Q.; Wu, M.; Fu, W.; Tang, Y.; Duan, X.; Chen, D.; et al. Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity. Nat. Commun. 2019, 10, 1428. [Google Scholar] [CrossRef] [Green Version]
- Bukhtiyarov, A.V.; Burueva, D.B.; Prosvirin, I.P.; Klyushin, A.Y.; Panafidin, M.A.; Kovtunov, K.V.; Bukhtiyarov, V.I.; Koptyug, I.V. Bimetallic Pd–Au/highly oriented pyrolytic graphite catalysts: From composition to pairwise parahydrogen addition selectivity. J. Phys. Chem. C 2018, 122, 18588–18595. [Google Scholar] [CrossRef]
Parameter | Pd56Au145 b | Pd79Au122 | Pd101Au100 |
---|---|---|---|
, eV | −668.8974 | −707.8834 | −745.6012 |
, eV | −0.3702 | −0.3854 | −0.4574 |
, eV | −0.3364 | −0.3452 | −0.3991 |
, eV | −0.1922 | −0.2500 | −0.2872 |
, eV | −0.0263 | −0.0248 | −0.0225 |
/ | 7.3 | 10.1 | 12.8 |
N | 44 | 28 | 32 |
ΔE, eV | 0.0000 | 0.0320 | 0.0000 |
δ, eV | 0.0934 | 0.2225 | 0.2974 |
Pd19Au182 | 19 | 0.24 | 0 | 0 |
Pd44Au157 | 44 | 0.56 | 0 | 0 |
Pd51Au150 | 48 | 0.60 | 3 | 0.05 |
Pd56Au145 | 50 | 0.63 | 6 | 0.11 |
Pd62Au139 | 56 | 0.71 | 6 | 0.11 |
Pd67Au134 | 60 | 0.76 | 7 | 0.125 |
Pd73Au128 | 63 | 0.80 | 10 | 0.18 |
Pd79Au122 | 63 | 0.80 | 16 | 0.29 |
Pd101Au100 | 76 | 0.96 | 24 a | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamatkulov, M.; Yudanov, I.V.; Bukhtiyarov, A.V.; Neyman, K.M. Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions. Nanomaterials 2021, 11, 122. https://doi.org/10.3390/nano11010122
Mamatkulov M, Yudanov IV, Bukhtiyarov AV, Neyman KM. Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions. Nanomaterials. 2021; 11(1):122. https://doi.org/10.3390/nano11010122
Chicago/Turabian StyleMamatkulov, Mikhail, Ilya V. Yudanov, Andrey V. Bukhtiyarov, and Konstantin M. Neyman. 2021. "Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions" Nanomaterials 11, no. 1: 122. https://doi.org/10.3390/nano11010122
APA StyleMamatkulov, M., Yudanov, I. V., Bukhtiyarov, A. V., & Neyman, K. M. (2021). Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions. Nanomaterials, 11(1), 122. https://doi.org/10.3390/nano11010122