
nanomaterials

Article

Hierarchical Micro-/Nano-Structures on
Polycarbonate via UV Pulsed Laser Processing

Marek Mezera 1,*, Sabri Alamri 2 , Ward A.P.M. Hendriks 3 , Andreas Hertwig 4 ,
Anna Maria Elert 4 , Jörn Bonse 4 , Tim Kunze 2 and Andrés Fabián Lasagni 2,5

and Gert-willem R.B.E. Römer 1

1 Department of Mechanics of Solids, Surfaces and Systems (MS3), Faculty of Engineering Technology,
University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands; g.r.b.e.romer@utwente.nl

2 Fraunhofer Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstraße 28, 01277 Dresden, Germany;
sabri.alamri@iws.fraunhofer.de (S.A.); tim.kunze@iws.fraunhofer.de (T.K.);
andres_fabian.lasagni@iws.fraunhofer.de (A.F.L.)

3 Optical Science Group, MESA + Institute for Nanotechnology, University of Twente, Drienerlolaan 5,
7500 AE Enschede, The Netherlands; w.a.p.m.hendriks@utwente.nl

4 Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany;
andreas.hertwig@bam.de (A.H.); anna-maria.elert@bam.de (A.M.E.); joern.bonse@bam.de (J.B.)

5 Institut für Fertigungstechnik, Technische Universität Dresden, Georg-Bähr-Str. 3c, 01069 Dresden, Germany
* Correspondence: m.mezera@utwente.nl

Received: 15 May 2020; Accepted: 2 June 2020; Published: 17 June 2020
����������
�������

Abstract: Hierarchical micro/-nanostructures were produced on polycarbonate polymer surfaces
by employing a two-step UV-laser processing strategy based on the combination of Direct Laser
Interference Patterning (DLIP) of gratings and pillars on the microscale (3 ns, 266 nm, 2 kHz) and
subsequently superimposing Laser-induced Periodic Surface Structures (LIPSS; 7–10 ps, 350 nm,
100 kHz) which adds nanoscale surface features. Particular emphasis was laid on the influence of
the direction of the laser beam polarization on the morphology of resulting hierarchical surfaces.
Scanning electron and atomic force microscopy methods were used for the characterization of the
hybrid surface structures. Finite-difference time-domain (FDTD) calculations of the laser intensity
distribution on the DLIP structures allowed to address the specific polarization dependence of the
LIPSS formation observed in the second processing step. Complementary chemical analyzes by
micro-Raman spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy
provided in-depth information on the chemical and structural material modifications and material
degradation imposed by the laser processing. It was found that when the linear laser polarization
was set perpendicular to the DLIP ridges, LIPSS could be formed on top of various DLIP structures.
FDTD calculations showed enhanced optical intensity at the topographic maxima, which can explain
the dependency of the morphology of LIPSS on the polarization with respect to the orientation of the
DLIP structures. It was also found that the degradation of the polymer was enhanced for increasing
accumulated fluence levels.

Keywords: Direct Laser Interference Patterning; Laser-induced Periodic Surface Structures;
polycarbonate; hierarchical structures; surface functionalization

1. Introduction

In the course of evolution, flora and fauna adapted distinct surface structures, which induced
specific functionalities and therefore ensured survival and procreation. A well-known example of
a functional surface found in nature is the lotus leaf, which is water repellent and self-cleaning [1].
Other examples are the wings of butterflies and cicada, which are bactericidal [2–4], or the skin of
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sharks, which present self-cleaning, anti-biofouling, hydrodynamic and drag reduction properties [5].
Other examples, like the tenebrionid beetle Stenocara collects drinking water on its integument from
morning fog and transports the collected water on its skin towards its mouthparts [6]. In this way,
the insect can survive to the Namibian desert climate. Similar functionalities can be also found on
moisture harvesting lizards [7]. All of these different specific surface properties are the result of
so-called functionalized surfaces, which often consist of regular (hierarchical) micro- and nanometer
sized surface structures. Functionalized surfaces have received increased scientific attention in recent
years, aiming to reproduce them (biomimetics) due to their potential for new applications, such as
anti-bacterial hip implants [8,9], increased [10] or decreased [11] cell-tissue growth onto implantable
materials, liquid motion flow in microfluidics [12], fluid transport in tribological systems [13], friction
control [14,15], wettability control [9,16,17] or colorization of surfaces [18–21].

Two well established laser-based methods have been shown in the past to be capable of creating
micro- and nanostructured surfaces directly on the materials surface and thus functionalizing them,
namely Direct Laser Interference Patterning (DLIP) and Laser-induced Periodic Surface Structures (LIPSS).
DLIP is a method that produces micrometer and sub-micrometer sized, regular (hierarchical) structures
on various materials, such as metals [17], polymers [16,22] or ceramics [23]. The periodic structures
are created due to the interference pattern, which is produced when two or more laser beams
are overlapped, leading to material removal (ablation) at the interference maxima of the spatially
modulated intensity distribution. In the case of two-beam interference, the spatial period of the
interference pattern can be controlled by the laser wavelength (λ) and the angle of incidence of the
interfering laser beams (θ) [17]. Employing modern laser and beam scanning technology, the DLIP
technique can fulfill industrial demands by addressing individual patterns of several square micrometer
areas only, at processing rates of 0.9 m2/min and 0.3 m2/min for polymers and metals, respectively [24].

The second approach is based on LIPSS. LIPSS are regular (hierarchical) micro- to nanometer
sized surface ripples, which appear due to the interference of (1) the impinging laser radiation with
its scattered light at the surface or (2) laser triggered surface plasmon polaritons [25–27] and can
be processed on solids due to polarized, (ultra-) short pulsed laser irradiation at laser peak fluence
levels close to the ablation threshold [25,28]. The direction of the LIPSS depends on the material
and the (linear) laser beam polarization. Their periodicity depends on several process parameters,
such as the laser wavelength (λ), the angle of incidence (α), the number of pulses processing effectively
impinging one spot (Neff) and the laser peak fluence (F0) [9,25,28]. Several types of LIPSS can be
distinguished, depending on the laser processing parameters and the material, e.g., common Low
Spatial Frequency LIPSS (LSFL) with a period of about the laser wavelength (ΛLIPSS ∼ λ), High
Spatial Frequency LIPSS (HSFL) with a period well below the laser wavelength (ΛLIPSS < λ/2),
or even hexagonally arranged triangular nanopillars with an overall period close to the laser wavelength
(ΛLIPSS ∼ λ) [25,28]. LIPSS can be processed on metals [8–10,18–20,29], semiconductors [12,21,25,28],
dielectrics [30], ceramics [31–33] and polymers [34–37]. Large area processing of LIPSS is easily
achieved in a one-step approach by scanning the focused laser beam in a meandering way across the
sample surface. Since the central high fluence part of the Gaussian laser beam profile can generate
different types of LIPSS than its low fluence wing, hierarchical micro-/nano-structures are easily
feasible [9,38]. Moreover, as the periodicity of HSFL is not constrained by the optical diffraction limit,
these extremely fine nanostructures may be even superimposed to sub-micrometric LSFL [39].

While individual scientific communities have already independently explored and optimized
the processing of LIPSS and DLIP-based structures in detail [25,40,41], the combination of both
techniques is still widely unexplored [42]. Although hierarchical structures can be achieved by using
LIPSS [9,38] or DLIP [16] methods separately, the hybrid two-step laser process can provide an
enhanced flexibility control of the surface features as well as explore new geometries in view of tailored
surface functionalities.

Commercially available polycarbonate is used as sample material due to its wide range of
applications, such as for products in the electronic and the automotive sector, in building and
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construction and for optical information storage systems, because of its unique combination of
properties such as excellent toughness, high electrical insulation, transparency and large heat distortion
resistance [43]. However, UV radiation leads to depolymerization of the molecular structure of
polycarbonate [44–47] and this material modification could impair the use for applications. Hence,
the quantitative changes of the molecular structure due to the two laser based surface functionalization
techniques need to be assessed.

In this work, the evolution of nanometer sized LSFL on top of different types of micrometer sized
DLIP structures on polycarbonate with respect to the laser peak fluence is studied, depending on the
morphology and dimensions of the DLIP structures, as well as the direction of the laser polarization
relative to the orientation of the DLIP structure, to obtain hierarchical structures. Additionally,
the structural molecular changes of the polycarbonate due to the laser irradiation are studied.

2. Materials and Methods

Commercially available Bisphenol-A polycarbonate (PC) plates (Makrolon™ of Covestro AG,
Leverkusen, Germany) with a thickness of 5 mm and a surface roughness of Ra ≈ 2 nm were used
as samples. DLIP and LIPSS methods were used on the samples using three different laser setups;
one at the University of Twente (TruMicro 5050 of Trumpf GmbH, Ditzingen, Germany) and two at the
Faunhofer Institute for Material and Beam Technology IWS (DLIP-µFab, Fraunhofer IWS, Dresden,
Germany; Fuego of Time-Bandwidth Products AG, Zurich, Switzerland), as listed in Table 1.

Table 1. Laser sources and process parameters to produce hierarchical structures.

Structure Type DLIP LIPSS

Laser source
Laser-export

TECH-263 Advanced
Trumpf

TruMicro 5050
Time-Bandwidth

Fuego
DLIP Period [µm] 1.5 10 - -
Wavelength [nm] 266 266 343 355
Pulse Duration [s] 3× 10−9 3× 10−9 7× 10−12 1× 10−11

Pulse Frequency [kHz] 2 2 100 100
Beam Quality Factor M2 [-] <1.3 <1.3 <1.3 <1.3
Laser Spot Diameter [µm] 25 25 174 120
Scan Velocity [mm/s] 2.5 2.5 1000 600
Number of Overscans [-] 1 1 1000 1000
Line Pitch [µm] 7.33 10.16 10 3
Geometrical Pulse-to-Pulse Overlap [%] 85 90 94 95

Peak Fluence Levels [J/cm2 ]
0.25 (ridges) +

0.2 (Pillars)
1.45 (ridges) +
1.13 (Pillars) 2. . . 4×10−3 2. . . 4×10−3

2.1. Direct Laser Interference Patterning Configurations

The structuring of the PC samples was conducted by a compact two-beam DLIP system
(DLIP-µFab, Fraunhofer IWS, Dresden, Germany), which produces confined DLIP treated areas
containing the periodic structures created per laser pulse (also called pixels), with a diameter of
dP ≈ 25 µm. The pixel diameter was calculated using the D-squared method described elsewhere [48].
The system uses a frequency quadrupled Q-switched laser head (TECH-263 Advanced of Laser-export
Co. Ltd., Moscow, Russia) with a maximum pulse energy of 50 µJ and operating at a wavelength of
λ= 263 nm and a pulse duration shorter than 3 ns. The laser beam has a nearly Gaussian intensity
distribution (TEM00) with a beam quality of M2 < 1.3. The setup of the used DLIP optics allows the
primary beam from the laser source to split into two single beams by means of a diffractive optical
element. The sub-beams are parallelized by a prism and finally overlapped at the sample surface using
a focusing aspheric lens.

