Influence of Sintering Parameters on the Mechanical Behaviour of Lithium Disilicate Glass Ceramics: An In-Vitro Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Clinical Significance
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Kelly, J.R. Dental Ceramics for Restoration and Metal Veneering. Dent. Clin. North Am. 2017, 61, 797–819. [Google Scholar] [CrossRef]
- Zarone, F.; Di Mauro, M.I.; Ausiello, P.; Ruggiero, G.; Sorrentino, R. Current status on lithium disilicate and zirconia: A narrative review. BMC Oral Heal. 2019, 19, 1–14. [Google Scholar] [CrossRef]
- Rekow, E.D.; Silva, N.R.F.A.; Coelho, P.G.; Zhang, Y.; Guess, P.; Thompson, V.P. Performance of Dental Ceramics: Challenges for Improvements. J. Dent. Res. 2011, 90, 937–952. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.H.; de Lima, E.; Miranda, R.B.d.P.; Favero, S.S.; Lohbauer, U.; Cesar, P.F. Dental ceramics: A review of new materials and processing methods. Braz. Oral Res. 2017, 31, 133–146. [Google Scholar] [CrossRef]
- Deany, I.L. Recent advances in ceramics for dentistry. Crit. Rev. Oral Biol. Med. 1996, 7, 134–143. [Google Scholar] [CrossRef]
- Kelly, J.R.; Benetti, P. Ceramic materials in dentistry: Historical evolution and current practice. Aust Dent J. 2011, 56 (Suppl. 1), 84–96. [Google Scholar] [CrossRef]
- Chen, Y.; Yeung, A.W.; Pow, E.H.; Tsoi, J.K. Current status and research trends of lithium disilicate in dentistry: A bibliometric analysis. J. Prosthet. Dent. 2021, 126, 512–522. [Google Scholar] [CrossRef]
- Culp, L.; McLaren, E.A. Lithium disilicate: The restorative material of multiple options. Compend. Contin. Educ. Dent. 2010, 31, 716–720, 724–725. [Google Scholar]
- Pieger, S.; Salman, A.; Bidra, A.S. Clinical outcomes of lithium-disilicate single crowns and partial fixed dental prostheses: A systematic review. J Prosthet Dent. 2014, 112, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Zarone, F.; Ferrari, M.; Mangano, F.G.; Leone, R.; Sorrentino, R. Digitally Oriented Materials”: Focus on Lithium-disilicate Ceramics. Int J Dent. 2016, 2016, 9840594. [Google Scholar] [CrossRef] [PubMed]
- Gehrt, M.; Wolfart, S.; Rafai, N.; Reich, S.; Edelhoff, D. Clinical results of lithium-disilicate crowns after up to 9 years of service. Clin. Oral Investig. 2012, 17, 275–284. [Google Scholar] [CrossRef]
- Ii, R.G. Ceramics overview. Br. Dent. J. 2022, 232, 658–663. [Google Scholar] [CrossRef]
- Al-Johani, H.; Haider, J.; Satterthwaite, J.; Silikas, N. Lithium Silicate-Based Glass Ceramics in Dentistry: A Narrative Review. Prosthesis 2024, 6, 478–505. [Google Scholar] [CrossRef]
- Rinke, S.; Rödiger, M.; Ziebolz, D.; Schmidt, A.-K. Fabrication of Zirconia-Reinforced Lithium Silicate Ceramic Restorations Using a Complete Digital Workflow. Case Rep. Dent. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Taha, D.; Nour, M.; Zohdy, M.; El-Etreby, A.; Hamdy, A.; Salah, T. The Effect of Different Wax Pattern Fabrication Techniques on the Marginal Fit of Customized Lithium Disilicate Implant Abutments. J. Prosthodont. 2019, 28, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Elsaka, S.E.; Elnaghy, A.M. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent. Mater. 2016, 32, 908–914. [Google Scholar] [CrossRef]
- Mörmann, W.H. The evolution of the CEREC system. J. Am. Dent. Assoc. 2006, 137, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Lubauer, J.; Belli, R.; Peterlik, H.; Hurle, K.; Lohbauer, U. Grasping the Lithium hype: Insights into modern dental Lithium Silicate glass-ceramics. Dent. Mater. 2022, 38, 318–332. [Google Scholar] [CrossRef]
