Optimization of Process Parameters for a Chemi-Absorbed Graphene Coating and Its Nano Tribological Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pretreatment of Ti Substrates
2.2. Deposition Process of Self-Assembled Coatings
2.3. Testing Procedure
3. Results
3.1. Determination on Length of Time for GO Assembly
3.2. Determination of Temperature and Time during Hydrothermal Reduction Process
3.3. Surface Morphologies of the Self-Assembled Coating
4. Nano-Tribological Performances of Prepared Poating
4.1. Adhesion and Frictional Forces under Different Conditions
4.1.1. Adhesion and Frictional Forces under Various Applied Loads
4.1.2. Adhesion and Frictional Forces under Various Scanning Speeds
4.1.3. Adhesion and Frictional Forces under Various Relative Humidity
4.1.4. Adhesion and Frictional Forces under Various Temperatures
4.2. Nano wear Resistance of HRGO-APS Coating
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Lee, H.J.; Lee, C.; Lee, S.K.; Jang, H.; Ahn, J.H.; Kim, J.H.; Lee, H.J. Chemical vapor deposition-grown graphene: The thinnest solid lubricant. ACS Nano 2011, 5, 5107–5114. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Wei, X.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.K.; Xianjun, H.; Abdelkareem, M.A.; Gulzar, M.; Elsheikh, A.H. Novel approach of the graphene nanolubricant for energy saving via anti-friction/wear in automobile engines. Tribol. Int. 2018, 124. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, M.; Jin, L.; Li, L.; Mo, Y.; Su, G.; Li, X.; Zhu, H.; Tian, Y. Recent advances in friction and lubrication of graphene and other 2D materials: Mechanisms and applications. Friction 2019, 7, 199–216. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Yao, Q.; Qi, Y.; Cheng, Y.; Wang, H.; Li, Q.; Meng, Y. Wear evolution of monolayer graphene at the macroscale. Carbon 2017, 115, 600–607. [Google Scholar] [CrossRef]
- Cao, C.H.; Sun, Y.; Filleter, T. Characterizing mechanical behavior of atomically thin films: A review. J. Mater. Res. 2014, 29, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Li, Q.; Kalb, W.; Liu, X.Z.; Berger, H.; Carpick, R.W.; Hone, J. Frictional characteristics of atomically thin sheets. Science 2010, 328, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Li, P.F.; Cheng, X.H. Nano-tribology studies of reduced graphene oxide films in air and in aqueous solutions with different pH values. J. Mater. Res. 2017, 32, 323–333. [Google Scholar] [CrossRef]
- Penkov, O.; Kim, H.J.; Kim, H.J.; Kim, D.E. Tribology of graphene: A review. Int. J. Precis. Eng. Manuf. 2014, 15, 577–585. [Google Scholar] [CrossRef]
- Zhao, L.; Cai, Z.; Zhang, Z.; Zhang, X.; Lin, Y.; Peng, J.; Zhu, M. Tribological properties of graphene as effective lubricant additive in oil on textured bronze surface. Chin. J. Mater. Res. 2016, 30, 57–62. [Google Scholar] [CrossRef]
- Zhao, J.; Mao, J.; Li, Y.; He, Y.; Luo, J. Friction-induced nano-structural evolution of graphene as a lubrication additive. Appl. Surf. Sci. 2018, 434, 21–27. [Google Scholar] [CrossRef]
- Khac, B.-C.T.; Frank, W.D.; Chung, K.-H. Interfacial strength and surface damage characteristics of atomically thin h-BN, MoS2, and graphene. ACS Appl. Mater. Interface 2018, 10, 9164–9177. [Google Scholar] [CrossRef]
- Vasić, B.; Matković, A.; Ralević, U. Nanoscale wear of graphene and wear protection by graphene. Carbon 2017, 120, 137–144. [Google Scholar] [CrossRef]
- Spear, J.C.; Custer, J.P.; Batteas, J.D. The influence of nanoscale roughness and substrate chemistry on the frictional properties of single and few layer graphene. Nanoscale 2015, 7, 10021–10029. [Google Scholar] [CrossRef]
- Qi, Y.; Liu, J.; Zhang, J.; Dong, Y.; Li, Q. Wear resistance limited by step edge failure: The rise and fall of graphene as an atomically-thin lubricating material. ACS Appl. Mater. Interface 2017, 9, 1099–1106. [Google Scholar] [CrossRef]
- Vasić, B.; Matković, A.; Gajić, R.; Stanković, I. Wear properties of graphene edges probed by atomic force microscopy based lateral manipulation. Carbon 2016, 107, 723–732. [Google Scholar] [CrossRef]
- Li, P.F.; Xu, Y.; Cheng, X.H. Chemisorption of thermal reduced graphene oxide nano-layer film on TNTZ surface and its tribological behavior. Surf. Coat. Technol. 2013, 232, 331–339. [Google Scholar] [CrossRef]
