Langmuir Films of Perfluorinated Fatty Alcohols: Evidence of Spontaneous Formation of Solid Aggregates at Zero Surface Pressure and Very Low Surface Density
Abstract
1. Introduction
2. Materials and Methods
2.1. Molecules and Sample Preparation
2.2. Atomic Force Microscopy (AFM)
2.3. Grazing Incidence X-ray Diffraction (GIXD)
2.4. Simulation Details
3. Results
3.1. Thermodynamic Study
3.2. Grazing Incidence X-ray Diffraction Results
3.3. Atomic Force Microscopy Results
3.4. Molecular Dynamics Simulations Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kwan, J.; Kaya, M.; Borden, M.A.; Dayton, P.A. Theranostic Oxygen Delivery Using Ultra-sound and Microbubbles. Theranostics 2012, 2, 1174–1184. [Google Scholar] [CrossRef]
- Riess, G.; Le Blanc, M. Solubility and Transport Phenomena in Perfluorochemicals Relevant to Blood Substitution and other Biomedical Applications. Pure Appl. Chem. 1982, 54, 2383–2406. [Google Scholar] [CrossRef]
- Tsagogiorgas, C.; Anger, F.; Beck, G.; Breedijk, A.; Yard, B.; Hoeger, S. Impact of different emulsifiers on biocompatibility and inflammatory potential of Perfluorohexyloctane (F6H8) emulsions for new intravenous drug delivery systems. Drug Des. Dev. Ther. 2019, 13, 2097–2110. [Google Scholar] [CrossRef] [PubMed]
- Rychak, J.J.; Klibanov, A.L. Nucleic acid delivery with microbubbles and ultrasound. Adv. Drug Deliv. Rev. 2014, 72, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Krafft, M.P. Fluorine in medical microbubbles—Methodologies implemented for engineering and investigating fluorocarbon-based microbubbles. J. Fluor Chem. 2015, 177, 19–28. [Google Scholar] [CrossRef]
- Riess, J.G. Fluorocarbon-based injectable gaseous microbubbles for diagnosis and therapy. Curr. Opin. Coll. Interface Sci. 2003, 8, 259–266. [Google Scholar] [CrossRef]
- Kissa, E. Fluorinated Surfactants: Synthesis, Properties, Applications, 1st ed.; Marcel Dekker: New York, NY, USA, 1994; ISBN 978-0824790110. [Google Scholar]
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P.J. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef]
- Kaganer, V.M.; Möhwald, H.; Dutta, P. Structure and phase transitions in Langmuir monolayers. Rev. Mod. Phys. 1999, 71, 779–819. [Google Scholar] [CrossRef]
- Goldmann, M.; Nassoy, P.; Rondelez, F. Search for perfectly ordered dense monolayers. Physica A 1993, 200, 688–695. [Google Scholar] [CrossRef]
- Acero, A.A.; Li, M.; Lin, B.; Rice, S.A.; Goldmann, M.; Azouz, I.B.; Goudot, A.; Rondelez, F. Molecular packing in water supported monolayers of F(CF2)11COOH and F(CF2)10CH2COOH. J. Chem. Phys. 1993, 99, 7214–7220. [Google Scholar] [CrossRef]
- Fontaine, P.; Filipe, E.J.M.; Fauré, M.-C.; Rego, T.; Taßler, S.; Alves, A.C.; Silva, G.M.C.; Morgado, P.; Goldmann, M. Structure of Langmuir Monolayers of Perfluorinated Fatty Acids: Evidence of a New 2D Smectic C Phase. Molecules 2019, 24, 3590. [Google Scholar] [CrossRef] [PubMed]
- Yoder, N.C.; Kalsani, V.; Schuy, S.; Vogel, R.; Janshoff, A.; Kumar, K. Nanoscale Patterning in Mixed Fluorocarbon–Hydrocarbon Phospholipid Bilayers. J. Am. Chem. Soc. 2007, 129, 9037–9043. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Krafft, M.P.; Goldmann, M. Monolayers made from fluorinated amphiphiles. Curr. Opin. Coll. Interface Sci. 2003, 8, 243–250. [Google Scholar] [CrossRef]
