Nanomaterials for Combined Stabilisation and Deacidification of Cellulosic Materials—The Case of Iron-Tannate Dyed Cotton
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Sample Treatment
2.4. Accelerated Ageing
2.5. Sample Characterisation
2.5.1. Sample Conditioning and Weight Changes
2.5.2. Tensile Testing
2.5.3. Colourimetry
2.5.4. SEM
2.5.5. pH Measurements
3. Results and Discussion
3.1. Effect of the Nanosystems for Stabilisation Alone
3.2. Effect of Combined Nanosystems for the Strengthening and Deacidification
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CMC | carboxymethyl cellulose |
CNC | cellulose nanocrystals |
CNF | cellulose nanofibres |
DP | degree of polymerisation |
EML | elastic modulus at low deformation |
NMR | nuclear magnetic resonance |
NP | nanoparticle |
PEI | polyethylenimine |
PVP | polyvinylpyrrolidone |
RH | relative humidity |
SEM | scanning electron microscopy |
SNP | silica nanoparticle |
T | temperature |
References
- French, A.D. Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 2017, 24, 4605–4609. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter De Gruyter: Berlin, Germany; New York, NY, USA, 1984; ISBN 0899255930. [Google Scholar]
- Fan, L.; Gharpuray, M.M.; Lee, Y.-H. Acid Hydrolysis of Cellulose. In Cellulose Hydrolysis; Springer: Berlin/Heidelberg, Germany, 1987; pp. 121–148. ISBN 978-3-642-72575-3. [Google Scholar]
- Lundgaard, L.; Hansen, W.; Linhjell, D.; Painter, T. Aging of oil-impregnated paper in power transformers. Power Deliv. IEEE Trans. 2004, 19, 230–239. [Google Scholar] [CrossRef]
- Banait, N.; Jencks, W. Reactions of anionic nucleophiles with. alpha.-D-glucopyranosyl fluoride in aqueous solution through a concerted, ANDN (SN2) mechanism. J. Am. Chem. Soc. 1991, 113, 7951–7958. [Google Scholar] [CrossRef]
- Conti, A.; Poggi, G.; Baglioni, P.; De Luca, F. On the macromolecular cellulosic network of paper: Changes induced by acid hydrolysis studied by NMR diffusometry and relaxometry. Phys. Chem. Chem. Phys. 2014, 16, 8409–8417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conti, A.; Palombo, M.; Parmentier, A.; Poggi, G.; Baglioni, P.; De Luca, F. Two-phase water model in the cellulose network of paper. Cellulose 2017, 24, 3479–3487. [Google Scholar] [CrossRef] [Green Version]
- Halsall, T.G.; Brewis, S. The Chemistry of Triterpenes and related Compounds. Part XXXVIII. The Acidic Constituents of Dammar Resin. J. Chem. Soc. 1961, 646–650. [Google Scholar]
- Ryder, N. Acidity in canvas painting supports: Deacidification of two 20th century paintings. Conservator 1986, 10, 31–36. [Google Scholar] [CrossRef]
- Andriulo, F.; Braovac, S.; Kutzke, H.; Giorgi, R.; Baglioni, P. Nanotechnologies for the restoration of alum-treated archaeological wood. Appl. Phys. A Mater. Sci. Process. 2016, 122, 322. [Google Scholar] [CrossRef]
- Dobrodskaya, T.V.; Egoyants, P.A.; Ikonnikov, V.K.; Romashenkova, N.D.; Sirotin, S.A.; Dobrusina, S.A.; Podgornaya, N.I. Treatment of paper with basic agents in alcohols and supercritical carbon dioxide to neutralize acid and prolong storage time. Russ. J. Appl. Chem. 2004, 77, 2017–2021. [Google Scholar] [CrossRef]
- Ageing and Stabilization of Paper; Strlič, M.; Kolar, J. (Eds.) National and University Library: Ljubljana, Slovenia, 2005. [Google Scholar]
- Wouters, J. Coming Soon to a Library Near You? Science 2008, 322, 1196–1198. [Google Scholar] [CrossRef]
- Yanjuan, W.; Yanxiong, F.; Wei, T.; Chunying, L. Preservation of aged paper using borax in alcohols and the supercritical carbon dioxide system. J. Cult. Herit. 2013, 14, 16–22. [Google Scholar] [CrossRef]
- Afsharpour, M.; Hadadi, M. Titanium dioxide thin film: Environmental control for preservation of paper-art-works. J. Cult. Herit. 2014, 15, 569–574. [Google Scholar] [CrossRef]
- Stoner, J.H.; Rushfield, R. Conservation of Easel Paintings; Routledge: Oxon, UK, 2012; ISBN 1136000429. [Google Scholar]
- Titus, S.; Schneller, R.; Huhsmann, E.; Hähner, U.; Banik, G. Stabilising local areas of loss in iron gall ink copy documents from the Savigny estate. Restaurator 2009, 30, 16–50. [Google Scholar] [CrossRef]
- Baglioni, P.; Chelazzi, D. Nanoscience for the Conservation of Works of Art; Nanoscience & Nanotechnology Series; Baglioni, P., Chelazzi, D., Eds.; Royal Society of Chemistry: Cambridge, UK, 2013; ISBN 978-1-84973-566-7. [Google Scholar]
- Baglioni, P.; Chelazzi, D.; Giorgi, R. Nanotechnologies in the Conservation of Cultural Heritage—A Compendium of Materials and Techniques; Springer: Heidelberg, Germany; New York, NY, USA; London, UK, 2015; ISBN 978-94-017-9303-2. [Google Scholar]
- Baty, J.W.; Maitland, C.L.; Minter, W.; Hubbe, M.A.; Jordan-Mowery, S.K. Deacidification for the conservation and preservation of paper-based works: A review. BioResources 2010, 5, 1955–2023. [Google Scholar]
- Zervos, S.; Alexopoulou, I. Paper conservation methods: A literature review. Cellulose 2015, 22, 2859–2897. [Google Scholar] [CrossRef]
- Peacock, E.E. Deacidification of degraded linen. Stud. Conserv. 1983, 28, 8–14. [Google Scholar]
- Hackney, S.; Townsend, J.H.; Wyplosz, N. Studies on the deacidification of canvas supports with magnesium methoxy methyl carbonate (MMC). In Proceedings of the 11th Triennial Meeting, Edinburgh, Scotland, 1–6 September 1996; Preprints (ICOM Committee for Conservation). James & James: London, UK, 1996; pp. 271–275, ISBN 1-873936-50-8. [Google Scholar]
- Barrow, W.J.; Sproull, R.C. Permanence in Book Papers: Investigation of deterioration in modern papers suggests a practical basis for remedy. Science 1959, 129, 1075–1084. [Google Scholar] [CrossRef]
- Kolar, J. Mechanism of Autoxidative Degradation of Cellulose. Restaurator 1997, 18, 163–176. [Google Scholar] [CrossRef]
- Neevel, J. (Im)Possibilities of the Phytate Treatment; Brown, J.E., Ed.; The University of Northumbria: Newcastle Upon Tyne, UK, 2000; pp. 127–134. [Google Scholar]
- Malesic, J.; Kolar, J.; Strlič, M.; Malesič, J.; Kolar, J.; Strlič, M. Effect of pH and Carbonyls on the Degradation of Alkaline Paper Factors Affecting Ageing of Alkaline Paper. Restaurator 2002, 23, 145–153. [Google Scholar] [CrossRef]
- Sequeira, S.; Casanova, C.; Cabrita, E. Deacidification of paper using dispersions of Ca(OH)2 nanoparticles in isopropanol. Study of efficiency. J. Cult. Herit. 2006, 7, 264–272. [Google Scholar] [CrossRef]
- Stefanis, E.; Panayiotou, C. Protection of Lignocellulosic and Cellulosic Paper by Deacidification with Dispersions of Micro- and Nano-particles of Ca(OH)2 and Mg(OH)2 in Alcohols. Restaurator 2007, 28, 185–200. [Google Scholar] [CrossRef]