- Phark, J.H.; Duarte Jr, S. Microstructural considerations for novel lithium-disilicate glass ceramics: A review. J Esthet Restor Dent. 2022, 34, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Piva, A.M.O.D.; Nedeljkovic, I.; Tribst, J.P.M.; Feilzer, A.J.; Kleverlaan, C.J. Effect of glazing technique and firing on surface roughness and flexural strength of an advanced lithium disilicate. Clin. Oral Investig. 2023, 27, 3917–3926. [Google Scholar] [CrossRef]
- Aktas, B.; Yalcin, S.; Albaskara, M.; Aytar, E.; Ceyhan, G.; Turhan, Z.Ş. Effect of Er2O3 on structural, mechanical, and optical properties of Al2O3-Na2O-B2O3-SiO2 glass. J. Non-Crystalline Solids 2022, 584, 121516. [Google Scholar] [CrossRef]
- de Kok, P.; Pereira, G.K.; Fraga, S.; de Jager, N.; Venturini, A.B.; Kleverlaan, C.J. The effect of internal roughness and bonding on the fracture resistance and structural reliability of lithium disilicate ceramic. Dent. Mater. 2017, 33, 1416–1425. [Google Scholar] [CrossRef]
- Essam, N.; Soltan, H.; Attia, A. Influence of thickness and surface conditioning on fracture resistance of occlusal veneer. BMC Oral Heal. 2023, 23, 1–12. [Google Scholar] [CrossRef]
- Sehovic, E.; Ioannidis, A.; Hämmerle, C.H.; Özcan, M.; Mühlemann, S. Effect of tooth brush abrasion on the color, gloss and surface roughness of internally and externally stained monolithic ceramic materials. J. Prosthodont. Res. 2022, 66, 303–311. [Google Scholar] [CrossRef]
- Lima, K.d.C.; Vivanco, R.G.; Rodrigues, P.R.B.; Caetano, A.L.P.; Pires-De-Souza, F.d.C.P. Long-term effect of firing protocols on surface roughness and flexural strength of lithium disilicate glass-ceramic. Braz. Dent. J. 2023, 34, 79–86. [Google Scholar] [CrossRef]
- Alencar-Silva, F.J.; Barreto, J.O.; Negreiros, W.A.; Silva, P.G.; Pinto-Fiamengui, L.M.S.; Regis, R.R. Effect of beverage solutions and toothbrushing on the surface roughness, microhardness, and color stainability of a vitreous CAD-CAM lithium disilicate ceramic. J. Prosthet. Dent. 2019, 121, 711.e1–711.e6. [Google Scholar] [CrossRef]
- Floriani, F.; Jabr, B.; Rojas-Rueda, S.; Garcia-Contreras, R.; Jurado, C.A.; Alshabib, A. Surface Analysis of Lithium Disilicate Ceramics After Use of Charcoal-Containing Toothpastes. J. Funct. Biomater. 2025, 16, 183. [Google Scholar] [CrossRef]
- ISO 6872:2015; Dentistry—Ceramic Materials. International Organization for Standardization (ISO): Geneva, Switzerland, 2015.
- Li, D.; Zhou, M.; Zhang, Y.; Meng, M.; Li, X.; Lyu, X.; Qin, B.; Wang, F.; Zhang, Z. Effects of heat pressing on microstructure and mechanical properties of lithium disilicate glass ceramics with different crystal morphology. Ceram. Int. 2024, 51, 8590–8598. [Google Scholar] [CrossRef]
- Höland, W.; Schweiger, M.; Frank, M.; Rheinberger, V. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics. J Biomed Mater Res. 2000, 53, 297–303. [Google Scholar] [CrossRef]
- Al Ben Ali, A.; Kang, K.; Finkelman, M.D.; Zandparsa, R.; Hirayama, H. The effect of variations in translucency and background on color differences in CAD/CAM lithium disilicate glass ceramics. J Prosthodont. 2014, 23, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Harianawala, H.H.; Kheur, M.G.; Apte, S.K.; Kale, B.B.; Sethi, T.S.; Kheur, S.M. Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials. J. Adv. Prosthodont. 2014, 6, 456–461. [Google Scholar] [CrossRef]
- Özdemiṙ, H.; Özdoğan, A. The effect of heat treatments applied to superstructure porcelain on the mechanical properties and microstructure of lithium disilicate glass ceramics. Dent. Mater. J. 2018, 37, 24–32. [Google Scholar] [CrossRef]
- Labban, N.; Al Amri, M.D.; Alnafaiy, S.M.; Alhijji, S.M.; Alenizy, M.A.; Iskandar, M.; Feitosa, S. Influence of Toothbrush Abrasion and Surface Treatments on Roughness and Gloss of Polymer-Infiltrated Ceramics. Polymers 2021, 13, 3694. [Google Scholar] [CrossRef] [PubMed]
- Meng, M.; Wang, X.; Li, K.; Deng, Z.; Zhang, Z.; Sun, Y.; Zhang, S.; He, L.; Guo, J. Effects of surface roughness on the time-dependent wear performance of lithium disilicate glass ceramic for dental applications. J. Mech. Behav. Biomed. Mater. 2021, 121, 104638. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.D.; Forjanic, M. Surface roughness of different dental materials before and after simulated toothbrushing in vitro. Oper. Dent. 2005, 30, 617–626. [Google Scholar]
- Mondelli, R.; Garrido, L.; Soares, A.; Rodriguez-Medina, A.; Mondelli, J.; de Lucena, F.; Furuse, A. Effect of simulated brushing on surface roughness and wear of bis-acryl-based materials submitted to different polishing protocols. J. Clin. Exp. Dent. 2022, 14, e168–e176. [Google Scholar] [CrossRef]
- Ximinis, E.; Dionysopoulos, D.; Papadopoulos, C.; Tournavitis, A.; Konstantinidis, A.; Naka, O. Effect of tooth brushing simulation on the surface properties of various resin-matrix computer-aided design/computer-aided manufacturing ceramics. J. Esthet. Restor. Dent. 2023, 35, 937–946. [Google Scholar] [CrossRef]
- Alsharawi, T.; Abdal Sadek, H.M.; Morsy, T.S.E. Evaluation of translucency and biaxial flexural strength of different ceramic materials. Al-Azhar J Dent Sci 2022, 25, 391–399. [Google Scholar] [CrossRef]
- Akl, M.A.; Dashtti, H.; Akl, J.; Zheng, F. Effect of crystallization temperature on the flexural strength of lithium disilicate glass ceramics. J. Prosthodont. 2025, 34, 527–532. [Google Scholar] [CrossRef]
- Mahrous, A.A.; Alhammad, A.; Alqahtani, F.; Aljar, Y.; Alkadi, A.; Taymour, N.; Alotaibi, A.; Akhtar, S.; Gad, M.M. The Toothbrushing Effects on Surface Properties and Color Stability of CAD/CAM and Pressable Ceramic Fixed Restorations—An In Vitro Study. Materials 2023, 16, 2950. [Google Scholar] [CrossRef]
- Potdukhe, S.; Iyer, J.; More, A. Effect of Artificial Aging on Translucency of Zirconia Reinforced Lithium Silicate and Lithium Disilicate Ceramics: A Systematic Review. Eur. J. Prosthodont. Restor. Dent. 2024, 32, 153–161. [Google Scholar] [PubMed]




| Test Group | Material | Brand Name | Composition | Level of Translucency |
|---|---|---|---|---|
| AMB_LT | Presintered lithium disilicate | Amber Mill (HassBio, Gangneung-si, Gangwon-do, Korea) | Precrystallized state: 44.9% LiSi2O5 39.9% glass Crystallized state: 46.1% LiSi2O5 33.7% glass | Low |
| AMB_HT | High | |||
| ECAD_LT | Presintered lithium disilicate | IPS e.max CAD (Ivoclar Vivadent, Schaan, Liechtenstein) | Precrystallized state: 32% LiSi2O3 62% glass Crystallized state: 59% LiSi2O5 33% glass | Low |
| ECAD_HT | High |
| Test Group | Crystallization Protocol | Predrying | Heating Rate (°C/min) | Temp 1 (°C)/Hold | Temp 2 (°C)/Hold |
|---|---|---|---|---|---|
| AMB_LT | One-step | 400 °C | --- | 815 °C/15 min + 21.5 min vacuum | --- |
| AMB_HT | One-step | 400 °C | ---- | 840 °C/22.2 min | ---- |
| ECAD_LT | Two-step | 403 °C for 6 min | 60 °C/min to 770 °C/10 min | 30 °C/min to 850 °C/10 min | Cool to 700 °C |
| ECAD_HT | Two-step | 403 °C for 6 min | 60 °C/min to 770 °C/10 min | 30 °C/min to 850 °C/10 min | Cool to 700 °C |
| Test Group | Baseline Ra (Mean μm ± SD) | Post-Aging Ra (Mean μm ± SD) | p-Value |
|---|---|---|---|
| AMB_LT | 0.24 ± 0.01 | 0.33 ± 0.01 | <0.001 * |
| AMB_HT | 0.43 ± 0.05 | 0.51 ± 0.07 | <0.001 * |
| ECAD_LT | 0.38 ± 0.05 | 0.43 ± 0.06 | <0.001 * |
| ECAD_HT | 0.49 ± 0.01 | 0.58 ± 0.01 | <0.001 * |
| Test Group | Post-Aging Fracture Load (Mean N ± SD) | Significant Differences |
|---|---|---|
| AMB_LT | 568.0 ± 14.73 | a |
| AMB_HT | 546.3 ± 21.90 | b |
| ECAD_LT | 566.4 ± 10.65 | b |
| ECAD_HT | 636.0 ± 8.29 | c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soliman, M.; Alotaibi, R.; Almutairi, A.; Alzahrani, A.; Abunyan, R.; Rozi, A.; