Ultra-High Energy Density Hybrid Supercapacitors Using MnO2/Reduced Graphene Oxide Hybrid Nanoscrolls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of GO
2.2. Preparation of MnO2 Encapsulated within rGO Nanoscrolls (GMS)
2.3. Active Material Characterization Measurements
2.4. Cell Fabrication
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Down, M.P.; Rowley-Neale, S.J.; Smith, G.C.; Banks, C.E. Fabrication of Graphene Oxide Supercapacitor Devices. ACS Appl. Energy Mater. 2018, 1, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Ogata, C.; Kurogi, R.; Hatakeyama, K.; Taniguchi, T.; Koinuma, M.; Matsumoto, Y. All-graphene oxide device with tunable supercapacitor and battery behaviour by the working voltage. Chem. Commun. 2016, 52, 3919–3922. [Google Scholar] [CrossRef]
- Purkait, T.; Singh, G.; Kumar, D.; Singh, M.; Dey, R.S. High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci. Rep. 2018, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Ates, M.; Caliskan, S.; Özten, E. Supercapacitor study of reduced graphene oxide/Zn nanoparticle/polycarbazole electrode active materials and equivalent circuit models. J. Solid State Electrochem. 2018, 22, 3261–3271. [Google Scholar] [CrossRef]
- Pender, J.P.; Xiao, H.; Dong, Z.; Cavallaro, K.A.; Weeks, J.A.; Heller, A.; Ellison, C.J.; Mullins, C.B. Compact Lithium-Ion Battery Electrodes with Lightweight Reduced Graphene Oxide/Poly(Acrylic Acid) Current Collectors. ACS Appl. Energy Mater. 2019, 2, 905–912. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Li, X.-X.; Huang, J.-R.; Li, J.-J.; Zhou, P.; Liu, J.-H.; Huang, X.-J. Three-dimensional graphene-based nanocomposites for high energy density Li-ion batteries. J. Mater. Chem. A 2017, 5, 5977–5994. [Google Scholar] [CrossRef]
- Kim, H.; Park, K.-Y.; Hong, J.; Kang, K. All-graphene-battery: Bridging the gap between supercapacitors and lithium ion batteries. Sci. Rep. 2014, 4, 5278. [Google Scholar] [CrossRef]
- Cao, J.; He, P.; Brent, J.R.; Yilmaz, H.; Lewis, D.J.; Kinloch, I.A.; Derby, B. Supercapacitor Electrodes from the in Situ Reaction between Two-Dimensional Sheets of Black Phosphorus and Graphene Oxide. ACS Appl. Mater. Interfaces 2018, 10, 10330–10338. [Google Scholar] [CrossRef]
- Sahoo, R.; Lee, T.H.; Pham, D.T.; Luu, T.H.T.; Lee, Y.H. Fast-Charging High-Energy Battery–Supercapacitor Hybrid: Anodic Reduced Graphene Oxide–Vanadium(IV) Oxide Sheet-on-Sheet Heterostructure. ACS Nano 2019, 13, 10776–10786. [Google Scholar] [CrossRef]
- Rani, J.R.; Thangavel, R.; Oh, S.I.; Woo, J.M.; Chandra Das, N.; Kim, S.Y.; Lee, Y.S.; Jang, J.H. High Volumetric Energy Density Hybrid Supercapacitors Based on Reduced Graphene Oxide Scrolls. ACS Appl. Mater. Interfaces 2017, 9, 22398–22407. [Google Scholar] [CrossRef]
- Durmus, Y.E.; Zhang, H.; Baakes, F.; Desmaizieres, G.; Hayun, H.; Yang, L.; Kolek, M.; Küpers, V.; Janek, J.; Mandler, D.; et al. Side by Side Battery Technologies with Lithium-Ion Based Batteries. Adv. Energy Mater. 2020, 10, 2000089. [Google Scholar] [CrossRef]
- Bokhari, S.W.; Hao, Y.; Siddique, A.H.; Ma, Y.; Imtiaz, M.; Butt, R.; Hui, P.; Li, Y.; Zhu, S. Assembly of hybrid electrode rGO–CNC–MnO2 for a high performance supercapacitor. Results Mater. 2019, 1, 100007. [Google Scholar] [CrossRef]
- Wu, D.; Xu, S.; Li, M.; Zhang, C.; Zhu, Y.; Xu, Y.; Zhang, W.; Huang, R.; Qi, R.; Wang, L.; et al. Hybrid MnO2/C nanocomposites on a macroporous electrically conductive network for supercapacitor electrodes. J. Mater. Chem. A 2015, 3, 16695–16707. [Google Scholar] [CrossRef]
- Huang, M.; Li, F.; Dong, F.; Zhang, Y.X.; Zhang, L.L. MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 21380–21423. [Google Scholar] [CrossRef]
- Huang, Z.-D.; Zhang, B.; Oh, S.-W.; Zheng, Q.-B.; Lin, X.-Y.; Yousefi, N.; Kim, J.-K. Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. J. Mater. Chem. 2012, 22, 3591–3599. [Google Scholar] [CrossRef]
- Xu, L.; Jia, M.; Li, Y.; Jin, X.; Zhang, F. High-performance MnO2-deposited graphene/activated carbon film electrodes for flexible solid-state supercapacitor. Sci. Rep. 2017, 7, 12857. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, D.; Wu, H.; Duan, J.; Zhang, Y. Hydrothermal Self-assembly of Manganese Dioxide/Manganese Carbonate/Reduced Graphene Oxide Aerogel for Asymmetric Supercapacitors. Electrochim. Acta 2015, 164, 154–162. [Google Scholar] [CrossRef]
- Shanbhag, D.; Bindu, K.; Aarathy, A.R.; Ramesh, M.; Sreejesh, M.; Nagaraja, H.S. Hydrothermally synthesized reduced graphene oxide and Sn doped manganese dioxide nanocomposites for supercapacitors and dopamine sensors. Mater. Today Energy 2017, 4, 66–74. [Google Scholar] [CrossRef]
- Mohd Abdah, M.A.A.; Azman, N.H.N.; Kulandaivalu, S.; Sulaiman, Y. Asymmetric supercapacitor of functionalised electrospun carbon fibers/poly(3,4-ethylenedioxythiophene)/manganese oxide//activated carbon with superior electrochemical performance. Sci. Rep. 2019, 9, 16782. [Google Scholar] [CrossRef]
- Su, F.; Miao, M. Asymmetric carbon nanotube–MnO2 two-ply yarn supercapacitors for wearable electronics. Nanotechnology 2014, 25, 135401. [Google Scholar] [CrossRef]
- Sun, P.; Yi, H.; Peng, T.; Jing, Y.; Wang, R.; Wang, H.; Wang, X. Ultrathin MnO2 nanoflakes deposited on carbon nanotube networks for symmetrical supercapacitors with enhanced performance. J. Power Sources 2017, 341, 27–35. [Google Scholar] [CrossRef]
- Dimiev, A.M.; Tour, J.M. Mechanism of Graphene Oxide Formation. ACS Nano 2014, 8, 3060–3068. [Google Scholar] [CrossRef]