- Zumbühl, S.; Wuelfert, S. Chemical Aspects of the Bookkeeper Deacidification of Cellulosic Materials: The Influence of Surfactants. Stud. Conserv. 2001, 46, 169–180. [Google Scholar]
- Save Paper! Mass Deacidification, Today’s Experiences, Tomorrow’s Perspectives: Paper Given at the International Conference, 15–17 February 2006; Blüher, A.; Grossenbacher, G. (Eds.) Swiss National Library: Bern, Switzerland, 2006. [Google Scholar]
- Flieder, F.; Delange, E.; Duval, A.; Leroy, M.; Dufour, J.; Havermans, J.B.G.A. Study of the Photo-Oxidation of Mass-Deacidified Papers. Restaurator 2001, 22, 20–40. [Google Scholar] [CrossRef]
- Anders, M. Book and Paper Preservation. In Handbook of Paper and Board; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 1087–1108. [Google Scholar]
- Hubbe, M.A.; Smith, R.D.; Zou, X.; Katuscak, S.; Potthast, A.; Ahn, K. Deacidification of acidic books and paper by means of non-aqueous dispersions of alkaline particles: A review focusing on completeness of the reaction. BioResources 2017, 12, 4410–4477. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, R.; Dei, L.; Ceccato, M.; Schettino, C.; Baglioni, P. Nanotechnologies for Conservation of Cultural Heritage: Paper and Canvas Deacidification. Langmuir 2002, 18, 8198–8203. [Google Scholar] [CrossRef]
- Giorgi, R.; Bozzi, C.; Dei, L.; Gabbiani, C.; Ninham, B.W.; Baglioni, P. Nanoparticles of Mg(OH)2: Synthesis and Application to Paper Conservation. Langmuir 2005, 21, 8495–8501. [Google Scholar] [CrossRef]
- Giorgi, R.; Chelazzi, D.; Baglioni, P. Nanoparticles of Calcium Hydroxide for Wood Conservation. The Deacidification of the Vasa Warship. Langmuir 2005, 21, 10743–10748. [Google Scholar] [CrossRef]
- Giorgi, R.; Chelazzi, D.; Baglioni, P. Conservation of acid waterlogged shipwrecks: Nanotechnologies for de-acidification. Appl. Phys. A Mater. Sci. Process. 2006, 83, 567–571. [Google Scholar] [CrossRef]
- Poggi, G.; Toccafondi, N.; Chelazzi, D.; Canton, P.; Giorgi, R.; Baglioni, P. Calcium hydroxide nanoparticles from solvothermal reaction for the deacidification of degraded waterlogged wood. J. Colloid Interface Sci. 2016, 473, 1–8. [Google Scholar] [CrossRef]
- Giorgi, R.; Chelazzi, D.; Fratini, E.; Langer, S.; Niklasson, A.; Rådemar, M.; Svensson, J.-E.; Baglioni, P. Nanoparticles of calcium hydroxide for wood deacidification: Decreasing the emissions of organic acid vapors in church organ environments. J. Cult. Herit. 2009, 10, 206–213. [Google Scholar] [CrossRef]
- Poggi, G.; Giorgi, R.; Toccafondi, N.; Katzur, V.; Baglioni, P. Hydroxide Nanoparticles for Deacidification and Concomitant Inhibition of Iron-Gall Ink Corrosion of Paper. Langmuir 2010, 26, 19084–19090. [Google Scholar] [CrossRef]
- Poggi, G.; Baglioni, P.; Giorgi, R. Alkaline Earth Hydroxide Nanoparticles for the Inhibition of Metal Gall Ink Corrosion. Restaurator 2011, 32, 247–273. [Google Scholar] [CrossRef]
- Poggi, G.; Toccafondi, N.; Melita, L.N.; Knowles, J.C.; Bozec, L.; Giorgi, R.; Baglioni, P.; Baglioni, P. Calcium hydroxide nanoparticles for the conservation of cultural heritage: New formulations for the deacidification of cellulose-based artifacts. Appl. Phys. A 2014, 114, 685–693. [Google Scholar] [CrossRef]
- Stefanis, E.; Panayiotou, C. Study of the Photochemical Stability of Paper Deacidified with Dispersions of Ca(OH)2 and Mg(OH)2 Nanoparticles in Alcohols. Restaurator 2008, 29, 125–138. [Google Scholar] [CrossRef]
- Bastone, S.; Chillura Martino, D.F.; Renda, V.; Saladino, M.L.; Poggi, G.; Caponetti, E. Alcoholic nanolime dispersion obtained by the insolubilisation-precipitation method and its application for the deacidification of ancient paper. Colloids Surfaces A Physicochem. Eng. Asp. 2017, 513, 241–249. [Google Scholar] [CrossRef]
- Amornkitbamrung, L.; Mohan, T.; Hribernik, S.; Reichel, V.; Faivre, D.; Gregorova, A.; Engel, P.; Kargl, R.; Ribitsch, V. Polysaccharide stabilized nanoparticles for deacidification and strengthening of paper. RSC Adv. 2015, 5, 32950–32961. [Google Scholar] [CrossRef] [Green Version]
- Wójciak, A. Washing, Spraying and Brushing. A Comparison of Paper Deacidification by Magnesium Hydroxide Nanoparticles. Restaur. Int. J. Preserv. Libr. Arch. Mater. 2015, 36, 3–23. [Google Scholar] [CrossRef]
- Poggi, G.; Giorgi, R.; Mirabile, A.; Xing, H.; Baglioni, P. A stabilizer-free non-polar dispersion for the deacidification of contemporary art on paper. J. Cult. Herit. 2017, 26, 44–52. [Google Scholar] [CrossRef]
- Balloffet, N.; Hille, J.; Reed, J.A. Preservation and Conservation for Libraries and Archives; Reed, J.A., Ed.; American Library Association: Chicago, IL, USA, 2005; p. 214. ISBN 0838908799. [Google Scholar]
- Berger, G.A. Formulating Adhesives for the Conservation of Paintings. Stud. Conserv. 1972, 17, 613–629. [Google Scholar] [CrossRef]
- Ackroyd, P. The structural conservation of canvas paintings: Changes in attitude and practice since the early 1970s. Stud. Conserv. 2002, 47, 3–14. [Google Scholar] [CrossRef]
- Ploeger, R.; René De La Rie, E.; McGlinchey, C.W.; Palmer, M.; Maines, C.A.; Chiantore, O. The long-term stability of a popular heat-seal adhesive for the conservation of painted cultural objects. Polym. Degrad. Stab. 2014, 107, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Ackroyd, P.; Phenix, A.; Villers, C. Not lining in the twenty-first century: Attitudes to the structural conservation of canvas paintings. Conservator 2002, 26, 14–23. [Google Scholar] [CrossRef]
- Santos, S.M.; Carbajo, J.M.; Gómez, N.; Quintana, E.; Ladero, M.; Sánchez, A.; Chinga-Carrasco, G.; Villar, J.C. Use of bacterial cellulose in degraded paper restoration. Part I: Application on model papers. J. Mater. Sci. 2016, 51, 1541–1552. [Google Scholar] [CrossRef]
- Nechyporchuk, O.; Kolman, K.; Bridarolli, A.; Odlyha, M.; Bozec, L.; Oriola, M.; Campo-Francés, G.; Persson, M.; Holmberg, K.; Bordes, R. On the potential of using nanocellulose for consolidation of painting canvases. Carbohydr. Polym. 2018, 194, 161–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreyfuss-Deseigne, R. Nanocellulose Films in Art Conservation. J. Pap. Conserv. 2017, 18, 18–29. [Google Scholar] [CrossRef]