- Li, P.; Liu, H.; Chen, H.; Cheng, X. The influence of APTES interlayer on the assembly and tribological properties of graphene coatings on titanium substrate. Mater. Res. Express 2019, 6, 016424. [Google Scholar] [CrossRef]
- Hoque, E.; DeRose, J.A.; Hoffmann, P.; Mathieu, H.J.; Bhushan, B.; Cichomski, M. Phosphonate self-assembled monolayers on aluminum surfaces. J. Chem. Phys. 2006, 124, 174710. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yu, L.; Chen, X.; Zhang, P. Hydrophobic surfaces of spin-assisted layer-by-layer assembled polyelectrolyte multilayers doped with copper nanoparticles and modified by fluoroalkylsilane. Appl. Surf. Sci. 2009, 255, 4097–4101. [Google Scholar] [CrossRef]
- Zhai, W.; Srikanth, N.; Kong, L.B.; Zhou, K. Carbon nanomaterials in tribology. Carbon 2017, 119, 150–171. [Google Scholar] [CrossRef]
- Li, P.F.; Zhou, H.; Cheng, X.H. Nano/micro tribological behaviors of a self-assembled graphene oxidenanolayer on Ti/titanium alloy substrates. Appl. Surf. Sci. 2013, 285, 937–944. [Google Scholar] [CrossRef]
- Zhou, Y.; Bao, Q.; Tang, L.A.; Zhong, Y.; Loh, K.P. Hydrothermal dehydration for the “Green” reduction of exfoliated graphene xxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 2009, 21, 2950–2956. [Google Scholar] [CrossRef]
- Pu, J.; Jiang, D.; Mo, Y.; Wang, L.; Xue, Q. Micro/nano-tribological behaviors of crown-type phosphate ionic liquid ultrathin films on self-assembled mono-layer modified silicon. Surf. Coat. Technol. 2011, 205, 4855–4863. [Google Scholar] [CrossRef]
- Lee, H.; Lee, N.; Seo, Y.; Eom, J.; Lee, S. Comparison of frictional forces on graphene and graphite. Nanotechnology 2009, 20, 325701. [Google Scholar] [CrossRef] [Green Version]
- Homola, A.M.; Israelachvili, J.N.; McGuiggan, P.M.; Gee, M.L. Fundamental experimental studies in tribology: The transition from “interfacial” friction of undamaged molecularly smooth surfaces to “normal” friction with wear. Wear 1990, 136, 65–83. [Google Scholar] [CrossRef]
- Frisbie, C.D.; Rozsnyai, L.F.; Noy, A.; Wrighton, M.S.; Lieber, C.M. Functional group imaging by chemical force microscopy. Science 1994, 265, 2701–2704. [Google Scholar] [CrossRef]
- Opitz, A.; Ahmed, S.U.; Schaefer, J.A.; Scherge, M. Nanofriction of silicon oxide surfaces covered with thin water films. Wear 2003, 254, 924–929. [Google Scholar] [CrossRef]
- Tambe, N.S.; Bhushan, B. Friction model for the velocity dependence of nanoscale friction. Nanotechnology 2005, 16, 2309–2324. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Bhushan, B. Velocity dependence and rest time effect on nanoscale friction of ultrathin films at high sliding velocities. J. Vac. Sci. Technol. A 2007, 25, 1267–1274. [Google Scholar] [CrossRef]
- Zhao, X.; Hamilton, M.; Sawyer, W.G.; Perry, S.S. Thermally activated friction. Tribol. Lett. 2007, 27, 113–117. [Google Scholar] [CrossRef]
- Zhao, X.; Phillpot, S.R.; Sawyer, W.G.; Sinnott, S.B.; Perry, S.S. Transition from thermal to athermal friction under cryogenic conditions. Phys. Rev. Lett. 2009, 102. [Google Scholar] [CrossRef] [Green Version]
Variables | Ti | APS | GO-APS |
---|---|---|---|
A1 | 38.6 | 21.5 | 20.0 |
A2 | 47.7 | 26.6 | 29.0 |
x0 | 264.4 | 364.5 | 785.1 |
p | 2.8 | 3.5 | 1.8 |
Variables | Ti | APS | GO-APS |
---|---|---|---|
A1 | 3.9 | 2.6 | 1.9 |
A2 | 20.9 | 8.1 | 3.5 |
x0 | 292.1 | 397.7 | 226.3 |
p | 1.5 | 2.4 | 1.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Li, Y.; Chen, H.; Liu, H.; Cheng, X. Optimization of Process Parameters for a Chemi-Absorbed Graphene Coating and Its Nano Tribological Investigation. Nanomaterials 2020, 10, 55. https://doi.org/10.3390/nano10010055
Li P, Li Y, Chen H, Liu H, Cheng X. Optimization of Process Parameters for a Chemi-Absorbed Graphene Coating and Its Nano Tribological Investigation. Nanomaterials. 2020; 10(1):55. https://doi.org/10.3390/nano10010055
Chicago/Turabian StyleLi, Pengfei, Yuncheng Li, Hongyue Chen, Hui Liu, and Xianhua Cheng. 2020. "Optimization of Process Parameters for a Chemi-Absorbed Graphene Coating and Its Nano Tribological Investigation" Nanomaterials 10, no. 1: 55. https://doi.org/10.3390/nano10010055
APA StyleLi, P., Li, Y., Chen, H., Liu, H., & Cheng, X. (2020). Optimization of Process Parameters for a Chemi-Absorbed Graphene Coating and Its Nano Tribological Investigation. Nanomaterials, 10(1), 55. https://doi.org/10.3390/nano10010055