- Paczesny, J.; Niton, P.; Zywocinski, A.; Sozanski, K.; Holyst, R.; Fialkowski, M.; Kieffer, R.; Glettner, B.; Tschierske, C.; Pociecha, D.; et al. Stable, ordered multilayers of partially fluorinated bolaamphiphiles at the air-water interface. Soft Matter. 2012, 8, 5262–5272. [Google Scholar] [CrossRef]
- Paczesny, J.; Sozanski, K.; Zywocinski, A.; Holyst, R.; Glettner, B.; Kieffer, R.; Tschierske, C.; Nikiforov, K.; Pociecha, D.; Gorecka, E. Spontaneous self-assembly of partially fluorinated bolaamphiphiles into ordered layered structures. Phys. Chem. Chem. Phys. 2012, 14, 14365–14373. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, P. Modern Fluoroorganic Chemistry, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2004; ISBN 978-3527331666. [Google Scholar]
- Bunn, C.W.; Lowells, E.R. Structure of molecules and crystals of fluorocarbons. Nature 1954, 4429, 549–551. [Google Scholar] [CrossRef]
- Jang, S.S.; Blanco, M.; Goddard III, W.A.; Caldwell, G.; Ross, R.B. The Source of Helicity in Perfluorinated N-Alkanes. Macromolecules 2003, 36, 5331. [Google Scholar] [CrossRef]
- Costa, J.C.S.; Lima, C.F.R.A.C.; Mendes, A.; Santos, L.M.N.B.F. Fluorination effect on the thermodynamic properties of long-chain hydrocarbons and alcohols. J. Chem. Thermodyn. 2016, 102, 378–385. [Google Scholar] [CrossRef]
- Silva, G.M.C.; Morgado, P.; Haley, J.D.; Montoya, V.M.T.; McCabe, C.; Martins, L.F.G.; Filipe, E.J.M. Vapor pressure and liquid density of fluorinated alcohols: Experimental, simulation and GC-SAFT-VR predictions. Fluid Phase Equilib. 2016, 425, 297–304. [Google Scholar] [CrossRef]
- Simons, J.H.; Dunlap, R.D. The Properties of n-Pentforane and Its Mixtures with n-Pentane. J. Chem. Phys. 1950, 18, 335–346. [Google Scholar] [CrossRef]
- Rowlinson, J.S.; Swinton, F.L. Liquids and Liquid Mixtures, 3rd ed.; Butterworth Scientific: London, UK, 1982. [Google Scholar]
- Siebert, E.M.D.; Knobler, C.M. Interaction virial coefficients in hydrocarbon-fluorocarbon mixtures. J. Phys. Chem. 1971, 75, 3863–3870. [Google Scholar] [CrossRef]
- Brode, S.; McDonald, I.R. Excess thermodynamic properties of liquid mixtures of methane and perfluoromethane. Mol. Phys. 1988, 65, 1007–1012. [Google Scholar] [CrossRef]
- Schoen, M.; Hoheisel, C.; Beyer, O. Liquid CH4, liquid CF4 and the partially miscible liquid mixture CH4/CF4. Mol. Phys. 1986, 58, 699–709. [Google Scholar] [CrossRef]
- Duce, C.; Tinè, M.R.; Lepori, L.; Matteoli, E. VLE and LLE of perfluoroalkane + alkane mixtures. Fluid Phase Equilib. 2002, 199, 197–212. [Google Scholar] [CrossRef]
- Schneider, G.M. High-pressure phase equilibria and spectroscopic investigations up to 200 MPa on fluid mixtures containing fluorinated compounds: A review. Fluid Phase Equilib. 2002, 199, 307–317. [Google Scholar] [CrossRef]
- Morgado, P.; Black, J.; Lewis, J.B.; Iacovella, C.R.; McCabe, C.; Martins, L.F.G.; Filipe, E.J.M. Viscosity of liquid systems involving hydrogenated and fluorinated substances: Liquid mixtures of (hexane + perfluorohexane). Fluid Phase Equilib. 2013, 358, 161–165. [Google Scholar] [CrossRef]
- Handa, T.; Mukerjee, P. Surface tensions of nonideal mixtures of fluorocarbons and hydrocarbons and their interfacial tensions against water. J. Phys. Chem. 1981, 85, 3916–3920. [Google Scholar] [CrossRef]