- Völkel, L.; Ahn, K.; Hähner, U.; Gindl-Altmutter, W.; Potthast, A. Nano meets the sheet: Adhesive-free application of nanocellulosic suspensions in paper conservation. Herit. Sci. 2017, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Bridarolli, A.; Nechyporchuk, O.; Odlyha, M.; Oriola, M.; Bordes, R.; Holmberg, K.; Anders, M.; Chevalier, A.; Bozec, L. Nanocellulose-based Materials for the Reinforcement of Modern Canvas-supported Paintings. Stud. Conserv. 2018, 63, 332–334. [Google Scholar] [CrossRef] [Green Version]
- Kolman, K.; Nechyporchuk, O.; Persson, M.; Holmberg, K.; Bordes, R. Preparation of silica/polyelectrolyte complexes for textile strengthening applied to painting canvas restoration. Colloids Surfaces A Physicochem. Eng. Asp. 2017, 532, 420–427. [Google Scholar] [CrossRef]
- Kolman, K.; Nechyporchuk, O.; Persson, M.; Holmberg, K.; Bordes, R. Combined Nanocellulose/Nanosilica Approach for Multiscale Consolidation of Painting Canvases. ACS Appl. Nano Mater. 2018, 1, 2036–2040. [Google Scholar] [CrossRef] [Green Version]
- Sundholm, F.; Tahvanainen, M. Preparation of cellulose samples for size-exclusion chromatography analyses in studies of paper degradation. J. Chromatogr. A 2003, 1008, 129–134. [Google Scholar] [CrossRef]
- Sundholm, F.; Tahvanainen, M. Paper Conservation Using Aqueous Solutions of Calcium Hydroxide/Methyl Cellulose 3. The influence on the degradation of papers. Restaurator 2004, 25, 15–25. [Google Scholar] [CrossRef]
- Jančovičová, V.; Havlínová, B.; Mináriková, J.; Hanus, J. Impact of Stabilizing Procedures on Acidic Paper. Restaur. Int. J. Preserv. Libr. Arch. Mater. 2012, 33, 170–198. [Google Scholar] [CrossRef]
- Lunjakorn, A.; Mattea-Coco, M.; Thirvengadam, P.; Silvo, H.; Adriana, K.; Rupert, K.; Karin, S.-K.; Tamilselvan, M. Nano-Structures & Nano-Objects Strengthening of paper by treatment with a suspension of alkaline nanoparticles stabilized by trimethylsilyl cellulose. Nano-Struct. Nano-Objects 2018, 16, 363–370. [Google Scholar]
- Poggi, G.; Baglioni, M.; Xu, Q.; Giorgi, R.; Baglioni, P. Strengthening and Deacidification of Paper: Development and Assessment of a Single-Step Treatment Based on Cellulose Nanocrystals and Alkaline Nanoparticles. ACS Appl. Mater. Interfaces 2020. submitted. [Google Scholar]
- Wilson, H.; Carr, C.; Hacke, M. Production and validation of model iron-tannate dyed textiles for use as historic textile substitutes in stabilisation treatment studies. Chem. Cent. J. 2012, 6, 449. [Google Scholar] [CrossRef]
- Wilson, H. Investigation into Non-Aqueous Remedial Conservation Treatments for Iron-Tannate Dyed Organic Materials. Ph.D. Thesis, the University of Manchester of Philosophy in the Faculty of Engineering and Physical Sciences, Manchester, UK, 2012. [Google Scholar]
- Oriola-Folch, M.; Campo-Francés, G.; Nualart-Torroja, A.; Ruiz-Recasens, C.; Bautista-Morenilla, I. Novel nanomaterials to stabilise the canvas support of paintings assessed from a conservator’s point of view. Herit. Sci. 2020, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Porck, H.J. Rate of Paper Degradation the Predictive Value of Artificial Aging Tests; European Commission on Preservation and Access: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Garside, P.; Wyeth, P.; Zhang, X. Understanding the ageing behaviour of nineteenth and twentieth century tin-weighted silks. J. Inst. Conserv. 2010, 33, 179–193. [Google Scholar] [CrossRef]
