Next Article in Journal
Synthesis of Monolayer MoSe2 with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition
Previous Article in Journal
Efficient Hydrogenation of Xylose and Hemicellulosic Hydrolysate to Xylitol over Ni-Re Bimetallic Nanoparticle Catalyst
Open AccessArticle

Effect of Nanoparticles with Different Chemical Nature on the Stability and Rheology of Acrylamide Sodium Acrylate Copolymer/Chromium (III) Acetate Gel for Conformance Control Operations

1
Grupo de Investigación en Fenómenos de Superficie-Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia
2
Grupo de Investigación de Yacimientos de Hidrocarburos, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia
*
Authors to whom correspondence should be addressed.
Nanomaterials 2020, 10(1), 74; https://doi.org/10.3390/nano10010074
Received: 22 November 2019 / Revised: 11 December 2019 / Accepted: 12 December 2019 / Published: 30 December 2019
(This article belongs to the Special Issue Rheological Properties of Polymeric Nanomaterials)
During enhanced oil recovery (EOR), reservoir heterogeneities and fluids distributions promote preferential flow channels formation. Therefore, different types of gels have been proposed to improve swept efficiency on chemical flooding by plugging high permeability zones. The purpose of this article is to evaluate the effect that nanotechnology has on the inhibition of syneresis and the rheological properties of the Acrylamide Sodium Acrylate Copolymer/Chromium (III) Acetate gel system for conformance applications in mature reservoirs. Thus, a methodology is proposed in four stages: First, (I) nanoparticles synthesis, and characterization, followed by (II) bottle tests to monitor gelation kinetics and syneresis degree at 70 °C, then (III) description of the rheological evaluation on static and dynamic conditions to calculate gelation time and viscoelastic modulus (G’ and G”), and finally (IV) the displacement test with the best gel system in the presence of nanoparticles. Results showed that the best nanoparticle was the chromium oxide (Cr2O3), which represented the lesser syneresis degree and increased gelation time. Syneresis of gel samples in the presence of Cr2O3 at day 30 was under 1% for gels prepared with 4000, 6000, and 8000 mg·L−1 of polymer, and polymer to crosslinker ratio (p/c) of 40:1. Regarding SiO2, MgO, and Al2O3 nanoparticles, results show an improvement of gel strength. However, their thermal stability in terms of syneresis was lower. Displacement test in a triple parallel Slim Tube was able to recover an additional 37% of oil of the total oil present in the sandpacks, confirming the effectivity of the system when 100 mg·L−1 of Cr2O3 nanoparticles are included. View Full-Text
Keywords: conformance; gel; EOR; nanotechnology; nanoparticles; rheology; syneresis; stability; viscoelasticity conformance; gel; EOR; nanotechnology; nanoparticles; rheology; syneresis; stability; viscoelasticity
Show Figures

Figure 1

MDPI and ACS Style

Pérez-Robles, S.; Matute, C.A.; Lara, J.R.; Lopera, S.H.; Cortés, F.B.; Franco, C.A. Effect of Nanoparticles with Different Chemical Nature on the Stability and Rheology of Acrylamide Sodium Acrylate Copolymer/Chromium (III) Acetate Gel for Conformance Control Operations. Nanomaterials 2020, 10, 74.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop