Active Manipulation of the Spin and Orbital Angular Momentums in a Terahertz Graphene-Based Hybrid Plasmonic Waveguide
Abstract
:1. Introduction
2. Theoretical Model
3. Results and Discussion
3.1. Waveguide Birefringence and the Spin-Orbit Coupling in the GHPWs
3.2. Generation and Switching of the Spin Angular Momentum (SAM)
3.3. Generation and Switching of the Orbital Angular Momentum (OAM)
3.4. Generation of Simultaneous Reversal of the Waveguide Mode Chirality and Spirality
3.5. Generation of Selective Linear Polarization Filtering
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: Oam manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Kang, L.; Lan, S.; Rodrigues, S.P.; Cai, W. Giant chiral optical response from a twisted-arc metamaterial. Nano Lett. 2014, 14, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Huang, C.; Pu, M.; Hu, C.; Feng, Q.; Luo, X. Multi-band circular polarizer using planar spiral metamaterial structure. Opt. Express. 2012, 20, 16050–16058. [Google Scholar] [CrossRef] [PubMed]
- Moh, K.J.; Yuan, X.C.; Bu, J.; Burge, R.E.; Gao, B.Z. Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams. Appl. Optics. 2007, 46, 7544–7551. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Gao, C.Q.; Liu, Y.D.; Gao, M.W. Experimental study of the generation of laguerre-gaussian beam using a computer-generated amplitude grating. Acta Phys. Sin. 2008, 57. [Google Scholar] [CrossRef]
- Beijersbergen, M.W.; Allen, L.; Der Veen, H.V.; Woerdman, J.P. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 1993, 96, 123–132. [Google Scholar] [CrossRef]
- Ma, X.; Liu, C.H.; Chang, G.; Galvanauskas, A. Angular-momentum coupled optical waves in chirally-coupled-core fibers. Opt. Express 2011, 19, 26515–26528. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Li, S.; Willner, A.E. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Opt. Lett. 2013, 38, 932–934. [Google Scholar] [CrossRef]
- Tan, Q.; Guo, Q.; Liu, H.; Huang, X.; Zhang, S. Controlling plasmonic orbital angular momentum by combining geometric and dynamic phases. Nanoscale 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Yu, N.; Genevet, P.; Kats, M.A. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Genevet, P.; Yu, N.; Aieta, F.; Lin, J.; Kats, M.A.; Blanchard, R.; Scully, M.O.; Gaburro, Z.; Capasso, F. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl. Phys. Lett. 2012, 100, 013101. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Liang, Y.; Huang, X.G.; Guo, B.; Li, J. Pure dielectric waveguides enable compact, ultrabroadband wave plates. IEEE Photonics J. 2016, 8, 1–9. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, J.; Huang, W.P. Ultracompact wave plates by air holes periodic dielectric waveguides. In Proceedings of the SPIE OPTO, San Francisco, CA, USA, 23–28 January 2010. [Google Scholar]
- Fang, L.; Luo, H.-Z.; Cao, X.-P.; Zheng, S.; Cai, X.-L.; Wang, J. Ultra-directional high-efficiency chiral silicon photonic circuits. Optica 2019, 6. [Google Scholar] [CrossRef]
- Cai, X.Z.; Wang, J.; Strain, M.J.; Johnsonmorris, B.; Zhu, J.; Sorel, M.; Obrien, J.L.; Thompson, M.G.; Yu, S. Integrated compact optical vortex beam emitters. Science 2012, 338, 363–366. [Google Scholar] [CrossRef]
- Xie, Z.; Lei, T.; Li, F.; Qiu, H.; Zhang, Z.; Wang, H.; Min, C.; Du, L.; Li, Z.; Yuan, X. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci. Appl. 2018, 7, 18001. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Wu, H.W.; Huang, B.J.; Huang, X.G. Light beams with selective angular momentum generated by hybrid plasmonic waveguides. Nanoscale 2014, 6, 12360–12365. [Google Scholar] [CrossRef]
- Liang, Y.; Huang, X. Generation of two beams of light carrying spin and orbital angular momenta of opposite handedness. Opt. Lett. 2014, 39, 5074–5077. [Google Scholar] [CrossRef]