- Morgado, P.; Martins, L.F.G.; Filipe, E.J.M. From nano-emulsions to phase separation: Evidence of nanosegregation in (Alkane + Perfluoroalkane) mixtures using 129Xe NMR Spectroscopy. Phys. Chem. Chem. Phys. 2019, 21, 3742–3751. [Google Scholar] [CrossRef]
- Morgado, P.; Barras, J.; Filipe, E.J.M. From nano-seggregation to mesophases: Probing the liquid structure of perfluoroalkylalkanes with 129Xe NMR spectroscopy. Phys. Chem. Chem. Phys. 2020, 22, 14736–14747. [Google Scholar] [CrossRef]
- Morgado, P.; Bonifácio, R.P.; Martins, L.F.G.; Filipe, E.J.M. Probing the Structure of Liquids with 129Xe NMR Spectroscopy: N-Alkanes, Cycloalkanes, and Branched Alkanes. J. Phys. Chem. B 2013, 117, 9014–9024. [Google Scholar] [CrossRef][Green Version]
- Morgado, P.; Garcia, A.R.; Martins, L.F.G.; Ilharco, L.M.; Filipe, E.J.M. Alkane Coiling in Perfluoroalkane Solutions: A New Primitive Solvophobic Effect. Langmuir 2017, 33, 11429–11435. [Google Scholar] [CrossRef] [PubMed]
- Morgado, P.; Garcia, A.R.; Ilharco, L.M.; Marcos, J.; Anastácio, M.; Martins, L.F.G.; Filipe, E.J.M. Liquid mixtures involving hydrogenated and fluorinated alcohols: Thermodynamics, spectroscopy, and simulation. J. Phys. Chem. B 2016, 120, 10091–10105. [Google Scholar] [CrossRef] [PubMed]
- Shibata, O.; Yamamoto, S.K.; Lee, S.; Sugihara, G. Mixed Monolayer Properties of Tetradecanoic Acid with n-Perfluorocarboxylic Acids with 10, 12, 14, 16, and 18 Carbon Atoms. J. Coll. Interface Sci. 1996, 184, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Imae, T.; Takeshita, T.; Kato, M. Phase Separation in Hybrid Langmuir–Blodgett Films of Per-fluorinated and Hydrogenated Amphiphiles. Examination by Atomic Force Microscopy. Langmuir 2000, 16, 612–621. [Google Scholar] [CrossRef]
- Matsumoto, M.; Tanaka, K.; Azumi, R.; Kondo, Y.; Yoshino, N. Structure of Phase-Separated Langmuir—Blodgett Films of Hydrogenated and Perfluorinated Carboxylic Acids Investigated by IR Spectroscopy, AFM, and FFM. Langmuir 2003, 19, 2802–2807. [Google Scholar] [CrossRef]
- Rontu, N.; Vaida, V. Miscibility of Perfluorododecanoic Acid with Organic Acids at the Air–Water Interface. J. Phys. Chem. C 2007, 111, 9975–9980. [Google Scholar] [CrossRef]
- Qaqish, S.E.; Paige, M.F. Structural and Compositional Mapping of a Phase-Separated Langmuir–Blodgett Monolayer by Atomic Force Microscopy. Langmuir 2007, 23, 2582–2587. [Google Scholar] [CrossRef]
- Christensen, S.; Lanke, U.D.; Haines, B.; Qaqish, S.E.; Paige, M.F.; Urquhart, S.G. Structural and compositional mapping of a phase-separated Langmuir–Blodgett monolayer by X-ray photo-electron emission microscopy. J. Electron Spectros. Relat. Phenom. 2008, 162, 107–114. [Google Scholar] [CrossRef]
- Rehman, J.; Araghi, H.Y.; He, A.; Paige, M.F. Morphology and composition of structured, phase-separated behenic acid–perfluorotetradecanoic acid monolayer films. Langmuir 2016, 32, 5341–5349. [Google Scholar] [CrossRef]
- Takiue, T.; Vollhardt, D. Miscibility of alkanol and fluoroalkanol in Langmuir film at the air/water interface. Coll. Surf. A Physicochem. Eng. Asp. 2002, 798, 797–804. [Google Scholar] [CrossRef]
- Sowah-Kuma, D.; Paige, M.F. The influence of surfactant head group on miscibility in mixed hydrocarbon-perfluorocarbon monolayers. Coll. Surf. A Physicochem. Eng. Asp. 2018, 556, 157–166. [Google Scholar] [CrossRef]
