Evaluation of Antimicrobials Incorporated into Artificial Saliva: Analysis Against Candida albicans
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Artificial Saliva
2.2. Synthesis and Characterization of Ag Nanoparticles
2.3. Manipulation and Standardization of the Inoculum
2.4. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC)
2.5. Preparation of Acrylic Resin Specimens
2.6. Surface Treatment and C. albicans Biofilm Development
2.7. Quantification of C. albicans Biofilm by Colony Forming Units per Milliliter (CFU/mL)
2.8. Statistical Analyses
3. Results
3.1. Transmission Electron Microscopy (TEM) of Ag Nanoparticles
3.2. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC)
3.3. Quantitative Analysis of C. albicans Biofilm (CFU/mL)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kawanishi, N.; Hoshi, N.; Adachi, T.; Ichigaya, N.; Kimoto, K. Positive effects of saliva on oral candidiasis: Basic research on the analysis of salivary properties. J. Clin. Med. 2021, 10, 812. [Google Scholar] [CrossRef] [PubMed]
- Inamochi, Y.; Fueki, K.; Matsuyama, Y.; Yoshida-Kohno, E.; Fujiwara, T.; Wakabayashi, N. Does Oral Dryness Influence Pressure Pain Sensitivity in the Oral Mucosa of Removable Denture Wearers? Clin. Oral Investig. 2019, 24, 2603–2609. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Pang, R.; Yang, G.; Tian, M.; Zhao, T.; Sun, Y.; Lee, E.-S.; Jiang, H.B.; Han, J. Diagnosis, prevention, and treatment of radiotherapy-induced xerostomia: A review. J. Oncol. 2022, 2022, 7802334. [Google Scholar] [CrossRef]
- Jasmer, K.J.; Gilman, K.E.; Munoz Forti, K.; Weisman, G.A.; Limesand, K.H. Radiation-induced salivary gland dysfunction: Mechanisms, therapeutics and future directions. J. Clin. Med. 2020, 9, 4095. [Google Scholar] [CrossRef]
- Sundaram, M.; Manikandan, S.; Satheesh, B.; Srinivasan, D.; Jayapal, D.; Kumar, D. Comparative evaluation of xerostomia among diabetic and nondiabetic subjects wearing complete denture. J. Pharm. Bioallied Sci. 2020, 12, S419–S422. [Google Scholar] [CrossRef]
- Piaton, S.; Duconseille, A.; Roger-Leroi, V.; Hennequin, M. Could the Use of Saliva Substitutes Improve Food Oral Processing in Individuals with Xerostomia? A Systematic Review. J. Texture Stud. 2021, 52, 278–293. [Google Scholar] [CrossRef]
- Khamdi, S.; Matangkasombut, O.; Lam-Ubol, A. Non-pharmacologic interventions for management of radiation-induced dry mouth: A systematic review. Oral Dis. 2024, 30, 2876–2893. [Google Scholar] [CrossRef]
- Dalodom, S.; Lam-Ubol, A.; Jeanmaneechotechai, S.; Takamfoo, L.; Intachai, W.; Duangchada, K.; Hongsachum, B.; Kanjanatiwat, P.; Vacharotayangul, P.; Trachootham, D. Influence of oral moisturizing jelly as a saliva substitute for the relief of xerostomia in elderly patients with hypertension and diabetes mellitus. Geriatr. Nurs. 2016, 37, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.J. Development of Artificial Salivas. Crit. Rev. Oral. Biol. Med. 1993, 4, 279–286. [Google Scholar] [CrossRef]
- Srivastava, S.; Negi, P.; Chopra, D.; Misra, S. Maxillary reservoir denture to overcome radiation-induced xerostomia—Light at the end of the tunnel. J. Cancer Res. Ther. 2020, 16, 693–696. [Google Scholar] [CrossRef]
- De Sousa, J.B.; Nógimo, I.T.A.; Bento, A.K.M.; Santana, G.S.; Beserra, M.M.N.; Santos, Z.D.D.D.; Da Silva, C.H.F.; Carneiro, S.V.; Martins, L.F.B.; Rodrigues, I.S.C. Saliva Artificial: Um Estudo da Literatura Sobre uso em Pacientes Submetidos A Radioterapia. Braz. J. Surg. Clin. Res. 2019, 27, 95–99. [Google Scholar]
- Tanaka, A.; Kellesarian, S.V.; Arany, S. Xerostomia and Patients’ Satisfaction with Removable Denture Performance: Systematic Review. Quintessence Int. 2021, 52, 46–55. [Google Scholar] [CrossRef]
- Perić, M.; Miličić, B.; Kuzmanović Pfićer, J.; Živković, R.; Arsić Arsenijević, V. A systematic review of denture stomatitis: Predisposing factors, clinical features, etiology, and global Candida spp. distribution. J. Fungi 2024, 10, 328. [Google Scholar] [CrossRef]
- AlMojel, N.; AbdulAzees, P.A.; Lamb, E.M.; Amaechi, B.T. Determining growth inhibition of Candida albicans biofilm on denture materials after application of an organoselenium-containing dental sealant. J. Prosthet. Dent. 2023, 129, 205–212. [Google Scholar] [CrossRef]
- Scheibler, E.; Da Silva, R.M.; Leite, C.E.; Campos, M.M.; Figueiredo, M.A.; Salum, F.G.; Cherubini, K. Stability and Efficacy of Combined Nystatin and Chlorhexidine Against Suspensions and Biofilms of Candida albicans. Arch. Oral Biol. 2018, 89, 70–76. [Google Scholar] [CrossRef]
- Mallineni, S.K.; Sakhamuri, S.; Kotha, S.L.; AlAsmari, A.R.G.M.; AlJefri, G.H.; Almotawah, F.N.; Mallineni, S.; Sajja, R. Silver nanoparticles in dental applications: A descriptive review. Bioengineering 2023, 10, 327. [Google Scholar] [CrossRef]
- Agnihotri, R.; Gaur, S.; Albin, S. Nanometals in Dentistry: Applications and Toxicological Implications—A Systematic Review. Biol. Trace Elem. Res. 2020, 197, 70–88. [Google Scholar] [CrossRef] [PubMed]
- Almatroudi, A. Silver nanoparticles: Synthesis, characterisation and biomedical applications. Open Life Sci. 2020, 15, 819–839. [Google Scholar] [CrossRef] [PubMed]
- Peralta, L.C.; Almeida, N.L.; Pontes, F.M.; Rinaldo, D.; Carneiro, C.A.; Neppelenbroek, K.H.; Lara, V.S.; Porto, V.C. Silver nanoparticles in denture adhesive: An antimicrobial approach against Candida albicans. J. Dent. 2023, 131, 104445. [Google Scholar] [CrossRef] [PubMed]
- Venante, H.S.; Chappuis-Chocano, A.P.; Marcillo-Toala, O.O.; da Silva, R.A.; da Costa, R.M.B.; Pordeus, M.D.; Barraviera, B.; Ferreira Junior, R.S.; Lara, V.S.; Neppelenbroek, K.H.; et al. Fibrin Biopolymer Incorporated with Antimicrobial Agents: A Proposal for Coating Denture Bases. Materials 2021, 14, 1618. [Google Scholar] [CrossRef]
- European Commite for Antimicrobial Susceptibility Testing of the European Society of Clinical. Determination of minimum inhibitory concentrations (MICs) of antimicrobial agents by agar dilution. Clin. Microb. Infect. 2000, 6, 509–515. [Google Scholar] [CrossRef]
- Bona, E.A.; da Silva, F.P.; Fruet, T.K.; Jorge, T.M.; Moura, A.C. Comparação de métodos para avaliação da atividade antimicrobiana e determinação da concentração inibitória mínima (cim) de extratos vegetais aquosos e etanólicos. Arq. Inst. Biol. 2014, 81, 218–225. [Google Scholar] [CrossRef]
- Da Silva, P.M.; Acosta, E.J.T.R.; Pinto, L.d.R.; Graeff, M.; Spolidorio, D.M.P.; Almeida, R.S.; Porto, V.C. Microscopical analysis of Candida albicans biofilms on heat-polymerised acrilic after clorhexidine gluconate and sodium hypochlorite treatments. Mycoses 2011, 54, e712–e717. [Google Scholar] [CrossRef]
- Valentini, F.; Luz, M.S.; Boscato, N.; Pereira-Cenci, T. Biofilm formation on denture liners in a randomised controlled in situ trial. J. Dent. 2013, 41, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Manosroi, A.; Pattamapun, K.; Chankhampan, C.; Kietthanakorn, B.-O.; Kitdamrongtham, W.; Zhang, J.; Manosroi, J. A biological active artificial saliva formulation containing flower mucilage from ceylon spinach (Basella alba linn.). Saudi J. Biol. Sci. 2020, 27, 769–776. [Google Scholar] [CrossRef]
- Silva, M.P.; Chibebe Junior, J.; Jorjão, A.L.; Machado, A.K.S.; Oliveira, L.D.; Junqueira, J.C.; Jorge, A.O.C. Influence of artificial saliva in biofilm formation of Candida albicans in vitro. Braz. Oral Res. 2012, 26, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Chandra, J.; Mukherjee, P.K.; Leidich, S.D.; Faddoul, F.F.; Hoyer, L.L.; Douglas, L.J.; Ghannoum, M.A. Antifungical resistance of candida biofilms formed on denture acrilyc in vitro. J. Dent. Res. 2001, 80, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Neppelenbroek, K.H.; Falcão Procópio, A.L.; Gomes, A.C.; Sugio, C.Y.; Neves Garcia, A.A.; Porto, V.C.; Urban, V.M. A modified Newton classification for denture stomatitis. Prim. Dent. J. 2022, 11, 55–58. [Google Scholar] [CrossRef]
- Łysik, D.; Niemirowicz-Laskowska, K.; Bucki, R.; Tokajuk, G.; Mystkowska, J. Artificial saliva: Challenges and future perspectives for the treatment of xerostomia. Int. J. Mol. Sci. 2019, 20, 3199. [Google Scholar] [CrossRef]
- Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics 2016, 6, 1306–1323. [Google Scholar] [CrossRef]
- Monteiro, D.R.; Gorup, L.F.; Silva, S.; Negri, M.; de Camargo, E.R.; Oliveira, R.; Barbosa, D.B.; Henriques, M. Silver colloidal nanoparticles: Antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata. Biofouling 2011, 27, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Lara, H.H.; Romero-Urbina, D.G.; Pierce, C.; Lopez-Ribot, J.L.; Arellano-Jiménez, M.J.; Jose-Yacaman, M. Effect of silver nanoparticles on Candida albicans biofilms: An ultrastructural study. J. Nanobiotechnol. 2015, 13, 91. [Google Scholar] [CrossRef]
- Marambio-Jones, C.; Hoek, E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanoparticle Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Matsumura, Y.; Yoshikata, K.; Kunisaki, S.; Tsuchido, T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 2003, 69, 4278–4281. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Niemirowicz-Laskowska, K.; Mystkowska, J.; Łysik, D.; Chmielewska, S.; Tokajuk, G.; Misztalewska-Turkowicz, I.; Wilczewska, A.Z.; Bucki, R. Antimicrobial and physicochemical properties of artificial saliva formulations supplemented with core-shell magnetic nanoparticles. Int. J. Mol. Sci. 2020, 21, 1979. [Google Scholar] [CrossRef]
- Rodrigues, G.R.; López-Abarrategui, C.; de la Serna Gómez, I.; Dias, S.C.; Otero-González, A.J.; Franco, O.L. Antimicrobial Magnetic Nanoparticles Based-Therapies for Controlling Infectious Diseases. Int. J. Pharm. 2019, 555, 356–367. [Google Scholar] [CrossRef]
