Hierarchical Micro-/Nano-Structures on Polycarbonate via UV Pulsed Laser Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Direct Laser Interference Patterning Configurations
2.2. Fabrication of Laser-Induced Periodic Surface Structures
2.3. Morphological Characterization
2.4. FDTD Simulations
2.5. Chemical Characterization
3. Results and Discussion
3.1. Direct Laser Interference Patterning on Polycarbonate
3.2. Laser-Induced Periodic Surface Structures on Polycarbonate
3.3. Hierarchical Structures on Polycarbonate
3.4. FDTD Simulations
3.5. Chemical Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8. [Google Scholar] [CrossRef]
- Hasan, J.; Webb, H.K.; Truong, V.K.; Pogodin, S.; Baulin, V.A.; Watson, G.S.; Watson, J.A.; Crawford, R.J.; Ivanova, E.P. Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces. Appl. Microbiol. Biotechnol. 2013, 97, 9257–9262. [Google Scholar] [CrossRef] [PubMed]
- Pogodin, S.; Hasan, J.; Baulin, V.A.; Webb, H.K.; Truong, V.K.; Phong Nguyen, T.H.; Boshkovikj, V.; Fluke, C.J.; Watson, G.S.; Watson, J.A.; et al. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys. J. 2013, 104, 835–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandara, C.D.; Singh, S.; Afara, I.O.; Wolff, A.; Tesfamichael, T.; Ostrikov, K.; Oloyede, A. Bactericidal effects of natural nanotopography of Dragonfly Wing on Escherichia coli. ACS Appl. Mater. Interfaces 2017, 9, 6746–6760. [Google Scholar] [CrossRef] [Green Version]
- Jaggessar, A.; Shahali, H.; Mathew, A.; Yarlagadda, P.K. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnology 2017, 15, 64. [Google Scholar] [CrossRef] [Green Version]
- Parker, A.R.; Lawrence, C.R. Water capture by a desert beetle. Nature 2001, 414, 33–34. [Google Scholar] [CrossRef]
- Hermens, U.; Kirner, S.V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; et al. Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials. Appl. Surf. Sci. 2017, 418, 499–507. [Google Scholar] [CrossRef]
- Lutey, A.H.; Gemini, L.; Romoli, L.; Lazzini, G.; Fuso, F.; Faucon, M.; Kling, R. Towards laser-textured antibacterial surfaces. Sci. Rep. 2018, 8, 10112. [Google Scholar] [CrossRef]
- van der Poel, S.; Mezera, M.; Römer, G.R.B.E.; de Vries, E.; Matthews, D. Fabricating Laser-Induced Periodic Surface Structures on Medical Grade Cobalt–Chrome–Molybdenum: Tribological, Wetting and Leaching Properties. Lubricants 2019, 7, 70. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Wu, H.; Guo, J.; Feng, X.; Dong, G.; Shao, J.; Zeng, Q.; Zhang, Y.; Qin, Y. Fabricating hierarchical micro and nano structures on implantable Co–Cr–Mo alloy for tissue engineering by one-step laser ablation. Colloids Surfaces B Biointerfaces 2018, 161, 628–635. [Google Scholar] [CrossRef]
- Heitz, J.; Plamadeala, C.; Muck, M.; Armbruster, O.; Baumgartner, W.; Weth, A.; Steinwender, C.; Blessberger, H.; Kellermair, J.; Kirner, S.V.; et al. Femtosecond laser-induced microstructures on Ti substrates for reduced cell adhesion. Appl. Phys. A Mater. Sci. Process. 2017, 123, 734. [Google Scholar] [CrossRef] [Green Version]
- Paradisanos, I.; Fotakis, C.; Anastasiadis, S.H.; Stratakis, E. Gradient induced liquid motion on laser structured black Si surfaces. Appl. Phys. Lett. 2015, 107, 111603. [Google Scholar] [CrossRef] [Green Version]
- Stark, T.; Kiedrowski, T.; Marschall, H.; Lasagni, A.F. Avoiding starvation in tribocontact through active lubricant transport in laser textured surfaces. Lubricants 2019, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Eichstädt, J.; Römer, G.R.B.E.; Huis in’t Veld, A.J. Towards friction control using laser-induced periodic Surface Structures. Phys. Procedia 2011, 12, 7–15. [Google Scholar]
- Bonse, J.; Kirner, S.V.; Griepentrog, M.; Spaltmann, D.; Krüger, J. Femtosecond laser texturing of surfaces for tribological applications. Materials 2018, 11, 801. [Google Scholar] [CrossRef] [Green Version]
- Alamri, S.; Aguilar-Morales, A.I.; Lasagni, A.F. Controlling the wettability of polycarbonate substrates by producing hierarchical structures using Direct Laser Interference Patterning. Eur. Polym. J. 2018, 99, 27–37. [Google Scholar] [CrossRef]
- Aguilar-Morales, A.I.; Alamri, S.; Lasagni, A.F. Micro-fabrication of high aspect ratio periodic structures on stainless steel by picosecond direct laser interference patterning. J. Mater. Process. Technol. 2018, 252, 313–321. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Guo, C. Colorizing metals with femtosecond laser pulses. Appl. Phys. Lett. 2008, 92, 041914. [Google Scholar] [CrossRef]
- Dusser, B.; Sagan, Z.; Soder, H.; Faure, N.; Colombier, J.; Jourlin, M.; Audouard, E. Controlled nanostructures formation by ultra fast laser pulses for color marking. Opt. Express 2010, 18, 2913–2924. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, M.S.; Ahmed, F.; Kim, Y.G.; Lee, M.S.; Jun, M.B.G. Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures. Appl. Surf. Sci. 2011, 257, 7771–7777. [Google Scholar] [CrossRef]
- Ionin, A.A.; Kudryashov, S.I.; Makarov, S.V.; Seleznev, L.V.; Sinitsyn, D.V.; Golosov, E.V.; Golosova, O.A.; Kolobov, Y.R.; Ligachev, A.E. Femtosecond laser color marking of metal and semiconductor surfaces. Appl. Phys. A Mater. Sci. Process. 2012, 107, 301–305. [Google Scholar] [CrossRef]
- Alamri, S.; Fraggelakis, F.; Kunze, T.; Krupop, B.; Mincuzzi, G.; Kling, R.; Lasagni, A.F. On the interplay of DLIP and LIPSS upon ultra-short laser pulse irradiation. Materials 2019, 12, 1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabris, D.; Lasagni, A.F.; Fredel, M.C.; Henriques, B. Direct Laser Interference Patterning of Bioceramics: A Short Review. Ceramics 2019, 2, 578–586. [Google Scholar] [CrossRef] [Green Version]
- Lang, V.; Roch, T.; Lasagni, A.F. High-Speed Surface Structuring of Polycarbonate Using Direct Laser Interference Patterning: Toward 1 m2 min−1 Fabrication Speed Barrier. Adv. Eng. Mater. 2016, 18, 1342–1348. [Google Scholar] [CrossRef]
- Bonse, J.; Höhm, S.; Kirner, S.V.; Rosenfeld, A.; Krüger, J. Laser-induced periodic surface structures—A scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 9000615. [Google Scholar] [CrossRef]
- Rudenko, A.; Colombier, J.P.; Höhm, S.; Rosenfeld, A.; Krüger, J.; Bonse, J.; Itina, T.E. Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: A shared electromagnetic origin. Sci. Rep. 2017, 7, 12306. [Google Scholar] [CrossRef]
- Mezera, M.; Bonse, J.; Römer, G.R.B.E. Influence of bulk temperature on laser-induced periodic surface structures on polycarbonate. Polymers 2019, 11, 1947. [Google Scholar] [CrossRef] [Green Version]
- Mezera, M.; Römer, G.R.B.E. Model based optimization of process parameters to produce large homogeneous areas of laser-induced periodic surface structures. Opt. Express 2019, 27, 6012–6029. [Google Scholar] [CrossRef]
- Kirner, S.V.; Hermens, U.; Mimidis, A.; Skoulas, E.; Florian, C.; Hischen, F.; Plamadeala, C.; Baumgartner, W.; Winands, K.; Mescheder, H.; et al. Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel. Appl. Phys. A Mater. Sci. Process. 2017, 123, 754. [Google Scholar] [CrossRef] [Green Version]
- Dufft, D.; Rosenfeld, A.; Das, S.K.; Grunwald, R.; Bonse, J. Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO. J. Appl. Phys. 2009, 105, 034908. [Google Scholar] [CrossRef]
- Bonse, J.; Sturm, H.; Schmidt, D.; Kautek, W. Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air. Appl. Phys. A Mater. Sci. Process. 2000, 71, 657–665. [Google Scholar] [CrossRef]
- Yasumaru, N.; Miyazaki, K.; Kiuchi, J. Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC. Appl. Phys. A Mater. Sci. Process. 2003, 76, 983–985. [Google Scholar] [CrossRef]
- Florian, C.; Déziel, J.L.; Kirner, S.V.; Siegel, J.; Bonse, J. The role of the laser-induced oxide layer in the formation of laser-induced periodic surface structures. Nanomaterials 2020, 10, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baudach, S.; Bonse, J.; Kautek, W. Ablation experiments on polyimide with femtosecond laser pulses. Appl. Phys. A: Mater. Sci. Process. 1999, 69, S395–S398. [Google Scholar] [CrossRef]
- Rebollar, E.; Pérez, S.; Hernández, J.J.; Martín-Fabiani, I.; Rueda, D.R.; Ezquerra, T.A.; Castillejo, M. Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space. Langmuir 2011, 27, 5596–5606. [Google Scholar] [CrossRef] [Green Version]
- Castillejo, M.; Ezquerra, T.A.; Martín, M.; Oujja, M.; Pérez, S.; Rebollar, E. Laser nanostructuring of polymers: Ripples and applications. In Proceedings of the AIP Conference Proceedings; American Institute of Physics (AIP), Santa Fe, NM, USA, 30 April–3 May 2012; Volume 1464, pp. 372–380. [Google Scholar]
- Mezera, M.; van Drongelen, M.; Römer, G.R.B.E. Laser-Induced Periodic Surface Structures (LIPSS) on polymers processed with picosecond laser pulses. J. Laser Micro Nanoeng. 2018, 13, 105–116. [Google Scholar]
- Ionin, A.A.; Kudryashov, S.I.; Makarov, S.V.; Rudenko, A.A.; Seleznev, L.V.; Sinitsyn, D.V.; Golosov, E.V.; Kolobov, Y.R.; Ligachev, A.E. Beam spatial profile effect on femtosecond laser surface structuring of titanium in scanning regime. Appl. Surf. Sci. 2013, 284, 634–637. [Google Scholar] [CrossRef]
- Kunz, C.; Büttner, T.N.; Naumann, B.; Boehm, A.V.; Gnecco, E.; Bonse, J.; Neumann, C.; Turchanin, A.; Müller, F.A.; Gräf, S. Large-area fabrication of low- and high-spatial-frequency laser-induced periodic surface structures on carbon fibers. Carbon 2018, 133, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Vorobyev, A.Y.; Guo, C. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 2013, 7, 385–407. [Google Scholar] [CrossRef]