- Gamboa, A.L.S.; Filipe, E.J.M.; Brogueira, P. Nanoscale Pattern Formation in Langmuir-Blodgett Films of a Semifluorinated Alkane and a Polystyrene-Poly(Ethylene Oxide) Diblock Copolymer. Nano Lett. 2002, 2, 1083–1086. [Google Scholar] [CrossRef]
- Zhang, G.; Marie, P.; Maaloum, M.; Muller, P.; Benoit, N.; Krafft, M.P. Occurrence, Shape, and Dimensions of Large Surface Hemimicelles Made of Semifluorinated Alkanes. Elongated versus Circular Hemimicelles. Pit- and Tip-Centered Hemimicelles. J. Am. Chem. Soc. 2005, 127, 10412–10419. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, P.; Goldmann, M.; Muller, P.; Fauré, M.-C.; Konovalov, O.; Krafft, M.P. Direct Evidence for Highly Organized Networks of Circular Surface Micelles of Surfactant at the Air-Water Interface. J. Am. Chem. Soc. 2005, 127, 512–513. [Google Scholar] [CrossRef] [PubMed]
- Bardin, L.; Fauré, M.-C.; Filipe, E.J.M.; Fontaine, P.; Goldmann, M. Highly organized crystal-line monolayer of a semi-fluorinated alkane on a solid substrate obtained by spin-coating. Thin Solid Films 2010, 519, 414–416. [Google Scholar] [CrossRef]
- Silva, G.M.C.; Morgado, P.; Lourenço, P.; Goldmann, M.; Filipe, E.J.M. Spontaneous self-assembly and structure of perfluoroalkylalkane surfactant hemimicelles by molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 2019, 116, 14868–14873. [Google Scholar] [CrossRef]
- Kataoka, S.; Takeuchi, Y.; Endo, A. Nanometer-Sized Domains in Langmuir–Blodgett Films for Patterning SiO2. Langmuir 2010, 26, 6161–6163. [Google Scholar] [CrossRef]
- Kato, T.; Kameyama, M.; Ehara, M.; Iimura, K. Monodisperse Two-Dimensional Nanometer Size Clusters of Partially Fluorinated Long-Chain Acids. Langmuir 1998, 14, 1786–1798. [Google Scholar] [CrossRef]
- Matsumoto, M.; Watanabe, S.; Tanaka, K.; Kimura, H.; Kasahara, M.; Shibata, H.; Azumi, R.; Sa-kai, H.; Abe, M.; Kondo, Y.; et al. Control of Two-Dimensional Nanopatterns by Adjusting Inter-molecular Interactions. Adv. Mater. 2007, 19, 3668–3671. [Google Scholar] [CrossRef]
- Armarego, W.L.F.; Perrin, D.D. Purification of Laboratory Chemicals, 4th ed.; Butterworth-Heinemann: Oxford, UK, 1996; ISBN 978-0750628396. [Google Scholar]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Fontaine, P.; Ciatto, G.; Aubert, N.; Goldmann, M. Soft Interfaces and Resonant Investigation on Undulator Source: A Surface X-ray Scattering Beamline to Study Organic Molecular Films at the SOLEIL Synchrotron. Sci. Adv. Mater. 2014, 6, 2312–2316. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Pereira, L.A.M.; Martins, L.F.G.; Ascenso, J.R.; Morgado, P.; Ramalho, J.P.P.; Filipe, E.J.M. Diffusion Coefficients of Fluorinated Surfactants in Water: Experimental Results and Prediction by Computer Simulation. J. Chem. Eng. Data 2014, 59, 3151–3159. [Google Scholar] [CrossRef]
- Chitra, R.; Smith, P.E. A comparison of the properties of 2,2,2-trifluoroethanol and 2,2,2-trifluoroethanol/water mixtures using different force fields. J. Chem. Phys. 2001, 115, 5521–5530. [Google Scholar] [CrossRef]
- Watkins, E.K.; Jorgensen, W.L. Perfluoroalkanes: Conformational Analysis and Liquid-State Properties from ab Initio and Monte Carlo Calculations. J. Phys. Chem. A 2001, 105, 4118–4125. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar] [CrossRef]
- Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 116–122. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. Model. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Broniatowski, M.; Dynarowicz-Łatka, P. Semifluorinated Chains at the Air/Water Interface: Studies of the Interaction of a Semifluorinated Alkane with Fluorinated Alcohols in Mixed Langmuir Monolayers. Langmuir 2006, 22, 2691–2696. [Google Scholar] [CrossRef] [PubMed]
- Broniatowski, M.; Dynarowicz-Łatka, P. Interactions of a Fluoroaryl Surfactant with Hydrogenated, Partially Fluorinated, and Perfluorinated Surfactants at the Air/Water Interface. Langmuir 2006, 22, 6622–6628. [Google Scholar] [CrossRef] [PubMed]
- Qaqish, S.E.; Paige, M.F. Mechanistic Insight into Domain Formation and Growth in a Phase-Separated Langmuir—Blodgett Monolayer. Langmuir 2007, 23, 10088–10094. [Google Scholar] [CrossRef]
- Qaqish, S.E.; Paige, M.F. Characterization of domain growth kinetics in a mixed perfluorocarbon-hydrocarbon Langmuir—Blodgett monolayer. J. Coll. Interface Sci. 2008, 325, 290–293. [Google Scholar] [CrossRef]
Molecule | Limit Molecular Area (Å2/molecule) |
---|---|
F18OH | 27.6 ± 0.9 |
F14OH | 31.2 ± 0.4 |
(20:80) F14OH + F18OH | 27.0 ± 0.4 |
Molecule | A (nm2/molecule) | Qxy (nm−1) | FWHM (nm−1) | Hexagonal Lattice Parameter (nm) | Coherence Length (nm) |
---|---|---|---|---|---|
F14OH | 0.60 | 12.62 | 0.020 | 0.575 | >320 |
F18OH | 0.45 | 12.65 | 0.029 | 0.5753 | 300 |
Peak Indexation | Peak Position (nm−1) | FWHM (nm−1) |
---|---|---|
(10) | 12.69 | 0.06 |
(11) | 21.97 | 0.1 |
(20) | 25.36 | 0.08 |
Peak | Peak Position (nm−1) | |
---|---|---|
F18OH | F14OH | |
Peak 1 | 12.69 | 12.62 |
Peak 2 | 22.06 | 21.98 |
Peak 3 | 25.40 | 25.25 |
Peak 2/Peak 1 | 1.738 | 1.741 |
Peak 3/Peak 1 | 2.001 | 2.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, P.; Nova, D.; Teixeira, M.; Cardoso, V.; Morgado, P.; Nunes, B.; Colaço, R.; Fauré, M.-C.; Fontaine, P.; Goldmann, M.; et al. Langmuir Films of Perfluorinated Fatty Alcohols: Evidence of Spontaneous Formation of Solid Aggregates at Zero Surface Pressure and Very Low Surface Density. Nanomaterials 2020, 10, 2257. https://doi.org/10.3390/nano10112257
Silva P, Nova D, Teixeira M, Cardoso V, Morgado P, Nunes B, Colaço R, Fauré M-C, Fontaine P, Goldmann M, et al. Langmuir Films of Perfluorinated Fatty Alcohols: Evidence of Spontaneous Formation of Solid Aggregates at Zero Surface Pressure and Very Low Surface Density. Nanomaterials. 2020; 10(11):2257. https://doi.org/10.3390/nano10112257
Chicago/Turabian StyleSilva, Pedro, Duarte Nova, Miguel Teixeira, Vitória Cardoso, Pedro Morgado, Bruno Nunes, Rogério Colaço, Marie-Claude Fauré, Philippe Fontaine, Michel Goldmann, and et al. 2020. "Langmuir Films of Perfluorinated Fatty Alcohols: Evidence of Spontaneous Formation of Solid Aggregates at Zero Surface Pressure and Very Low Surface Density" Nanomaterials 10, no. 11: 2257. https://doi.org/10.3390/nano10112257
APA StyleSilva, P., Nova, D., Teixeira, M., Cardoso, V., Morgado, P., Nunes, B., Colaço, R., Fauré, M.-C., Fontaine, P., Goldmann, M., & Filipe, E. J. M. (2020). Langmuir Films of Perfluorinated Fatty Alcohols: Evidence of Spontaneous Formation of Solid Aggregates at Zero Surface Pressure and Very Low Surface Density. Nanomaterials, 10(11), 2257. https://doi.org/10.3390/nano10112257