- Silva, N.D.G.; Paiva, P.R.B.; Magalhães, T.V.M.; Braga, A.S.; Santos, P.S.d.S.; Henrique-Silva, F.H.; Magalhães, A.C.; Buzalaf, M.A.R. Effect of experimental and commercial artificial saliva formulations on the activity and viability of microcosm biofilm and on enamel demineralization for irradiated patients with head and neck cancer (HNC). Biofouling 2022, 38, 674–686. [Google Scholar] [CrossRef]
- Souza, B.M.; Braga, A.S.; Vertuan, M.; Sassaki, S.; Araújo, T.T.; Santos, P.S.; Buzalaf, M.A.R.; Magalhães, A.C. Influence of irradiated dentin, biofilm and different artificial saliva formulations on root dentin demineralization. Heliyon 2024, 10, e36334. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kaur, N.; Singh, R.; Awasthi, A. Green Synthesis of Silver Nanoparticles Utilizing Cannabis sativa L. Extract and Their Structura lCharacterization. Trends Phytochem. Res. 2025, 9, 57–66. [Google Scholar]
- Hernández-Pérez, M.; Flores-López, L.Z.; Villarreal-Gómez, L.J.; Garza-Navarro, M.A. Ag–Ag2O Nanocomposite Biosynthesis by Mixed Bacterial Cultivation: Structural and Antimicrobial Evaluation. J. Mater. Sci. Mater. Med. 2024, 35, 12. [Google Scholar]
- Sherpa, L.; Nimmala, A.; Rao, S.V.S.N.; Khan, S.A.; Pathak, A.P.; Tripathi, A.; Tiwari, A. Refining Shape and Size of Silver Nanoparticles Using Ion Irradiation for Enhanced and Homogeneous SERS Activity. Discov. Nano 2024, 19, 51. [Google Scholar] [CrossRef] [PubMed]
- Velgosova, O.; Mačák, L.; Lisnichuk, M.; Vojtko, M. Synthesis and Analysis of Polymorphic Silver Nanoparticles and Their Incorporation into the Polymer Matrix. Polymers 2022, 14, 2666. [Google Scholar] [CrossRef]
- Silva, R.A.; Ishikiriama, B.L.; Lopes, M.M.; de Castro, R.D.; Garcia, C.R.; Porto, V.C.; Santos, C.F.; Neppelenbroek, K.H.; Lara, V.S. Antifungal activity of Punicalagin–nystatin combinations against Candida albicans. Oral Dis. 2020, 26, 1810–1819. [Google Scholar] [CrossRef]
- Salehi, M.; Malekzadeh Shafaroudi, A.; Daryani, M.; Khalilian, A.; Ahangarkani, F.; Molania, T. In vitro interactions of nystatin and micafungin combined with chlorhexidine against Candida albicans isolates. Curr. Med. Mycol. 2022, 8, 7–11. [Google Scholar] [CrossRef]
- Scheibler, E.; Garcia, M.C.R.; da Silva, R.M.; Figueiredo, M.A.; Salum, F.G.; Cherubini, K. Use of nystatin and chlorhexidine in oral medicine: Properties, indications and pitfalls with focus on geriatric patients. Gerodontology 2017, 34, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Ellepola, A.N.; Samaranayake, L.P. Oral candidal infections and antimycotics. Crit. Rev. Oral Biol. Med. 2000, 11, 172–198. [Google Scholar] [CrossRef]
- Singh, S.; Palaskar, J.N.; Mittal, S. Comparative evaluation of surface porosities in conventional heat polymerized acrylic resin cured by water bath and microwave energy with microwavable acrylic resin cured by microwave energy. Contemp. Clin. Dent. 2013, 4, 147–151. [Google Scholar] [CrossRef]
- Pero, A.C.; Marra, J.; Paleari, A.G.; Pereira, W.R.; Barbosa, D.B.; Compagnoni, M.A. Measurement of interfacial porosity at the acrylic resin/denture tooth interface. J. Prosthodont. 2010, 19, 42–46. [Google Scholar] [CrossRef]
- Mhatre, S.; Srichand, R.; Sethumadhavan, J.; Mishra, P.B.; Patil, S.D.; Chavan, R.S.; Joshi, M.; Shetty, U. Dry Mouth Dilemma: A Comprehensive Review of Xerostomia in Complete Denture Wearers. Cureus 2024, 16, e58564. [Google Scholar] [CrossRef]
