Investigation of Local Conduction Mechanisms in Ca and Ti-Doped BiFeO3 Using Scanning Probe Microscopy Approach
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Spaldin, N.A.; Cheong, S.; Ramesh, R. Multiferroics: Past, present, and future. Phys. Today 2010, 63, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Rojac, T.; Bencan, A.; Drazic, G.; Sakamoto, N.; Ursic, H.; Jancar, B.; Tavcar, G.; Makarovic, M.; Walker, J.; Malic, B.; et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 2017, 16, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Choi, T.; Lee, S.; Choi, Y.J.; Kiryukhin, V.; Cheong, S.-W. Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3. Science 2009, 324, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Spaldin, N.A.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203–212. [Google Scholar] [CrossRef]
- Tokunaga, Y.; Furukawa, N.; Sakai, H.; Taguchi, Y.; Arima, T.; Tokura, Y. Composite domain walls in a multiferroic perovskite ferrite. Nat. Mater. 2009, 8, 558–562. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Yang, C.-H.; Kan, D.; Takeuchi, I.; Nagarajan, V.; Seidel, J. Doping BiFeO3: Approaches and enhanced functionality. Phys. Chem. Chem. Phys. 2012, 14, 15953. [Google Scholar] [CrossRef]
- Khomchenko, V.A.; Troyanchuk, I.O.; Többens, D.M.; Sikolenko, V.; Paixão, J.A. Composition- and temperature-driven structural transitions in Bi1−xCaxFeO3 multiferroics: A neutron diffraction study. J. Phys. Condens. Matter. 2013, 25, 1–8. [Google Scholar] [CrossRef]
- Troyanchuk, I.O.; Karpinsky, D.V.; Bushinsky, M.V.; Kovetskaya, M.I.; Efimova, E.A.; Eremenko, V.V. Morphotropic phase boundary, weak ferromagnetism, and strong piezoelectric effect in Bi1−xCaxFeO3−x/2 compounds. J. Exp. Theor. Phys. 2011, 113, 1025–1031. [Google Scholar] [CrossRef]
- Seidel, J.; Luo, W.; Suresha, S.; Nguyen, P.-K.; Lee, A.; Kim, S.-Y.; Yang, C.-H.; Pennycook, S.; Pantelides, S.; Scott, J.; et al. Prominent electrochromism through vacancy-order melting in a complex oxide. Nat. Commun. 2012, 3, 799. [Google Scholar] [CrossRef]
- Yang, C.-H.; Seidel, J.; Kim, S.Y.; Rossen, P.B.; Yu, P.; Gajek, M.; Chu, Y.-H.; Martin, L.W.; Holcomb, M.B.; He, Q.; et al. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 2009, 8, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Sardar, K.; Hong, J.; Catalan, G.; Biswas, P.K.; Lees, M.R.; Walton, R.I.; Scott, J.F.; Redfern, S.A.T. Structural, spectroscopic, magnetic and electrical characterization of Ca-doped polycrystalline bismuth ferrite, Bi1−xCaxFeO3−x/2 (x ≤ 0.1). J. Phys. Condens. Matter. 2012, 24, 045905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidel, J.; Maksymovych, P.; Batra, Y.; Katan, A.; Yang, S.Y.; He, Q.; Baddorf, A.P.; Kalinin, S.V.; Yang, C.-H.; Yang, J.-C.; et al. Domain Wall Conductivity in La-Doped BiFeO. Phys. Rev. Lett. 2010, 105, 197603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidel, J.; Martin, L.W.; He, Q.; Zhan, Q.; Chu, Y.-H.; Rother, A.; Hawkridge, M.E.; Maksymovych, P.; Yu, P.; Gajek, M.; et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 2009, 8, 229–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geneste, G.; Paillard, C.; Dkhil, B. Polarons, vacancies, vacancy associations, and defect states in multiferroic BiFeO. Phys. Rev. B 2019, 99, 024104. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Jeon, J.H.; Yoon, C.; Lee, S.; Kim, Y.S.; Oh, T.J.; Kim, Y.H.; Park, J.; Song, T.K.; Park, B.H. Intrinsic defect-mediated conduction and resistive switching in multiferroic BiFeO3 thin films epitaxially grown on SrRuO3 bottom electrodes. Appl. Phys. Lett. 2016, 108, 10802. [Google Scholar] [CrossRef]
- Guyonnet, J.; Gaponenko, I.; Gariglio, S.; Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 2011, 23, 5377–5382. [Google Scholar] [CrossRef] [Green Version]
- Stolichnov, I.; Feigl, L.; McGilly, L.J.; Sluka, T.; Wei, X.-K.; Colla, E.; Crassous, A.; Shapovalov, K.; Yudin, P.; Tagantsev, A.K.; et al. Bent Ferroelectric Domain Walls as Reconfigurable Metallic-Like Channels. Nano Lett. 2015, 15, 8049–8055. [Google Scholar] [CrossRef]
- Maksymovych, P.; Morozovska, A.N.; Yu, P.; Eliseev, E.; Chu, Y.-H.; Ramesh, R.; Baddorf, A.P.; Kalinin, S.V. Tunable Metallic Conductance in Ferroelectric Nanodomains. Nano Lett. 2012, 12, 209. [Google Scholar] [CrossRef]
- de Luca, G.; Rossell, M.D.; Schaab, J.; Viart, N.; Fiebig, M.; Trassin, M. Domain Wall Architecture in Tetragonal Ferroelectric Thin Films. Adv. Mater. 2016, 29, 1605145. [Google Scholar] [CrossRef] [Green Version]
- Schröder, M.; Haußmann, A.; Thiessen, A.; Soergel, E.; Woike, T.; Eng, L.M. Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 2012, 22, 3936–3944. [Google Scholar] [CrossRef]
- Meier, D.; Seidel, J.; Cano, A.; Delaney, K.T.; Kumagai, Y.; Mostovoy, M.; Spaldin, N.A.; Ramesh, R.; Fiebig, M. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 2012, 11, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eliseev, E.A.; Morozovska, A.N.; Svechnikov, G.S.; Gopalan, V.; Shur, V.Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 2011, 83, 235313. [Google Scholar] [CrossRef] [Green Version]
- Rojac, T.; Ursic, H.; Bencan, A.; Malic, B.; Damjanovic, D. Mobile domain walls as a bridge between nanoscale conductivity and macroscopic electromechanical response. Adv. Funct. Mater. 2015, 25, 2099–2108. [Google Scholar] [CrossRef]
- Farokhipoor, S.; Noheda, B. Local conductivity and the role of vacancies around twin walls of (001)−BiFeO3 thin films. J. Appl. Phys. 2012, 112, 052003. [Google Scholar] [CrossRef] [Green Version]
- Farokhipoor, S.; Noheda, B. Conduction through 71° Domain Walls in BiFeO Thin Films. Phys. Rev. Lett. 2011, 107, 127601. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Yeh, C.-H.; Yang, J.-C.; Singh-Bhalla, G.; Liang, C.-W.; Chiu, P.-W.; Catalan, G.; Martin, L.W.; Chu, Y.-H.; Scott, J.F.; et al. Magnetotransport at Domain Walls in BiFeO3. Phys. Rev. Lett. 2012, 108, 067203. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Fina, I.; Marti, X.; Kim, Y.H.; Hesse, D.; Alexe, M. Spintronic Functionality of BiFeO3 Domain Walls. Adv. Mater. 2014, 26, 7078–7082. [Google Scholar] [CrossRef]
- Guzelturk, B.; Mei, A.B.; Zhang, L.; Tan, L.Z.; Donahue, P.; Singh, A.G.; Schlom, D.G.; Martin, L.W.; Lindenberg, A.M. Light-Induced Currents at Domain Walls in Multiferroic BiFeO3. Nano Lett. 2019, 20, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lu, H.; Yan, X.; Cheng, X.; Xie, L.; Aoki, T.; Li, L.; Heikes, C.; Lau, S.P.; Schlom, D.G.; et al. Intrinsic Conductance of Domain Walls in BiFeO3. Adv. Mater. 2019, 31, e1902099. [Google Scholar] [CrossRef]
- Yang, T.; Wei, J.; Guo, Y.; Lv, Z.; Xu, Z.; Cheng, Z. Manipulation of Oxygen Vacancy for High Photovoltaic Output in Bismuth Ferrite Films. ACS Appl. Mater. Interfaces 2019, 11, 23372–23381. [Google Scholar] [CrossRef] [PubMed]
- Edererand, C.; Spaldin, N.A. Influence of strain and oxygen vacancies on the magnetoelectric propertiesof multiferroic bismuth ferrite. Phys. Rev. B 2005, 71, 224103. [Google Scholar] [CrossRef] [Green Version]
- Coy, E.; Fina, I.; Załęski, K.; Krysztofik, A.; Yate, L.; Rodriguez, L.; Graczyk, P.; Głowiński, H.; Ferrater, C.; Dubowik, J.; et al. High-temperature Magnetodielectric Bi(Fe0.5Mn0.5)O3 Thin Films with Checkerboard-Ordered Oxygen Vacancies and Low Magnetic Damping. Phys. Rev. Appl. 2018, 10, 054072. [Google Scholar] [CrossRef]
- Tomura, Y.; Oikawa, I.; Takamura, H. Oxygen vacancy order-disorder transition at high temperaturein Bi-Sr-Fe-based perovskite-type oxides. Phys. Rev. Mat. 2019, 3, 125802. [Google Scholar]
- Khomchenko, V.A.; Paixão, J.A. Spontaneous magnetization in the polar phase of Bi1−xCaxFeO3−2/x perovskites: The role of anion vacancies. J. Appl. Phys. 2014, 116, 214105. [Google Scholar] [CrossRef]
- Khomchenko, V.A.; Paixão, J.A. Structural defects as a factor controlling the magnetic properties of pure and Ti-doped Bi1−x CaxFeO3−x/2 multiferroics. J. Phys. Condens. Matter. 2015, 27, 436002. [Google Scholar] [CrossRef]
- Wefring, E.T.; Einarsrud, M.-A.; Grande, T. Electrical conductivity and thermopower of (1 − x) BiFeO3−xBi0.5K0.5TiO3 (x = 0.1, 0.2) ceramics near the ferroelectric to paraelectric phase transition. Phys. Chem. Chem. Phys. 2015, 17, 9420–9428. [Google Scholar] [CrossRef] [Green Version]
- Khomchenko, V.A.; Paixão, J.A. Ti doping-induced magnetic and morphological transformations in Sr- and Ca-substituted BiFeO3. J. Phys. Condens. Matter. 2016, 28, 166004. [Google Scholar] [CrossRef]
- MacLaren, I.; Wang, L.Q.; Schaffer, B.; Ramasse, Q.M.; Craven, A.J.; Selbach, S.M.; Spaldin, N.A.; Miao, S.; Kalantari, K.; Reaney, I.M. Novel Nanorod Precipitate Formation in Neodymium and Titanium Codoped Bismuth Ferrite. Adv. Funct. Mater. 2013, 23, 683–689. [Google Scholar] [CrossRef] [Green Version]
- MacLaren, I.; Wang, L.; Morris, O.; Craven, A.J.; Stamps, R.L.; Schaffer, B.; Ramasse, Q.M.; Miao, S.; Kalantari, K.; Sterianou, I.; et al. Local stabilisation of polar order at charged antiphase boundaries in antiferroelectric (Bi0.85Nd0.15)(Ti0.1Fe0.9)O3. APL Mater. 2013, 1, 021102. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, M.S.; Jardiel, T.; Peiteado, M.; Mompeán, F.J.; Garcia-Hernandez, M.; Garcia, M.A.; Villegas, M.; Caballero, A.C. Intrinsic Compositional Inhomogeneities in Bulk Ti-Doped BiFeO3: Microstructure Development and Multiferroic Properties. Chem. Mater. 2013, 25, 1533–1541. [Google Scholar] [CrossRef]
- He, S.; Liu, G.; Zhu, Y.; Ma, X.; Sun, J.; Kang, S.; Yan, S.; Chen, Y.; Mei, L.; Jiao, J. Impact of interfacial effects on ferroelectric resistance switching of Au/BiFeO3/Nb:SrTiO3 (100) Schottky junctions. RSC Adv. 2017, 7, 22715–22721. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, M.S.; Khomchenko, V.A.; Silibin, M.V.; Karpinsky, D.V.; Blawert, C.; Serdechnova, M.; Paixão, J.A. Investigation of Local Conduction Mechanisms in Ca and Ti-Doped BiFeO3 Using Scanning Probe Microscopy Approach. Nanomaterials 2020, 10, 940. https://doi.org/10.3390/nano10050940
Ivanov MS, Khomchenko VA, Silibin MV, Karpinsky DV, Blawert C, Serdechnova M, Paixão JA. Investigation of Local Conduction Mechanisms in Ca and Ti-Doped BiFeO3 Using Scanning Probe Microscopy Approach. Nanomaterials. 2020; 10(5):940. https://doi.org/10.3390/nano10050940
Chicago/Turabian StyleIvanov, Maxim S., Vladimir A. Khomchenko, Maxim V. Silibin, Dmitry V. Karpinsky, Carsten Blawert, Maria Serdechnova, and José A. Paixão. 2020. "Investigation of Local Conduction Mechanisms in Ca and Ti-Doped BiFeO3 Using Scanning Probe Microscopy Approach" Nanomaterials 10, no. 5: 940. https://doi.org/10.3390/nano10050940
APA StyleIvanov, M. S., Khomchenko, V. A., Silibin, M. V., Karpinsky, D. V., Blawert, C., Serdechnova, M., & Paixão, J. A. (2020). Investigation of Local Conduction Mechanisms in Ca and Ti-Doped BiFeO3 Using Scanning Probe Microscopy Approach. Nanomaterials, 10(5), 940. https://doi.org/10.3390/nano10050940