- Klein-Wiele, J.H.; Blumenstein, A.; Simon, P.; Ihlemann, J. Laser interference ablation by ultrashort UV laser pulses via diffractive beam management. Adv. Opt. Technol. 2020, 9, 41–52. [Google Scholar] [CrossRef]
- Ehrhardt, M.; Lai, S.; Lorenz, P.; Zimmer, K. Guiding of LIPSS formation by excimer laser irradiation of pre-patterned polymer films for tailored hierarchical structures. Appl. Surf. Sci. 2020, 506, 144785. [Google Scholar] [CrossRef]
- Abts, G.; Eckel, T.; Wehrmann, R. Polycarbonates, 7th ed.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2014. [Google Scholar]
- Rivaton, A.; Sallet, D.; Lemaire, J. The photo-chemistry of bisphenol-A polycarbonate reconsidered: Part 2—FTIR Analysis of the Solid-state Photo-chemistry in ‘Dry’ Conditions. Polym. Degrad. Stab. 1986, 14, 1–22. [Google Scholar] [CrossRef]
- Adams, M.R.; Garton, A. Surface modification of bisphenol-A-polycarbonate by far-UV radiation. Part I: In vacuum. Polym. Degrad. Stab. 1993, 41, 265–273. [Google Scholar] [CrossRef]
- Diepens, M.; Gijsman, P. Photodegradation of bisphenol A polycarbonate. Polym. Degrad. Stab. 2007, 92, 397–406. [Google Scholar] [CrossRef]
- Yazdan Mehr, M.; Van Driel, W.D.; Jansen, K.M.; Deeben, P.; Boutelje, M.; Zhang, G.Q. Photodegradation of bisphenol A polycarbonate under blue light radiation and its effect on optical properties. Opt. Mater. 2013, 35, 504–508. [Google Scholar] [CrossRef]
- Liu, J.M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 1982, 7, 196–198. [Google Scholar] [CrossRef]
- Dyer, P.E.; Jenkins, S.D.; Sidhu, J. Development and origin of conical structures on XeCl laser ablated polyimide. Appl. Phys. Lett. 1986, 49, 453–455. [Google Scholar] [CrossRef]
- Lippert, T.; Dickinson, J.T. Chemical and spectroscopic aspects of polymer ablation: Special features and novel directions. Chem. Rev. 2003, 103, 453–485. [Google Scholar] [CrossRef]
- Murthy, N.S.; Prabhu, R.D.; Martin, J.J.; Zhou, L.; Headrick, R.L. Self-assembled and etched cones on laser ablated polymer surfaces. J. Appl. Phys. 2006, 100, 023538. [Google Scholar] [CrossRef]
- Mezera, M.; Römer, G.R.B.E. Upscaling laser-induced periodic surface structures (LIPSS) manufacturing by defocused laser processing. In SPIE Conference Proceedings; SPIE: San Francisco, CA, USA, 2019; Volume 10906, p. 109060U. [Google Scholar]
- The MathWorks, Inc. MATLAB® R2019b; The MathWorks, Inc.: Natick, MA, USA, 2019. [Google Scholar]
- Brissinger, D. Complex refractive index of polycarbonate over the UV-Vis-IR region from 0.2 to 3 μm. Appl. Opt. 2019, 58, 1341. [Google Scholar] [CrossRef]
- Kuchmizhak, A.A.; Vitrik, O.B.; Kulchin, Y.N. Novel hydrodynamic instability of the molten Au/Pd alloy film irradiated by tightly focused femtosecond laser pulses. Pac. Sci. Rev. 2014, 16, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.P.; Guan, Y.C.; Zheng, H.Y.; Hong, M.H. Controllable fabrication of metallic micro/nano hybrid structuring surface for antireflection by picosecond laser direct writing. Appl. Surf. Sci. 2019, 471, 347–354. [Google Scholar] [CrossRef]
- Fajstavr, D.; Michaljaničová, I.; Slepička, P.; Neděla, O.; Sajdl, P.; Kolská, Z.; Švorčík, V. Surface instability on polyethersulfone induced by dual laser treatment for husk nanostructure construction. React. Funct. Polym. 2018, 125, 20–28. [Google Scholar] [CrossRef]
- Gedvilas, M.; Račiukaitis, G.; Kučikas, V.; Regelskis, K. Driving forces for self-organization in thin metal films during their partial ablation with a cylindrically focused laser beam. In AIP Conference Proceedings; American Institute of Physics (AIP): Santa Fe, NM, USA, 2012; Volume 1464, pp. 229–243. [Google Scholar]
- Dybal, J.; Schmidt, P.; Baldrian, J.; Kratochvíl, J. Ordered structures in polycarbonate studied by infrared and Raman spectroscopy, wide-angle X-ray scattering, and differential scanning calorimetry. Macromolecules 1998, 31, 6611–6619. [Google Scholar] [CrossRef]
- Philipp, H.R.; Legrand, D.G.; Cole, H.S.; Liu, Y.S. The Optical Properties of Bisphenol-A Polycarbonate. Polym. Eng. Sci. 1987, 27, 1148–1155. [Google Scholar] [CrossRef]
Structure Type | DLIP | LIPSS | ||
---|---|---|---|---|
Laser source | Laser-export TECH-263 Advanced | Trumpf TruMicro 5050 | Time-Bandwidth Fuego | |
DLIP Period [µm] | 1.5 | 10 | - | - |
Wavelength [nm] | 266 | 266 | 343 | 355 |
Pulse Duration [s] | ||||
Pulse Frequency [kHz] | 2 | 2 | 100 | 100 |
Beam Quality Factor M [-] | <1.3 | <1.3 | <1.3 | <1.3 |
Laser Spot Diameter [µm] | 25 | 25 | 174 | 120 |
Scan Velocity [mm/s] | 2.5 | 2.5 | 1000 | 600 |
Number of Overscans [-] | 1 | 1 | 1000 | 1000 |
Line Pitch [µm] | 7.33 | 10.16 | 10 | 3 |
Geometrical Pulse-to-Pulse Overlap [%] | 85 | 90 | 94 | 95 |
Peak Fluence Levels [J/cm] | 0.25 (ridges) + 0.2 (Pillars) | 1.45 (ridges) + 1.13 (Pillars) | 2…4 | 2…4 |
Structure Type | [-] | ||
---|---|---|---|
LSFL-II | 302760 | 4.4 | 1338 |
DLIP 1.5 m Ridge | 68 | 0.25 | 17 |
DLIP 1.5 m Pillar | 68 + 68 | 0.25 + 0.2 | 27 |
DLIP 10 m Ridge | 50 | 1.45 | 71 |
DLIP 10 m Pillar | 50 + 50 | 1.45 + 1.13 | 111 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mezera, M.; Alamri, S.; Hendriks, W.A.P.M.; Hertwig, A.; Elert, A.M.; Bonse, J.; Kunze, T.; Lasagni, A.F.; Römer, G.-w.R.B.E. Hierarchical Micro-/Nano-Structures on Polycarbonate via UV Pulsed Laser Processing. Nanomaterials 2020, 10, 1184. https://doi.org/10.3390/nano10061184
Mezera M, Alamri S, Hendriks WAPM, Hertwig A, Elert AM, Bonse J, Kunze T, Lasagni AF, Römer G-wRBE. Hierarchical Micro-/Nano-Structures on Polycarbonate via UV Pulsed Laser Processing. Nanomaterials. 2020; 10(6):1184. https://doi.org/10.3390/nano10061184
Chicago/Turabian StyleMezera, Marek, Sabri Alamri, Ward A.P.M. Hendriks, Andreas Hertwig, Anna Maria Elert, Jörn Bonse, Tim Kunze, Andrés Fabián Lasagni, and Gert-willem R.B.E. Römer. 2020. "Hierarchical Micro-/Nano-Structures on Polycarbonate via UV Pulsed Laser Processing" Nanomaterials 10, no. 6: 1184. https://doi.org/10.3390/nano10061184
APA StyleMezera, M., Alamri, S., Hendriks, W. A. P. M., Hertwig, A., Elert, A. M., Bonse, J., Kunze, T., Lasagni, A. F., & Römer, G.-w. R. B. E. (2020). Hierarchical Micro-/Nano-Structures on Polycarbonate via UV Pulsed Laser Processing. Nanomaterials, 10(6), 1184. https://doi.org/10.3390/nano10061184