- Oncul, B.; Karakis, D.; Al, F.D. The effect of two artificial salivas on the adhesion of Candida albicans to heat-polymerized acrylic resin. J. Adv. Prosthodont. 2015, 7, 93–97. [Google Scholar] [CrossRef]
- Li, Z.; Sun, J.; Lan, J.; Qi, Q. Effect of a denture base acrylic resin containing silver nanoparticles on Candida albicans adhesion and biofilm formation. Gerodontology 2016, 33, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Redding, S.; Bhatt, B.; Rawls, H.R.; Siegel, G.; Scott, K.; Lopez-Ribot, J. Inhibition of Candida albicans Biofilme Formation on Denture Material. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 107, 669–672. [Google Scholar] [CrossRef]
- Maluf, C.V.; Peroni, L.V.; Menezes, L.R.; Coutinho, W.; Lourenço, E.J.V.; Telles, D.M. Evaluation of the physical and antifungal effects of chlorhexidine diacetate incorporated into polymethyl methacrylate. J. Appl. Oral. Sci. 2020, 28, e20190039. [Google Scholar] [CrossRef] [PubMed]
- Edgerton, M.; Scannapieco, F.A.; Reddy, M.S.; Levine, M.J. Human submandibular-sublingual saliva promotes adhesion of Candida albicans to polymethylmethacrylate. Infect. Immun. 1993, 61, 2644–2652. [Google Scholar] [CrossRef] [PubMed]
- Paranhos, H.F.; Salles, A.E.; Macedo, L.D.; da Silva-Lovato, C.H.; Pagnano, V.O.; Watanabe, E. Complete denture biofilm after brushing with specific denture paste, neutral soap and artificial saliva. Braz. Dent. J. 2013, 24, 47–52. [Google Scholar] [CrossRef]
- Miceli, M.H.; Bernardo, S.M.; Ku, T.S.N.; Walraven, C.; Lee, S.A. In vitro analyses of the effects of heparin and parabens on Candida albicans biofilms and planktonic cells. Antimicrob. Agents Chemother. 2012, 56, 148–153. [Google Scholar] [CrossRef]
- Forgács, L.; Kovács, R.; Almási, É.; Borman, A.M.; Majoros, L.; Somogyvári, F.; Kardos, G. In Vivo Efficacy of Amphotericin B Against Four Candida auris Clades. J. Fungi 2022, 8, 499. [Google Scholar] [CrossRef]
- Elgammal, Y.; Abdelazeem, A.; Abdel-Hamid, A. HIV Protease Inhibitors Restore Amphotericin B Activity Against Candida. PLoS ONE 2025, 20, e0324080. [Google Scholar] [CrossRef]
- Qasim, M.; Baipaywad, P.; Udomluck, N.; Na, D.; Park, H. Enhanced Therapeutic Efficacy of Lipophilic Amphotericin B Against Candida albicans with Amphiphilic Poly(N-isopropylacrylamide) Nanogels. Macromol. Res. 2014, 22, 1125–1131. [Google Scholar] [CrossRef]
- Laniado-Laborin, R.; Cabrales-Vargas, M.N. Amphotericin B: Side Effects and Toxicity. Rev. Iberoam. Micol. 2009, 26, 223–227. [Google Scholar] [CrossRef]
- Mora-Duarte, J.; Betts, R.; Rotstein, C.; Colombo, A.L.; Thompson-Moya, L.; Smietana, J.; Lupinacci, R.; Sable, C.; Kartsonis, N.; Perfect, J. Comparison of Caspofungin and Amphotericin B for Invasive Candidiasis. N. Engl. J. Med. 2002, 347, 2020–2029. [Google Scholar] [CrossRef]
- Keane, S.; Geoghegan, P.; Póvoa, P.; Nseir, S.; Rodríguez, A.; Martín-Loeches, I. Systematic review on the first line treatment of amphotericin B in critically ill adults with candidemia or invasive candidiasis. Expert Rev. Anti-Infect. Ther. 2018, 16, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.J.A.; Fathy, M.S.M.; Ghobrial, M.A.T.; Mohamed, M.H. Micafungin versus amphotericin B in treatment of invasive fungal infection in preterm neonates: A randomized control trial. Ital. J. Pediatr. 2025, 51, 12. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.F.; Rodrigues, M.E.; Henriques, M. Liposomal and Deoxycholate Amphotericin B Formulations: Effectiveness against Biofilm Infections of Candida spp. Pathogens 2017, 6, 62. [Google Scholar] [CrossRef]
- Rex, J.H.; Bennett, J.E.; Sugar, A.M.; Pappas, P.G.; van der Horst, C.M.; Edwards, J.E.; Washburn, R.G.; Scheld, W.M.; Karchmer, A.W.; Dine, A.P. A Randomized Trial Comparing Fluconazole with Amphotericin B for Candidemia in Patients Without Neutropenia. N. Engl. J. Med. 1994, 331, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- Schinabeck, M.K.; Long, L.A.; Hossain, M.A.; Chandra, J.; Mukherjee, P.K.; Mohamed, S.; Ghannoum, M.A. Rabbit Model of Candida albicans Biofilm Infection: Liposomal Amphotericin B Antifungal Lock Therapy. Antimicrob. Agents Chemother. 2004, 48, 1727–1732. [Google Scholar] [CrossRef]
- Kubera, D.; Sławińska-Brych, A.; Dróżdż, A.; Olender, A.; Bogut, A.; Matwijczuk, A.; Karcz, D.; Kimsa-Dudek, M.; Gola, J.M.; Kruszniewska-Rajs, C.; et al. Synergistic Effect of 1,3,4-Thiadiazole Derivatives with Amphotericin B in Antifungal Therapy. Sci. Rep. 2025, 15, 11234. [Google Scholar] [CrossRef]
- Cavassin, F.; Baú-Carneiro, J.L.; Vilas-Boas, R.; Queiroz-Telles, F. Sixty Years of Amphotericin B: An Overview of the Main Antifungal Agent Used to Treat Invasive Fungal Infections. Infect. Dis. Ther. 2021, 10, 1151–1169. [Google Scholar] [CrossRef]
- Demir, K.K.; Butler-Laporte, G.; Del Corpo, O.; Ekmekjian, T.; Sheppard, D.C.; Lee, T.C.; Cheng, M.P. Comparative Effectiveness of Amphotericin B, Azoles and Echinocandins in the Treatment of Candidemia and Invasive Candidiasis: A Systematic Review and Network Meta-Analysis. Mycoses 2021, 64, 1370–1382. [Google Scholar] [CrossRef]
- Hernando-Ortiz, A.; Eraso, E.; Jauregizar, N.; de Groot, P.W.J.; Quindós, G.; Mateo, E. Efficacy of the combination of amphotericin B and echinocandins against Candida auris in vitro and in the Caenorhabditis elegans host model. Microbiol. Spectr. 2024, 12. [Google Scholar] [CrossRef] [PubMed]
- Kartit, Z.; Hulin, M.; Hettler, D.; Huguenin, A.; Bonnet, M.; N’Guyen, Y. Evaluation of Efficacy and Tolerance of Intravesical Amphotericin B Irrigation for the Management of Candiduria. Therapie 2025, 80, 598–606. [Google Scholar] [CrossRef]
- Méan, M.; Marchetti, O.; Calandra, T. Bench-to-Bedside Review: Candida Infections in the Intensive Care Unit. Crit. Care 2008, 12, 204. [Google Scholar] [CrossRef]
- Kuse, E.-R.; Chetchotisakd, P.; da Cunha, C.A.; Ruhnke, M.; Barrios, C.; Raghunadharao, D.; Sekhon, J.S.; Freire, A.; Ramasubramanian, V. Micafungin versus Liposomal Amphotericin B for Candidemia and Invasive Candidosis: A Phase III Randomised Double-Blind Trial. Lancet 2007, 369, 1519–1527. [Google Scholar] [CrossRef]
- Santangelo, R.; Paderu, P.; Delmas, G.; Chen, Z.W.; Mannino, R.; Zarif, L.; Perlin, D.S. Efficacy of Oral Cochleate-Amphotericin B in a Mouse Model of Systemic Candidiasis. Antimicrob. Agents Chemother. 2000, 44, 2356–2360. [Google Scholar] [CrossRef] [PubMed]
- Moen, M.D.; Lyseng-Williamson, K.A.; Scott, L.J. Liposomal Amphotericin B: A Review of its Use in the Management of Fungal Infections. Drugs 2012, 72, 919–941. [Google Scholar]