As can be observed in Figure 1a, an interference pattern is obtained within the volume where
the two single laser beams overlap. Changing the position of the prism modifies the interfering angle
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θ, and leads to a change of the spatial period Λ of the periodic structures. In the employed setup,
spatial periods Λ in the range between 1.0 µm and 11.0 µm can be produced. In order to structure
larger areas than the DLIP pixel, the sample is moved using a high precision computer-controlled stage
system (PRO155-05, Aerotech GmbH, Fürth, Germany), resulting in square-shaped processed areas
with an edge length of 30 mm full covered with a ridge-like pattern. In particular, the samples
were moved in the direction parallel to the interference lines with a spatial pulse separation p
and successively displaced laterally of a quantity h (hatch distance), chosen as an integer of the
spatial period (see Figure 1b). Moreover, for producing micro-“pillars”, the areas treated with DLIP
and containing a ridge-like pattern have been rotated by 90 degrees and re-irradiated, selectively
ablating the previous pattern in the interference maxima. Note, that we use the term “pillar” here
in the following for simplicity, since micro-“cones” are usually referred to as self-assembling surface
structures [49–51].

Figure 1. (a) Depiction of the interference phenomenon between two laser beams overlapping with
an angle θ and (b) Scheme of the texturing approach for the displacement of several DLIP pixels
on the sample’s surface with p: pulse separation; h: hatch distance; dp: pixel size; Λ: DLIP period.
The scanning direction is vertical.

2.2. Fabrication of Laser-Induced Periodic Surface Structures

For the manufacturing of LIPSS two laser sources were used, see Table 1. Third harmonics
were generated of a pulsed Yb:YAG disk laser source (TruMicro 5050 of Trumpf GmbH, Ditzingen,
Germany) emitting a linearly polarized laser beam with a wavelength of 1030 nm, diameter of ≈5 mm,
a maximum pulse repetition rate of 400 kHz, pulse energies up to 125 µJ and a fixed pulse duration
of 6.7 ps. In other experiments, a frequency-tripled Nd:VAN laser source (Fuego of Time-Bandwidth
Products AG, Zurich, Switzerland) emitting a linearly polarized laser beam with a wavelength of 1064
nm, a maximum pulse repetition rate of 8 MHz, pulse energies up to 200 µJ and a fixed pulse duration of
10 ps were used. To obtain homogeneous areas of LIPSS, the laser beam was scanned over the substrate
using galvanometer scanners (intelliSCAN14 of ScanLab GmbH, Puchheim, Germany). The laser
beam was focused on the surface of the samples, using a telecentric Fθ lens (Ronar of Linos GmbH,
Göttingen, Germany) with a focal length of 103 mm. For obtaining large geometrical pulse-to-pulse
overlap values in both x− and y−directions at a scan speed of 1 m/s, the laser spot diameter on the
sample was increased either by decreasing the laser beam diameter to ≈1 mm before focusing using a
beam reducing telescope (TRE13 of Optogama, Vilnius, Lithuania), or by defocused laser processing. It
was shown in an earlier publication, that the LIPSS morphologies and dimensions do not significantly
differ when processing a defocused laser beam compared to processing with the focal spot [52].
The geometrical pulse-to-pulse overlap is given by OL = (1− v/(d× fF))× 100, with v being the laser
scan speed, d the beam spot diameter and fF the laser pulse repetition rate. The processing parameters
for the manufacturing of LIPSS are also summarized in Table 1. The meandering area scanning
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procedure could be repeated several times, denoted as the number of overscans (NOS). Schematic
representations of the laser setups and the scanning trajectory of the laser spot are shown in Figure 2.

The laser power at the sample surface was measured using a photodiode power sensor (S130VC
of ThorLabs GmbH, Dachau, Germany) with a measurement uncertainty of ±5%, connected to a
readout unit (PM100A of ThorLabs GmbH, Dachau, Germany). Along with the pulse repetition
rate, this allowed to determine the energy E per individual laser pulse. The Gaussian (TEM00) focal
spot diameter d = 174± 1.6 µm (e−2) was measured in the sample processing plane using a laser
beam characterization device (MicroSpotMonitor of Primes GmbH, Pfungstadt, Germany). From both
information, the peak laser fluence F0 in front of the sample surface was calculated according to
F0 = 2E

πd/22 [48].

Laser Source

Power
Attenuator

BD

BSC
THG

Galvo-
scanner

Z-Stage

PC-
Sample

BR
(optional)

(a)

E

(b)
Figure 2. (a) Schematic representation of the laser setup; λ/2: half-wave plate; BSC: polarizing beam
splitter cube; BD: beam dump; THG: third harmonic generator, BR: beam reducer. (b) Scanning
trajectory of the laser spot; the double-headed arrow indicates the direction of the laser polarization

−→
E ;

fF: laser pulse frequency; v: scan velocity; d: laser spot diameter; OL: geometrical pulse-to-pulse
overlap; NOS: number of overscans; ∆x: geometrical pitch between subsequent laser pulses in
x-direction, ∆y: Line pitch in y-direction.

2.3. Morphological Characterization

The morphology and dimensions of the processed surface structures were analyzed by a Scanning
Electron Microscope (SEM JSM-7200F of JEOL, Tokio, Japan) and an Atomic Force Microscope (AFM
NX10, Park Systems Corp., Suwon, Korea) in true non-contact mode using a non-contact cantilever
(PPP-NCHR, 125 × 30 × 4 µm3, nominal tip radius < 10 nm, Park Systems Corp., Suwon, Korea).
Prior to SEM characterization, the samples were sputter coated with gold (JFC-1300 coater from JEOL,
Tokio, Japan), resulting in a ≈10 nm thick, electrically conductive layer.

From SEM micrographs, the spatial frequencies of LIPSS were analyzed with the help of the 2D
fast Fourier transform (FFT) algorithm using a MATLAB script [53]. Details of this script are reported
in our earlier work [28]. From cross-sections of AFM micrographs, the amplitude of LIPSS were
determined using another MATLAB script, also reported in [52].

2.4. FDTD Simulations

A commercially available photonic Finite-difference time-domain (FDTD) simulation software
(Lumerical FDTD of Lumerical Inc., Vancouver, Canada) was used to analyze numerically the
time-averaged optical intensity distribution of one laser pulse duration induced by a 6.7 ps laser
pulse with a wavelength of 343 nm and with the laser beam polarization perpendicular and parallel to
1.5 µm ridge-like DLIP structures on polycarbonate (DLIP-type 1, see Figure 3a). The surface of the
DLIP structure was modeled using the period, depth and full width at half maximum (FWHM) of the
DLIP-type 1 structure obtained by AFM measurements. The period was found to be 1.5 µm, the depth
of was found to be 400 nm and the FWHM of the ridges was found to be about 1 µm. The mesh
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settings of the two-dimensional computations were set to an automated mesh accuracy of 7 with a
minimal step size of 0.25 nm, the time step size was set to 1.62×10−17 s, and the periodic boundaries
were periodical on x-axis were set to Periodic and on the y-axis to PML. The optical properties were
taken from Ref. [54].

2.5. Chemical Characterization

In order to analyze the surface chemistry of the polycarbonate substrate before and after laser
irradiation of the sample, two different spectroscopy techniques were employed to record the IR spectra,
i.e., micro-Raman spectroscopy (µ-RS) and microscopy based Fourier-transform infrared spectroscopy (FTIR).

µ-RS was performed on the laser-irradiated sample and on a reference position (Alpha 300R,
WiTEC, Ulm, Germany). A ruled 600 grooves/mm grating was chosen in the optical spectrometer
(UHTS 300, WiTEC, Ulm, Germany), which was equipped with a Peltier-cooled CCD camera (iDus
DV401A, Andor Technology Ltd, Belfast, Ireland) operated at a temperature of 210 K. The resulting
wavenumber resolution is < 2 cm−1. The ps-laser irradiated surface regions were excited at a power
level of 0.6 mW using the 532 nm emission line of a continuous wave laser (Excelsior, Spectra Physics,
Santa Clara, USA). The Raman-laser radiation was focused on the sample surface by a microscope
objective (EC Epiplan 20× NA 0.4, Carl Zeiss AG, Oberkochen, Germany) probing a circular spot of
about 4 µm in diameter. All spectra are presented without background correction.

FTIR spectra were recorded in attenuated total reflection (ATR) mode (Vertex 70 with a Hyperion
3000 microscope, Bruker Optik, Ettlingen, Germany). The ATR microscope objective is equipped with
a Ge-crystal tip ensured surface sensitivity through evanescent field coupling. ATR FT-IR spectra
were taken at numerous arbitrary positions on laser processed and unprocessed sample areas with a
measurement area of 80× 80 µm2. The FTIR spectra were background corrected (see details below)
and absorption peaks resulting from ambient air containing CO2 water vapor were removed.

3. Results and Discussion

3.1. Direct Laser Interference Patterning on Polycarbonate

Four different types of DLIP structures were processed in a first set of experiments. DLIP-type
1 and 2 are ridge- and pillar-like structures, respectively, with a period of 1.5 µm and a height of
approximately 400 nm (Figure 3a,b). Otherwise, DLIP-type 3 and 4 types are ridge- and pillar-like
structures, respectively, with a period of 10 µm and an approximated height of about 15 µm
(Figure 3c,d). The laser processing parameters are listed in Table 1.

3.2. Laser-Induced Periodic Surface Structures on Polycarbonate

In a second processing approach, an area of 5 × 5 mm2 was processed with the Trumpf TruMicro
5050 laser system on a pristine polycarbonate sample by scanning the laser spot perpendicular to the
laser polarization and using an overlap of OL = 93% at a pulse frequency of f = 100 kHz, number
of overscans NOS = 1000 and a peak fluence level of F0 = 4.42 mJ/cm2. These parameters permitted
low-spatial frequency LIPSS parallel to the laser polarization (type II [25]) with a very homogeneous
morphology , see Figure 4. The period of the LSFL-II was found to be ΛLIPSS = 265± 75 nm and their
amplitude (modulation depth) A was 11± 8 nm. On the basis of these laser processing parameters,
hierarchical micro-/nanostructures were produced by processing LSFL-II on top of the four different
types of DLIP structures (see next section).
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10 µm 10 µm

10 µm 10 µm

a) DLIP-type 1 b) DLIP-type 2

c) DLIP-type 3 d) DLIP-type 4

Figure 3. (a) ridge-like DLIP structure with a period of 1.5 µm and an depth of 400 nm (DLIP-type 1);
(b) pillar-like DLIP structure with a period of 1.5 µm and an depth of 400 nm (DLIP-type 2);
(c) ridge-like DLIP structure with a period of 10 µm and an depth of 15 µm (DLIP-type 3); (d) pillar-like
DLIP structure with a period of 10 µm and an depth of 15 µm (DLIP-type 4) obtained with laser
parameters listed in Table 1.

Figure 4. AFM topography of LSFL processed on untreated polycarbonate with the above
mentioned parameters.
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3.3. Hierarchical Structures on Polycarbonate

In a further processing phase, the DLIP-treated PC samples were irradiated with ultrashort
UV radiation with the aim to create a two-level hierarchical microtexture. Figures 5–10 show SEM
micrographs of different DLIP structures processed in a second laser processing step in order to
produce LIPSS with orthogonal scanning (laser polarization) directions regarding the direction of the
DLIP ridges and at various laser fluence levels, indicated as ~E and ~v in sub-figures (b), respectively.

2.74 mJ/cm
2

3.07 mJ/cm
2

3.24 mJ/cm
2

3.41 mJ/cm
2

3.58 mJ/cm
2

3.75 mJ/cm
2

(a) (b) (c) (d) (e) (f) (g)

E
v

DLIP-type 1

Figure 5. SEM micrographs of (a) ridge-like DLIP structure with a period of 1.5 µm (DLIP-type 1).
(b–g) Evolution of surface morphology on top of the DLIP structure upon additional scan-processing
with increasing peak fluence levels and a laser beam polarization perpendicular to the DLIP ridges
processed with the Trumpf TruMicro 5050 laser system.

It can be observed in Figure 5, that LSFL-II parallel to the laser polarization and perpendicular
to the 1.5 µm DLIP ridges start to develop on the latter at a fluence level of 2.74 mJ/cm2 and higher.
Also, nano-droplets start to appear in the valleys between the DLIP ridges (see Figure 5b). At a slightly
higher laser fluence level of 3.07 mJ/cm2, LSFL-II also start to develop in the valleys between the
DLIP ridges in form of periodic chains of nano-droplets (see Figure 5c). At a fluence of 3.24 mJ/cm2,
all DLIP ridges are homogeneously covered with LSFL-II. Additionally, it can be observed that the
nano-droplets between the DLIP ridges in Figure 5d–f are larger in diameter then at lower fluence levels
in Figure 5b,c. The seeding of the periodic nano-droplet chains in Figure 5c can be linked to optical
scattering effects, leading to periodic laser-induced defects of the PC with increased absorptivity [26].
The growth of the nano-droplets can be related to thermocapillary forces, pushing molten material
from the ridges down in the DLIP valleys towards the nano-droplets [55,56]. At even higher laser
fluence levels, nano-droplet appearance increases and the DLIP ridges become thinner due to more
molten material that is transferred into nano-droplets until the ridges merge into each other and severe
ablation takes place, see Figure 5e–g.

Figure 6 shows SEM micrographs of the evolution of surface morphology on top of the DLIP-type
1 structure with increasing peak fluence levels and a laser polarization parallel to the DLIP ridges.
Here, the polarization of the laser beam is rotated by 90◦ compared to Figure 5, i.e., parallel to the DLIP
ridges. It can be observed, that also in this case nano-droplets appear at the valleys of the DLIP ridges
at a fluence level of 2.74 mJ/cm2, see Figure 6b. At a somewhat higher fluence level of 2.90 mJ/cm2,
the DLIP ridges start to separate into chains of larger micro-droplets. Similar results were found
when processing LSFL on top of LSFL on polyethersulfone, when the sample was rotated by 90◦ [57]
and when processing LIPSS on a chromium thin film [58]. This phenomenon can be related to the
Plateau-Rayleigh instability [58]. In brief, the surface energy in a stationary fluid in cylindrical form is
larger than the effect of gravity and, hence, changes the shape of the cylinder into droplets in order
to reduce the total surface energy. As for the case with the laser polarization perpendicular to the
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DLIP pattern (see Figure 5), the amount of nano-droplet increases with increasing laser fluence levels,
see Figure 6d–g. LSFL-II appear inhomogeneously and randomly on top of DLIP ridges at fluence
levels of 3.41 mJ/cm2 and 3.58 mJ/cm2. Similar results were found for the pillar-like DLIP structure
with a period of 1.5 µm (DLIP-type 2), as shown in Figure 7. Here, nano-droplets start first to appear
between the ridges and droplet appearance and growth dominates. LSFL-II were found sporadically
on top of the droplet roughened surface at laser fluence levels of 2.57 to 3.07 mJ/cm2, see Figure 7a–g.

2.74 mJ/cm
2

2.90 mJ/cm
2

3.07 mJ/cm
2

3.24 mJ/cm
2

3.41 mJ/cm
2

3.58 mJ/cm
2

(a) (b) (c) (d) (e) (f) (g)

E
v

DLIP-type 1

Figure 6. SEM micrographs of (a) ridge-like DLIP structure with a period of 1.5 µm (DLIP-type 1). (b–g)
Evolution of surface morphology on top of the DLIP-type 1 structure with increasing peak fluence
levels and a laser polarization parallel to the DLIP ridges processed with the Trumpf TruMicro 5050
laser system.

2.10 mJ/cm
2

2.27 mJ/cm
2

2.44 mJ/cm
2

2.57 mJ/cm
2

2.90 mJ/cm
2

3.07 mJ/cm
2

(a) (b) (c) (d) (e) (f) (g)

E v

DLIP-type 2

Figure 7. SEM micrographs of (a) pillar-like DLIP structure with a period of 1.5 µm (DLIP-type 2).
(b–g) Evolution of surface morphology on top of DLIP-type 2 structure with increasing peak fluence
levels processed with the Trumpf TruMicro 5050 laser system.

The formation of LIPSS on top of polymeric photoresist film microstructures were recently
reported by Ehrhardt et al. [42]. The authors studied the formation of LSFL-II on top of pillar-like
dot array microstructures with pillar widths of 2 × 2 µm2 and 5 × 5 µm2 and a pillar height of about
2.2 µm, as well as on top of ridge-like microstructures with ridge widths of 1 µm and 3 µm and a
ridge height of about 1 µm using 100 to 1500 pulses of a nanosecond laser source with a wavelength of
248 nm at a pulse repetition rate of 100 Hz. The authors reported that no laser parameter regime was
found to obtain LSFL on top of 1 × 1 µm2 dot pillar arrays. This is in agreement with our experiments
for the pillar-like DLIP-type 2 structure with a period of 1.5 µm reported in this study.
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2.74 mJ/cm
2

2.90 mJ/cm
2

3.07 mJ/cm
2

3.24 mJ/cm
2

3.41 mJ/cm
2

3.58 mJ/cm
2

(a) (b) (c) (d) (e) (f) (g)

E
v

DLIP-type 3

Figure 8. SEM micrographs of (a) ridge-like DLIP structure with a period of 10 µm (DLIP-type 3). (b–g)
Evolution of surface morphology on top of the DLIP structure with increasing peak fluence levels
and a laser polarization perpendicular to the DLIP ridges processed with the Trumpf TruMicro 5050
laser system.

Figure 8 shows the evolution of nanostructures on top of ridge-like DLIP structures with a period
of 10 µm (DLIP-type 3) when irradiated with UV picosecond pulses linearly polarized perpendicular
to the ridges of the DLIP structure. At a laser fluence level of 2.74 mJ/cm2, LSFL-II and nano-droplets
appear on top of the DLIP ridges, see Figure 8b. With increasing laser fluence, the nano-droplet growth
on top of the ridges is reinforced, see Figure 8b–g. When irradiating the ridge-like DLIP structures
having a period of 10 µm with the laser polarization parallel to the DLIP ridges, LSFL-II only appear
on top of the DLIP ridges at laser fluence levels exceeding the melting threshold of the material. As a
consequence, the “sharp” DLIP ridges collapse, forming small valleys as shown in Figure 9.

DLIP-type 3

Figure 9. SEM micrograph of LSFL-II on top of the ridge of ridge-like DLIP structure with a period
of 10 µm (DLIP-type 3) processed with the Time-Bandwidth Fuego laser system. This sample
was contaminated.
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E v
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Figure 10. SEM micrographs of (a) pillar-like DLIP structure with a period of 10 µm (DLIP-type 4).
(b–g) Evolution of surface morphology on top of the DLIP structure with increasing peak fluence levels
processed with the Time-Bandwidth Fuego laser system.

The formation of LSFL-II and deformation due to melting of pillar-like DLIP cones due to UV
picosecond laser irradiation can be observed in Figure 10. It can be seen that the DLIP cones tip
flattens due to laser-induced melting effects. Moreover, LSFL-II develop on top of the flattened parts,
see Figure 10a–f. The melting also leads to a collapse of the DLIP cones and leaves some holes in
the central region, see Figure 10e–g. The holes may be induced due to the sub-surface release of
gaseous photo-thermal reaction products. Similar results were found in the recent publication by
Ehrhardt et al. [42] on pre-patterned polymer films.

The appearance of LSFL-II on ridge-like photoresist film microstructures “moved” from the
top to the side walls of the ridge-like structures with increasing laser fluence levels, as reported
by Ehrhardt et al. [42]. Additionally, these authors reported that melting is responsible for the
disappearance of the LSFL-II on top of the ridge-like microstructures [42]. The appearance of the
LSFL-II only on top of the DLIP ridges and pillars in this study and ridge-like microstructures reported
in [42] at certain fluence levels can both be explained with the decrease of the local laser fluence at the
tilted slopes of the DLIP ridge topography. That is, due to the geometrical enlargement of the laser
spot on the irradiated surface area at slopes for non-normal incident radiation, the laser fluence level
decreases below the LSFL-II threshold.

In order to evaluate the periodicity and amplitude of the LSFL-II on top of the different DLIP
structures, the topography of DLIP structures at which the ridges are covered homogeneously with
LSFL-II are analyzed using AFM. Figure 11a,c,d show the AFM micrographs of Figures 5d, 8b and 10d,
respectively. Note, that the DLIP-type 3 and 4 are too deep for the AFM tip to reach the bottom of
the DLIP ridges. For these two cases, the AFM micrograph is cut at the depth at which the AFM
measurement lost its signal. The average periods of the LSFL-II are ΛLIPSS = 254 ± 9 nm and the
average amplitudes are 33±12 nm for all analyzed hierarchical structures. It is known that LSFL-II
are seeded and formed in a sub-surface layer [26,27]. Figure 11b shows cross-sections obtained from
AFM measurements of ridge-like DLIP structures with a period of 1.5 µm (DLIP-type 3)—with and
without LSFL-II, as it can be seen in Figure 11a. The Figure also shows, that the overall depth of the
of the DLIP structure is reduced when LSFL-II are generated. This is an indication, that the LSFL-II
indeed are formed below the surface.
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Figure 11. (a) AFM micrograph of LSFL-II processed on DLIP-type 1 with polarization perpendicular
to the DLIP ridges at a laser peak fluence of F0 = 3.24 mJ/cm2, (see Figure 5d). (b) AFM cross-sections
of ridge-like DLIP structures with a period of 1.5 µm (DLIP-type 3)—with (see Figure 11a) and without
LSFL-II. (c) AFM micrograph of LSFL-II processed on DLIP-type 3 with polarization perpendicular to
the DLIP ridges at a laser peak fluence of F0 = 2.74 mJ/cm2, (see Figure 8b). (d) AFM micrograph of
LSFL-II processed on DLIP-type 4 at a laser peak fluence of F0 = 2.92 mJ/cm2, (see Figure 10d).

3.4. FDTD Simulations

Figure 12 shows the time-averaged optical intensity distribution (as calculated by the photonic
simulation software, see Section 2.4) induced by one UV picosecond pulse on and in the surface of
DLIP-type 1 structure with the parameters described in Section 2.4. It can be concluded from this
Figure, that the maximum intensities differ for each case of polarization. That is, if the orientation of
the laser polarization is perpendicular to the DLIP ridges, the maximum intensity is found on top of the
ridge and another less localized intensity enhancement is observed several hundreds of nanometers
below it. The intensity maximum close to the surface can facilitate the seeding of LIPSS on top of the
DLIP ridges, see Figure 5b. If the orientation of the laser polarization is parallel to the DLIP ridges,
the maximum intensity is found in the bottom of the DLIP ridges, which can explain the dominance of
nano-droplet growth at these positions, see Figure 6b.
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Figure 12. Calculated time-averaged optical intensity distribution of a 6.7 ps laser pulse with a
wavelength of 343 nm with a polarization (a) perpendicular and (b) parallel to the orientation of
DLIP-type 1 ridges with a period of 1.5 µm. The arrows in the upper right corners indicate the direction
of the laser polarization. Note the different color scales used in (a,b) for encoding the intensity.

3.5. Chemical Characterization

Figure 13 shows the µ-Raman spectra of non-irradiated and LIPSS-processed PC (LSFL-II as
described in Section 3.2). The reference measurement of the non-irradiated material (black curve) shows
pronounced characteristic peaks that are typical for this type of bisphenol-A based PC material [59].
The measurement in the LIPSS-covered area (green and red curves) exhibit a very strong and broad
background signal that is caused by optical fluorescence. This fluorescence is excited by the Raman
laser in the laser-modified PC over the entire depth (Rayleigh-length, ' 3 µm for the given microscope
objective) of the probing Raman spot. Moreover, it was noticed that the µ-RS spectra recorded in
the LIPSS-covered areas show a characteristic photo-bleaching effect, i.e., the fluorescence level of
the spectra drops about 75 percent upon exposure to the Raman laser radiation and then saturates
after several tens to hundreds of seconds, see Figure 13. The effect arises from broken bonds in
the polymer material that create energetic states within the electronic band gap. These states are
capable of being excited by the Raman laser radiation at 532 nm wavelength, causing the strong
fluorescence background. Upon continuous Raman laser irradiation, these broken bonds may react
with the environment (e.g., via oxidation), hence, reducing the fluorescence again. The red curve
of the laser-processed PC was recorded after photo-bleaching the sample. However, at the given
signal-to-noise level it is difficult to quantify changes induced upon the UV ps-laser irradiation here.
Hence, other DLIP structures were not tested by µ-RS here and a more surface sensitive method
(ATR-FTIR) was selected for further material characterizations.

Fourier-transform infrared spectroscopy in attenuated total reflection mode (ATR-FTIR) is capable
of selectively examining the near-surface layer of organic films [46]. With this technique, the chemical
changes before and after laser irradiation and the resulting degradation of the polycarbonate are
analyzed. Figure 14 exemplifies ATR-FTIR spectra of non-irradiated polycarbonate samples (black
curves) compared to samples processed homogeneously with LSFL-II (see Figure 14a–c, top row,
red curves), DLIP structures with a period of 1.5 µm (see Figure 14d–f, middle row, red and blue
curves) and DLIP structures with a period of 10 µm (see Figure 14g–i, bottom row, red and blue
curves). For each type of surface structure, three different spectral regions of interest are selected,
i.e., left column: 4000 to 2700 cm−1, middle column: 2000 to 1300 cm−1, and right column: 1300 to
600 cm−1, all being representative for the absorption range of specific vibrational excitation modes
in the polymeric material. All measured ATR-FTIR spectra were normalized at the peak located at
1014 cm−1, as proposed in Ref. [46]. It can be concluded from the graphs that the different laser
processing techniques and irradiation parameters lead to a degradation of characteristic absorption
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bands and the formation of various absorption bands at specific wavenumbers. The differences of the
reference spectra of the unprocessed polycarbonate among the different measurements may arise from
inhomogeneities and additives within the polycarbonate samples.

Figure 13. Raman spectra of non-irradiated (unprocessed) PC (black curve) and of UV ps-laser
irradiated PC with LIPSS (LSFL-II) as described in Section 3.2 before (green curve) and after (red curve)
photo-bleaching (for details see the text). Note that the ordinate is separated and the scaling differs for
both separations.

Figure 14. ATR-FTIR spectra of unprocessed samples (black curves) compared to samples processed
homogeneously with LIPSS (type LSFL-II, red curves in (a–c), ridge-like (blue curves) or pillar-like
(red curves) DLIP structures with 1.5 µm period (d–f) and ridge-like (blue curves) or pillar-like
(red curves) DLIP structures with 10 µm period (g–i). Note the different vertical scales in the graphs.
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For all processed samples, the laser processing led to a degradation of the C-H vibrational region
at a wavenumber of about 3000 cm−1 (see Figure 14a,d,f), the carbonyl and C=C vibration peaks at
wavenumbers about 1790 and 1500 cm−1, respectively (see Figure 14b,e,h) and the C-O-C vibration
features at about 1120 to 1280 cm−1 (see Figure 14c,f,i). The degradation of the laser irradiated
polycarbonate is also accompanied by the appearance/growth of other bands. While the processing
of LIPSS leads to a broad absorption band at about 3400 cm−1 (see Figure 14a), which is related to
the OH-stretch region [45], the processing of DLIP structures leads to absorption bands at 3550 and
3500 cm−1 (see Figure 14d,g), which are attributed to free- and hydrogen-bonded phenolic groups [44].
Additionally, two bands arise at about 1630 and 1690 cm−1 (see Figure 14b,e,h), which are attributed
to the creation of phenylsalicate and dihydroxybenzophenone (both C13H10O3), respectively [46,47].
The degradation on the polycarbonate upon irradiation with ultrashort pulsed UV radiation is in full
accordance with the literature here [44–47].

It can be observed in Figure 14, when comparing the relative changes of the absorption
spectra from the untreated PC with the spectra of the processed samples with various micro- and
nanostructures, that the relative changes due to laser irradiation are most affected by the production of
homogeneous areas of LIPSS (see Figure 14a–c) and least affected by the creation of DLIP structures
with a period of 1.5 µm (see Figure 14d–f). Additionally, it can be observed in Figures 14d–i, that the
formation of pillar-like DLIP structures affects the degradation of the PC more than the fabrication
of ridge-like DLIP structures . The different levels of degradation of the PC due to the processing of
different structures can be related to the number of laser pulses irradiating one spot diameter Neff and
the corresponding accumulated fluence (Facc) levels, see Table 2. The total amount of pulses impinging
the same spot equals Neff = NOS × d2 × f /(v × h) with h being the hatch distance (line pitch).
The accumulated fluence is given by Facc = Neff × F0. It can be observed in and Table 2, that although
the peak fluence to manufacture LIPSS-II is much less than the peak fluence to create the ridge-like
and pillar-like DLIP structures, the accumulated fluence is much greater when comparing those
parameters. The latter explains the increasing degradation of the polycarbonate when comparing
different ATR-FTIR spectra of the different samples in Figure 14.

Table 2. Effective number of pulses and accumulated laser fluence levels due to various laser micro-
and nanostructuring techniques.

Structure Type Neff [-] F0 [J/cm2] Facc [J/cm2]

LSFL-II 302760 4.4×10−3 1338
DLIP 1.5 µm Ridge 68 0.25 17
DLIP 1.5 µm Pillar 68 + 68 0.25 + 0.2 27
DLIP 10 µm Ridge 50 1.45 71
DLIP 10 µm Pillar 50 + 50 1.45 + 1.13 111

It must to be noted, that the light penetration depth according to the Lambert-Beer law between the
nanosecond and picosecond laser sources differ due to the different wavelength used. The penetration
depth will also have an impact on the depth of the changes of the chemical structure of the polymer.
Whereas the penetration depth for a wavelength of 266 nm on PC is about 0.6 µm [60], the penetration
depths for wavelengths of 343 nm and 355 nm are about 104 and 107 µm, respectively [54].
However, the depth of the chemical changes fall out of the scope of this paper.

4. Conclusions

The evolution of nanometric LIPSS on different types of micrometric DLIP structures with
increasing fluence levels was analyzed to achieve hierarchical micro-/nano-structures on a commercial
polycarbonate (Makrolon ™). It was found that LIPSS can be formed on top of various forms and
sizes of DLIP structures by selecting the laser beam polarization perpendicular to the DLIP ridges.
However, the fabrication of LIPSS on a micro-scale structure is limited by the height and width of the
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pre-processed microscale ridges. FDTD calculations of the time-averaged optical intensity distribution
of a picosecond laser pulse with a wavelength of 343 nm at micro-structures with a period of 1.5 µm
and a height of 400 nm were conducted with varying laser beam polarization directions. If the latter
was set perpendicular to the micro-structures, the time-averaged optical intensity was found to be
enhanced on top of the micro-structures, promoting the seeding of LSFL on top of the ridges. However,
when the laser beam polarization direction was set parallel to the DLIP ridges, the optical intensity
was found to be locally increased at the bottom of the DLIP ridges, enhancing nano-droplet growth
at these positions. Moreover, since LSFL appearance is limited to a narrow window of laser fluence
levels, the growth of LSFL only on top of the DLIP ridges was was limited by the non-normal angle
of incidence of the laser radiation at the side walls of the DLIP structures. The latter decreases the
local fluence level below the LSFL threshold. As an important aspect for potential future applications,
it was found that a sufficiently broad top of the DLIP-pillars is required to allow LIPSS to be formed
there. Additionally, with increasingly accumulated fluence levels, the degradation of the polymer also
progresses. This needs to be considered if the original property of the unprocessed polymer is essential
for applications.
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