Optimization of Photogenerated Charge Carrier Lifetimes in ALD Grown TiO2 for Photonic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates
2.2. Synthesis
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gershon, T. Metal oxide applications in organic-based photovoltaics. Mater. Sci. Technol. 2011, 27, 1357–1371. [Google Scholar] [CrossRef]
- Serpone, N.; Emeline, A.V. Semiconductor photocatalysis - Past, present, and future outlook. J. Phys. Chem. Lett. 2012, 3, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Murakami, T.N.; Comte, P.; Liska, P.; Grätzel, C.; Nazeeruddin, M.K.; Grätzel, M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 2008, 516, 4613–4619. [Google Scholar] [CrossRef]
- Hu, A.; Cheng, C.; Li, X.; Jiang, J.; Ding, R.; Zhu, J.; Wu, F.; Liu, J.; Huang, X. Two novel hierarchical homogeneous nanoarchitectures of TiO2 nanorods branched and P25-coated TiO2 nanotube arrays and their photocurrent performances. Nanoscale Res. Lett. 2011, 6, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.P.; Xiao, X.Y.; Zheng, L.L.; Wan, C.X. Fabrication of TiO2/MoS2 Composite Photocatalyst and Its Photocatalytic Mechanism for Degradation of Methyl Orange under Visible Light. Can. J. Chem. Eng. 2015, 93, 1594–1602. [Google Scholar] [CrossRef]
- Khan, R.; Riaz, A.; Rabeel, M.; Javed, S.; Jan, R.; Akram, M.A. TiO2@NbSe2 decorated nanocomposites for efficient visible-light photocatalysis. Appl. Nanosci. 2019, 9, 1915–1924. [Google Scholar] [CrossRef]
- Moehl, T.; Suh, J.; Sévery, L.; Wick-Joliat, R.; Tilley, S.D. Investigation of (Leaky) ALD TiO2 Protection Layers for Water-Splitting Photoelectrodes. ACS Appl. Mater. Interfaces 2017, 9, 43614–43622. [Google Scholar] [CrossRef]
- Pham, H.H.; Wang, L.W. Oxygen vacancy and hole conduction in amorphous TiO2. Phys. Chem. Chem. Phys. 2015, 17, 541–550. [Google Scholar] [CrossRef]
- Rouquerol, J.; Sing, K.S.W.; Llewellyn, P. Adsorption by Metal Oxides, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9780080970356. [Google Scholar]
- Jia, X.; He, W.; Zhang, X.; Zhao, H.; Li, Z.; Feng, Y. Microwave-assisted synthesis of anatase TiO2 nanorods with mesopores. Nanotechnology 2007, 18, 075602–0705608. [Google Scholar] [CrossRef]
- Zhao, T.; Ren, Y.; Yang, J.; Wang, L.; Jiang, W.; Elzatahry, A.; Alghamdi, A.; Deng, Y.; Zhao, D.; Luo, W. Hierarchical Ordered Macro/mesoporous Titania with Highly Interconnected Porous Structure for Efficient Photocatalysis. J. Mater. Chem. A 2016, 4, 16446–16453. [Google Scholar] [CrossRef]
- Khan, R.; Javed, S.; Islam, M. Hierarchical Nanostructures of Titanium Dioxide: Synthesis and Applications. Titan. Dioxide Mater. Sustain. Environ. 2018, 3–40. [Google Scholar] [CrossRef] [Green Version]
- Hoch, L.B.; Szymanski, P.; Ghuman, K.K.; Hea, L.; Liao, K.; Qiao, Q.; Reyes, L.M.; Zhu, Y.; El-Sayed, M.A.; Singh, C.V.; et al. Carrier dynamics and the role of surface defects: Designing a photocatalyst for gas-phase CO2 reduction. Proc. Natl. Acad. Sci. USA 2016, 113, E8011–E8020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, X.; Liu, S.; Dai, Z.; He, Y.; Song, X.; Tan, Z. Titanium dioxide: From engineering to applications. Catalysts 2019, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Berera, R.; van Grondelle, R.; Kennis, J.T.M. Ultrafast transient absorption spectroscopy: Principles and application to photosynthetic systems. Photosynth. Res. 2009, 101, 105–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Song, P.; Cui, J.; Liang, S. Amorphous TiO2 nanostructures: Synthesis, fundamental properties and photocatalytic applications. Catal. Sci. Technol. 2019, 9, 4198–4215. [Google Scholar] [CrossRef]
- Prasai, B.; Cai, B.; Underwood, M.K.; Lewis, J.P.; Drabold, D.A. Properties of amorphous and crystalline titanium dioxide from first principles. J. Mater. Sci. 2012, 47, 7515–7521. [Google Scholar] [CrossRef]
- Ali-Löytty, H.; Hannula, M.; Saari, J.; Palmolahti, L.; Bhuskute, B.D.; Ulkuniemi, R.; Nyyssönen, T.; Lahtonen, K.; Valden, M. Diversity of TiO2 : Controlling the Molecular and Electronic Structure of Atomic-Layer-Deposited Black TiO2. ACS Appl. Mater. Interfaces 2019, 11, 2758–2762. [Google Scholar] [CrossRef] [Green Version]
- Kohtani, S.; Kawashima, A.; Miyabe, H. Reactivity of trapped and accumulated electrons in titanium dioxide photocatalysis. Catalysts 2017, 7, 303. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Pan, F.; Zhao, H.; Deng, W.; Zhang, P.; Zhou, H.C.; Li, Y. Atomic layer deposition enabled MgO surface coating on porous TiO2 for improved CO2 photoreduction. Appl. Catal. B Environ. 2018, 238, 274–283. [Google Scholar] [CrossRef]
- Xie, Q.; Jiang, Y.L.; Detavernier, C.; Deduytsche, D.; Van Meirhaeghe, R.L.; Ru, G.P.; Li, B.Z.; Qu, X.P. Atomic layer deposition of TiO2 from tetrakis-dimethyl-amido titanium or Ti isopropoxide precursors and H2O. J. Appl. Phys. 2007, 102, 083521–083526. [Google Scholar] [CrossRef]
- Kim, Y.W.; Kim, D.H. Atomic layer deposition of TiO2 from tetrakis-dimethylamido-titanium and ozone. Korean J. Chem. Eng. 2012, 29, 969–973. [Google Scholar] [CrossRef]
- Niemelä, J.P.; Marin, G.; Karppinen, M. Titanium dioxide thin films by atomic layer deposition: A review. Semicond. Sci. Technol. 2017, 32, 2–71. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef] [Green Version]
- Vitoratos, E. Conductivity Degradation Study of PEDOT: PSS Films under Heat Treatment in Helium and Atmospheric Air. Open J. Org. Polym. Mater. 2012, 2, 7–11. [Google Scholar] [CrossRef]
- Tant, M.R.; McManus, H.L.N.; Rogers, M.E. High-Temperature Properties and Applications of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1995; Volume 603, pp. 1–20. [Google Scholar] [CrossRef]
- Hu, S.; Shaner, M.R.; Beardslee, J.A.; Lichterman, M.; Brunschwig, B.S.; Lewis, N.S. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344, 1005–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasanen, H.P.; Vivo, P.; Canil, L.; Abate, A.; Tkachenko, N. Refractive index change dominates the transient absorption response of metal halide perovskite thin films in the near infrared. Phys. Chem. Chem. Phys. 2019, 21, 14663–14670. [Google Scholar] [CrossRef] [Green Version]
- Al-Dhhan, Z.T.; Hogarth, C.A.; Riddleston, N. The Optical Absorption Edge in Thin Amorphous Oxide Films Based on Cerium Dioxide. Phys. Status Solidi 1988, 145, 145–149. [Google Scholar] [CrossRef]
- Landmann, M.; Rauls, E.; Schmidt, W.G. The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys. Condens. Matter 2012, 24, 195503–195509. [Google Scholar] [CrossRef] [Green Version]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The Power of Databases: The RRUFF Project; Walter de Gruyter GmbH: Berlin, Germany, 2016; ISBN 9783110417104. [Google Scholar]
- Knowles, K.E.; Koch, M.D.; Shelton, J.L. Three applications of ultrafast transient absorption spectroscopy of semiconductor thin films: Spectroelectrochemistry, microscopy, and identification of thermal contributions. J. Mater. Chem. C 2018, 6, 11853–11867. [Google Scholar] [CrossRef]
- Pore, V.; Ritala, M.; Leskelä, M.; Saukkonen, T.; Järn, M. Explosive crystallization in atomic layer deposited mixed titanium oxides. Cryst. Growth Des. 2009, 9, 2974–2978. [Google Scholar] [CrossRef]
- Hukari, K.; Dannenberg, R.; Stach, E.A. Nitrogen effects on crystallization kinetics of amorphous TiOxNy thin films. J. Mater. Res. 2002, 17, 550–555. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, R.; Ali-Löytty, H.; Saari, J.; Valden, M.; Tukiainen, A.; Lahtonen, K.; Tkachenko, N.V. Optimization of Photogenerated Charge Carrier Lifetimes in ALD Grown TiO2 for Photonic Applications. Nanomaterials 2020, 10, 1567. https://doi.org/10.3390/nano10081567
Khan R, Ali-Löytty H, Saari J, Valden M, Tukiainen A, Lahtonen K, Tkachenko NV. Optimization of Photogenerated Charge Carrier Lifetimes in ALD Grown TiO2 for Photonic Applications. Nanomaterials. 2020; 10(8):1567. https://doi.org/10.3390/nano10081567
Chicago/Turabian StyleKhan, Ramsha, Harri Ali-Löytty, Jesse Saari, Mika Valden, Antti Tukiainen, Kimmo Lahtonen, and Nikolai V. Tkachenko. 2020. "Optimization of Photogenerated Charge Carrier Lifetimes in ALD Grown TiO2 for Photonic Applications" Nanomaterials 10, no. 8: 1567. https://doi.org/10.3390/nano10081567
APA StyleKhan, R., Ali-Löytty, H., Saari, J., Valden, M., Tukiainen, A., Lahtonen, K., & Tkachenko, N. V. (2020). Optimization of Photogenerated Charge Carrier Lifetimes in ALD Grown TiO2 for Photonic Applications. Nanomaterials, 10(8), 1567. https://doi.org/10.3390/nano10081567