- Jafari, M.; Abolmaali, S.S.; Borandeh, S.; Najafi, H.; Zareshahrabadi, Z.; Heidari, R.; Azarpira, N.; Zomorodian, K.; Tamaddon, A.M. Amphiphilic Hyperbranched Polyglycerol Nanoarchitectures for Amphotericin B Delivery in Candida Infections. Biomater. Adv. 2022, 139, 212996. [Google Scholar] [CrossRef]
- Akinosoglou, K.; Kourkoumpetis, T.; Gkirkas, K.; Kirgou, A.; Tsiakos, G.; Lidar, M. Amphotericin B in the Era of New Antifungals: Where Will It Stand? J. Fungi 2024, 10, 278. [Google Scholar] [CrossRef]
- Domingos, E.L.; Vilhena, R.O.; Santos, J.M.; Fachi, M.M.; Böger, B.; Adam, L.M.; Tonin, F.S.; Pontarolo, R. Comparative Efficacy and Safety of Systemic Antifungal Agents for Candidemia: Network Meta-Analysis and Multicriteria Acceptability Analyses. Int. J. Antimicrob. Agents 2022, 60, 106654. [Google Scholar] [CrossRef]
- Caballero, U.; Eraso, E.; Quindós, G.; Jauregizar, N. In Vitro Interaction and Killing-Kinetics of Amphotericin B Combined with Anidulafungin or Caspofungin Against Candida auris. Pharmaceutics 2021, 13, 1333. [Google Scholar] [CrossRef] [PubMed]
- Odysseos, G.; Mayr, U.; Bozsaki, G.; Seidensticker, C.; Ehmer, U.; Schmid, R.M.; Lahmer, T.; Dill, V. Isavuconazole and Liposomal Amphotericin B as Successful Combination Therapy of Refractory Invasive Candidiasis in a Liver Transplant Recipient: Case Report and Literature Review. Mycopathologia 2021, 186, 559–566. [Google Scholar] [CrossRef] [PubMed]






| Component | Concentration | Component | Concentration |
|---|---|---|---|
| Sodium bicarbonate | 0.21% | Dipotassium phosphate | 0.12% |
| Calcium Chloride | 0.06% | Magnesium Chloride | 0.012% |
| Potassium chloride | 0.08% | Methylparaben | 0.01% |
| Propylparaben | 0.01% | Carboxymethylcellulose | 0.8% |
| Group | 3 h | 6 h | 12 h |
|---|---|---|---|
| CT | 2.332 ± 0.282 Aa | 2.764 ± 0.282 Ba | 2.883 ± 0.282 Ba |
| AS | 2.029 ± 0.396 Ab | 2.156 ± 0.396 Bb | 2.868 ± 0.396 Ca |
| AS + Chx | 0.0 Ac | 0.0 Ac | 0.0 Ab |
| AS + Nys | 0.0 ± 0 Ac | 0.0 ± 0 Ac | 0.7 ± 0.1 Ab |
| AS + AgNp 2 mM | 0.0 Ac | 2.344 ± 0.123 Bb | 2.170 ± 0.123 Cc |
| AS + AgNp 4 mM | 0.0 Ac | 0.0 Ac | 1.176 ± 0.3 Ab |
| AS + AgNp 6 mM | 0.0 Ac | 0.0 Ac | 0.0 Ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Carneiro, C.A.; Pontes, F.M.L.; Neppelenbroek, K.H.; França, R.; Porto, V.C. Evaluation of Antimicrobials Incorporated into Artificial Saliva: Analysis Against Candida albicans. J. Funct. Biomater. 2026, 17, 63. https://doi.org/10.3390/jfb17020063
Carneiro CA, Pontes FML, Neppelenbroek KH, França R, Porto VC. Evaluation of Antimicrobials Incorporated into Artificial Saliva: Analysis Against Candida albicans. Journal of Functional Biomaterials. 2026; 17(2):63. https://doi.org/10.3390/jfb17020063
Chicago/Turabian StyleCarneiro, Camila Alves, Fenelon Martinho Lima Pontes, Karin Hermana Neppelenbroek, Rodrigo França, and Vinicius Carvalho Porto. 2026. "Evaluation of Antimicrobials Incorporated into Artificial Saliva: Analysis Against Candida albicans" Journal of Functional Biomaterials 17, no. 2: 63. https://doi.org/10.3390/jfb17020063
APA StyleCarneiro, C. A., Pontes, F. M. L., Neppelenbroek, K. H., França, R., & Porto, V. C. (2026). Evaluation of Antimicrobials Incorporated into Artificial Saliva: Analysis Against Candida albicans. Journal of Functional Biomaterials, 17(2), 63. https://doi.org/10.3390/jfb17020063