- Rani, J.R.; Oh, S.I.; Woo, J.M.; Tarwal, N.L.; Kim, H.W.; Mun, B.S.; Lee, S.; Kim, K.J.; Jang, J.H. Graphene Oxide-Phosphor Hybrid Nanoscrolls with High Luminescent Quantum Yield: Synthesis, Structural, and X-ray Absorption Studies. ACS Appl. Mater. Interfaces 2015, 7, 5693–5700. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Ruan, H.; Hu, R.; Su, Y.; Hu, Z.; Huang, J. In situ synthesis rodlike MnO2/reduced graphene oxide composite as anode materials for Li-ion batteries. J. Mater. Sci. Mater. Electron. 2017, 28, 18099–18105. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Z.; Tian, L.; Su, Y.; Ruan, H.; Zhang, L.; Hu, R. Reduced graphene oxide anchored with δ-MnO2 nanoscrolls as anode materials for enhanced Li-ion storage. Ceram. Int. 2016, 42, 13519–13524. [Google Scholar] [CrossRef]
- Shen, X.; Qian, T.; Zhou, J.; Xu, N.; Yang, T.; Yan, C. Highly Flexible Full Lithium Batteries with Self-Knitted α-MnO2 Fabric Foam. ACS Appl. Mater. Interfaces 2015, 7, 25298–25305. [Google Scholar] [CrossRef]
- Wang, Q.; Wen, Z.H.; Li, J.H. A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a TiO2–B Nanowire Anode. Adv. Funct. Mater. 2006, 16, 2141–2146. [Google Scholar] [CrossRef]
- Yin, R.-Z.; Kim, Y.-S.; Shin, S.-J.; Jung, I.; Kim, J.-S.; Jeong, S.-K. In Situ XRD Investigation and Thermal Properties of Mg Doped LiCoO2 for Lithium Ion Batteries. J. Electrochem. Soc. 2012, 159, A253–A258. [Google Scholar] [CrossRef]
- Kim, H.; Cho, M.Y.; Kim, M.H.; Park, K.Y.; Gwon, H.; Lee, Y.; Roh, K.C.; Kang, K. A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 2013, 3, 1500–1506. [Google Scholar] [CrossRef]
- Zhang, Q.-Z.; Zhang, D.; Miao, Z.-C.; Zhang, X.-L.; Chou, S.-L. Research Progress in MnO2–Carbon Based Supercapacitor Electrode Materials. Small 2018, 14, 1702883. [Google Scholar] [CrossRef]
- Mathis, T.S.; Kurra, N.; Wang, X.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Adv. Energy Mater. 2019, 9, 1902007. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Z.; Zhao, B.; Cheng, Y.; Zhang, L.; Wu, H.-H.; Wang, M.-S.; Dai, S.; Zhang, K.; Ding, D.; et al. Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors. Energy Storage Mater. 2019, 16, 632–645. [Google Scholar] [CrossRef]
- Rani, J.R.; Thangavel, R.; Oh, S.I.; Lee, Y.S.; Jang, J.H. An ultra-high-energy density supercapacitor; fabrication based on thiol-functionalized graphene oxide scrolls. Nanomaterials 2019, 9, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.B.; Singh, T.I.; Kim, N.H.; Lee, J.H. A core–shell MnO2@Au nanofiber network as a high-performance flexible transparent supercapacitor electrode. J. Mater. Chem. A 2019, 7, 10672–10683. [Google Scholar] [CrossRef]
- Zong, Q.; Zhang, Q.; Mei, X.; Li, Q.; Zhou, Z.; Li, D.; Chen, M.; Shi, F.; Sun, J.; Yao, Y.; et al. Facile Synthesis of Na-Doped MnO2 Nanosheets on Carbon Nanotube Fibers for Ultrahigh-Energy-Density All-Solid-State Wearable Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 37233–37241. [Google Scholar] [CrossRef] [PubMed]
- Rani, J.R.; Oh, S.-I.; Woo, J.M.; Jang, J.-H. Graphene Oxide-Oxynitride Hybrid Nanoscrolls for Supercapacitor Electrodes with Enhanced Specific Capacitance. J. Electrochem. Soc. 2016, 163, A677–A682. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.; Li, H.; Cai, S.; Hu, H.; Fang, C.; Shi, L.; Zhang, D. Rational design and in situ fabrication of MnO2@NiCo2O4 nanowire arrays on Ni foam as high-performance monolith de-NOx catalysts. J. Mater. Chem. A 2015, 3, 11543–11553. [Google Scholar] [CrossRef]