- Wang, X.; Nie, Z.; Liang, Y.; Wang, J.; Li, T.; Jia, B. Recent advances on optical vortex generation. Nanophotonics 2018, 7, 1533–1556. [Google Scholar] [CrossRef]
- Huang, X.; Ou, X.; Tang, Z.; Liu, H.; Tan, Q. Integrated dual-channel sensing utilizing polarized dissimilation based on photonic spin-orbit interaction. Opt. Lett. 2019, 44, 3757–3760. [Google Scholar] [CrossRef]
- Wang, K.; Titchener, J.; Kruk, S.; Xu, L.; Chung, H.P.; Parry, M.; Kravchenko, I.I.; Chen, Y.H.; Solntsev, A.S.; Kivshar, Y.S. Quantum metasurface for multiphoton interference and state reconstruction. Science 2018, 361, 1104–1108. [Google Scholar] [CrossRef] [Green Version]
- Puentes, G. Spin-orbit angular momentum conversion in metamaterials and metasurfaces. Quantum Rep. 2019, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Vodopyanov, K.L.; Avetisyan, Y.H. Optical terahertz wave generation in a planar gaas waveguide. Opt. Lett. 2008, 33, 2314–2316. [Google Scholar] [CrossRef] [PubMed]
- Atakaramians, S.; Afshar, V.S.; Monro, T.M.; Abbott, D. Terahertz dielectric waveguides. Adv. Opt. Photonics 2013, 5, 169–215. [Google Scholar] [CrossRef]
- Low, T.; Avouris, P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 2014, 8, 1086–1101. [Google Scholar] [CrossRef] [Green Version]
- Phatak, A.; Cheng, Z.; Qin, C.; Goda, K. Design of electro-optic modulators based on graphene-on-silicon slot waveguides. Opt. Lett. 2016, 41, 2501–2504. [Google Scholar] [CrossRef]
- Yue, G.; Xing, Z.; Hu, H.; Cheng, Z.; Lu, G.-W.; Liu, T. Graphene-based dual-mode modulators. Opt. Express 2020, 28, 18456–18471. [Google Scholar] [CrossRef]
- Hao, R.; Ye, Z.; Peng, X.; Gu, Y.; Jiao, J.; Zhu, H.; Sha, W.E.I.; Li, E. Highly efficient graphene-based optical modulator with edge plasmonic effect. IEEE Photonics J. 2018, 10, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Zhu, S. Graphene-based plasmonic modulator on a groove-structured metasurface. Opt. Lett. 2017, 42, 2247–2250. [Google Scholar] [CrossRef]
- Chen, P.; Alu, A. Atomically thin surface cloak using graphene monolayers. ACS Nano 2011, 5, 5855–5863. [Google Scholar] [CrossRef]
- Casiraghi, C.; Hartschuh, A.; Lidorikis, E.; Qian, H.; Harutyunyan, H.; Gokus, T.; Novoselov, K.S.; Ferrari, A. Rayleigh imaging of graphene and graphene layers. Nano Lett. 2007, 7, 2711–2717. [Google Scholar] [CrossRef] [Green Version]
- Gan, C.H. Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection. Appl. Phys. Lett. 2012, 101, 111609. [Google Scholar]
- Alam, Z.M.; Caspers, J.N.; Aitchison, S.J.; Mojahedi, M. Compact low loss and broadband hybrid plasmonic directional coupler. Opt. Express 2013, 21, 16029–16034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driscoll, J.B.; Liu, X.; Yasseri, S.; Hsieh, I.; Dadap, J.I.; Osgood, R.M. Large longitudinal electric fields (ez) in silicon nanowire waveguides. Opt. Express 2009, 17, 2797–2804. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Tan, Q.; Liang, Y.; Zhou, X.; Zhou, W.; Huang, X. Active Manipulation of the Spin and Orbital Angular Momentums in a Terahertz Graphene-Based Hybrid Plasmonic Waveguide. Nanomaterials 2020, 10, 2436. https://doi.org/10.3390/nano10122436
Wang Z, Tan Q, Liang Y, Zhou X, Zhou W, Huang X. Active Manipulation of the Spin and Orbital Angular Momentums in a Terahertz Graphene-Based Hybrid Plasmonic Waveguide. Nanomaterials. 2020; 10(12):2436. https://doi.org/10.3390/nano10122436
Chicago/Turabian StyleWang, Ziang, Qilong Tan, Yong Liang, Xia Zhou, Wen Zhou, and Xuguang Huang. 2020. "Active Manipulation of the Spin and Orbital Angular Momentums in a Terahertz Graphene-Based Hybrid Plasmonic Waveguide" Nanomaterials 10, no. 12: 2436. https://doi.org/10.3390/nano10122436
APA StyleWang, Z., Tan, Q., Liang, Y., Zhou, X., Zhou, W., & Huang, X. (2020). Active Manipulation of the Spin and Orbital Angular Momentums in a Terahertz Graphene-Based Hybrid Plasmonic Waveguide. Nanomaterials, 10(12), 2436. https://doi.org/10.3390/nano10122436