- Wyszecki, G.; Stiles, W.S. Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Lucarelli, F.; Mandò, P.A. Recent applications to the study of ancient inks with the Florence external-PIXE facility. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1996, 109–110, 644–652. [Google Scholar] [CrossRef]
- Neevel, J.G.; Mensch, C.T.J.; Cornelis, T.J. The behaviour of iron and sulphuric acid during iron gall ink corrosion. In Proceedings of the ICOM Committee for Conservation Triennial Meeting, Lyon, France, 29 August–3 September 1999; Bridgland, J., Ed.; James and James: London, UK, 1999; Volume 2, pp. 528–533. [Google Scholar]
- Hofenk de Graaff, J.H. Dyeing and writing: A comparison of the use and degradation of iron-gall complexes on textiles and paper. In Contributions to Conservation: Research in Conservation at the Netherlands Institute for Cultural Heritage (ICN); Ja, M., Nh, T., Eds.; James & James (Science Publishers) Ltd.: London, UK, 2002; pp. 34–41. ISBN 1-902916-09-3. [Google Scholar]
- Bridarolli, A.; Odlyha, M.; Nechyporchuk, O.; Holmberg, K.; Ruiz-Recasens, C.; Bordes, R.; Bozec, L. Evaluation of the Adhesion and Performance of Natural Consolidants for Cotton Canvas Conservation. ACS Appl. Mater. Interfaces 2018, 10, 33652–33661. [Google Scholar] [CrossRef]
System | Weight Uptake (%) | Before Ageing | After Ageing | Action Provided by the Systems | ||||
---|---|---|---|---|---|---|---|---|
pH | EML (N/mm2) | ΔL* | pH | EML (N/mm2) | ΔL* | |||
T0 | - | 3.6 | 214 ± 64 | - | 4.1 | 253 ± 2 | −1.8 | N/A |
T1 | 2.0 | 4.3 | 287 ± 27 | −1.6 | 4.4 | 309 ± 8 | −3.7 | Strengthening |
T2 | 1.5 | 4.3 | 333 ± 66 | −4.1 | 4.2 | 317 ±24 | −7.5 | Strengthening |
T3 | 2.5 | 4.4 | 234 ± 36 | −5.2 | 4.4 | 359 ±79 | −6.3 | Strengthening |
T0 | - | 3.7 | 181 ± 32 | - | 4.5 | 310 ±25 | −1.6 | N/A |
T4 | 2.5 | 7.3 | 192 ± 25 | −7.3 | 7.6 | 255 ± 43 | −9.4 | Deacidification |
T5 | 4.9 | 7.4 | 290 ± 45 | −9.0 | 7.5 | 305 ± 34 | −8.6 | Deacidification/Strengthening |
T6 | 4.7 | 7.5 | 250 ± 51 | −9.1 | 7.3 | 358 ± 94 | −8.4 | Deacidification/Strengthening |
T7 | 4.7 | 7 | 195 ± 54 | −13.6 | 7.1 | 383 ± 43 | −12.6 | Deacidification/Strengthening |
T8 | 7.3 | 7.4 | 336 ± 82 | −9.4 | 7.4 | 443 ± 22 | −9.3 | Deacidification/Strengthening |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palladino, N.; Hacke, M.; Poggi, G.; Nechyporchuk, O.; Kolman, K.; Xu, Q.; Persson, M.; Giorgi, R.; Holmberg, K.; Baglioni, P.; et al. Nanomaterials for Combined Stabilisation and Deacidification of Cellulosic Materials—The Case of Iron-Tannate Dyed Cotton. Nanomaterials 2020, 10, 900. https://doi.org/10.3390/nano10050900
Palladino N, Hacke M, Poggi G, Nechyporchuk O, Kolman K, Xu Q, Persson M, Giorgi R, Holmberg K, Baglioni P, et al. Nanomaterials for Combined Stabilisation and Deacidification of Cellulosic Materials—The Case of Iron-Tannate Dyed Cotton. Nanomaterials. 2020; 10(5):900. https://doi.org/10.3390/nano10050900
Chicago/Turabian StylePalladino, Nicoletta, Marei Hacke, Giovanna Poggi, Oleksandr Nechyporchuk, Krzysztof Kolman, Qingmeng Xu, Michael Persson, Rodorico Giorgi, Krister Holmberg, Piero Baglioni, and et al. 2020. "Nanomaterials for Combined Stabilisation and Deacidification of Cellulosic Materials—The Case of Iron-Tannate Dyed Cotton" Nanomaterials 10, no. 5: 900. https://doi.org/10.3390/nano10050900