- Rani, J.R.; Oh, S.I.; Jang, J.H. Raman spectra of luminescent graphene oxide (GO)-phosphor hybrid nanoscrolls. Materials 2015, 8, 8460–8466. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.-W.; Lu, Y.-R.; Chen, J.-L.; Chen, C.-L.; Lee, J.-F.; Chen, J.-M.; Tsai, Y.-C.; Yeh, P.-H.; Chou, W.C.; Dong, C.-L. Electrochemical and in situ X-ray spectroscopic studies of MnO2/reduced graphene oxide nanocomposites as a supercapacitor. Phys. Chem. Chem. Phys. 2016, 18, 18705–18718. [Google Scholar] [CrossRef]
- Zhou, Z.; Leng, E.; Li, C.; Zhu, X.; Zhao, B. Insights into the Inhibitory Effect of H2O on Hg-Catalytic Oxidation over the MnOx-Based Catalysts. ChemistrySelect 2019, 4, 3259–3265. [Google Scholar] [CrossRef]
- Li, H.; Ren, C.; Zhang, R.; Li, R.; Xu, S.; Wang, L.; Qu, K.; Kang, W.; Wang, H.; Yang, S.; et al. One–step Synthesis of MnO/Ni Nanoparticles Anchored on Porous Nitrogen–doped Carbons from Melamine Foam and Electrocatalytic Study towards Oxygen Reduction Reaction. ChemistrySelect 2017, 2, 4234–4240. [Google Scholar] [CrossRef]
- Cao, J.; Wang, Y.; Chen, J.; Li, X.; Walsh, F.C.; Ouyang, J.-H.; Jia, D.; Zhou, Y. Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors. J. Mater. Chem. A 2015, 3, 14445–14457. [Google Scholar] [CrossRef]
- Lin, J.-H. The Influence of the Interlayer Distance on the Performance of Thermally Reduced Graphene Oxide Supercapacitors. Materials 2018, 11, 263. [Google Scholar] [CrossRef] [Green Version]
- Zhai, T.; Lu, X.; Ling, Y.; Yu, M.; Wang, G.; Liu, T.; Liang, C.; Tong, Y.; Li, Y. A New Benchmark Capacitance for Supercapacitor Anodes by Mixed-Valence Sulfur-Doped V6O13−x. Adv. Mater. 2014, 26, 5869–5875. [Google Scholar] [CrossRef]
- Lin, J.-H.; Shi, B.-W.; Chen, Z.-C. High-Performance Asymmetric Supercapacitors Based on the Surfactant/Ionic Liquid Complex Intercalated Reduced Graphene Oxide Composites. Appl. Sci. 2018, 8, 484. [Google Scholar]
- Jiang, H.; Yang, L.; Li, C.; Yan, C.; Lee, P.S.; Ma, J. High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy Environ. Sci. 2011, 4, 1813–1819. [Google Scholar] [CrossRef]
- Wang, H.; Casalongue, H.S.; Liang, Y.; Dai, H. Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. J. Am. Chem. Soc. 2010, 132, 7472–7477. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Xu, J.-L.; Ren, S.; Zhong, Y.-N.; Gao, X.; Wang, S.-D. Ionic-liquid-assisted one-pot synthesis of Cu2O nanoparticles/multi-walled carbon nanotube nanocomposite for high-performance asymmetric supercapacitors. RSC Adv. 2018, 8, 20182–20189. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Chen, W.; Yan, L. Fabrication of a 3D MnO2/graphene hydrogel for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 2765–2772. [Google Scholar] [CrossRef]
- Xiong, T.; Lee, W.S.V.; Chen, L.; Tan, T.L.; Huang, X.; Xue, J. Indole-based conjugated macromolecules as a redox-mediated electrolyte for an ultrahigh power supercapacitor. Energy Environ. Sci. 2017, 10, 2441–2449. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.-S.; Wang, D.-W.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H.-M. Anchoring Hydrous RuO2 on Graphene Sheets for High-Performance Electrochemical Capacitors. Adv. Funct. Mater. 2010, 20, 3595–3602. [Google Scholar] [CrossRef]
- Wang, Y.; Lai, W.; Wang, N.; Jiang, Z.; Wang, X.; Zou, P.; Lin, Z.; Fan, H.J.; Kang, F.; Wong, C.-P.; et al. A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life. Energy Environ. Sci. 2017, 10, 941–949. [Google Scholar] [CrossRef]
- He, W.; Wang, C.; Li, H.; Deng, X.; Xu, X.; Zhai, T. Ultrathin and Porous Ni3S2/CoNi2S4 3D-Network Structure for Superhigh Energy Density Asymmetric Supercapacitors. Adv. Energy Mater. 2017, 7, 1700983. [Google Scholar] [CrossRef]
Element | Atomic Percent (%) |
---|---|
C | 30.58 |
N | 1.32 |
O | 40.03 |
Mn | 28.07 |
Sample | B.E (eV) C1s | Assignment | Ref. | B.E(eV) Mn2p3/2 | B.E (eV) Mn2p1/2 | Assignment | Ref | B.E (eV) | Assignment | Ref. | B.E (eV) | Assignment | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GMS before cycling | 284.4 286.2 287.9 | sp2 carbon O-H/O-C-O N-C=O | [36] | 656.1 653.5 651.8 | 644.9 642.8 641.1 | Mn4+ Mn3+ Mn2+ | [37] | 398.2 399.2 400.2 | Pyridinicnitrogen Mn-N34 C=N | [38] | 529.7 531.3 532.7 | Mn–O–Mn Mn–O–H H–O–H | [39] |
GMS after cycling | 284.4 | Sp2 carbon | [36] | 656.5 | [40] | 394.1 | 529.2 | Mn–O–Mn | [39] | ||||
285.2 286.8 | C-N O-H/O-C-O | [36] | 653.6 651.5 | 646.6 | trivalent Mn ions of MnOOH | 396 397.9 | Pyridinic nitrogen | [38] | 531.0 531.8 | Mn–O-H H-O-H | |||
288.8 289.8 | C=O | [36] | 643.6 641.8 640.08 | Mn4 + Mn3 + Mn2 + | [37] | 399.4 400.6 | Mn-N Oxydised itrogen | [41] | 533.4 | C=O | [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rani, J.R.; Thangavel, R.; Kim, M.; Lee, Y.S.; Jang, J.-H. Ultra-High Energy Density Hybrid Supercapacitors Using MnO2/Reduced Graphene Oxide Hybrid Nanoscrolls. Nanomaterials 2020, 10, 2049. https://doi.org/10.3390/nano10102049
Rani JR, Thangavel R, Kim M, Lee YS, Jang J-H. Ultra-High Energy Density Hybrid Supercapacitors Using MnO2/Reduced Graphene Oxide Hybrid Nanoscrolls. Nanomaterials. 2020; 10(10):2049. https://doi.org/10.3390/nano10102049
Chicago/Turabian StyleRani, Janardhanan. R., Ranjith Thangavel, Minjae Kim, Yun Sung Lee, and Jae-Hyung Jang. 2020. "Ultra-High Energy Density Hybrid Supercapacitors Using MnO2/Reduced Graphene Oxide Hybrid Nanoscrolls" Nanomaterials 10, no. 10: 2049. https://doi.org/10.3390/nano10102049
APA StyleRani, J. R., Thangavel, R., Kim, M., Lee, Y. S., & Jang, J.-H. (2020). Ultra-High Energy Density Hybrid Supercapacitors Using MnO2/Reduced Graphene Oxide Hybrid Nanoscrolls. Nanomaterials, 10(10), 2049. https://doi.org/10.3390/nano10102049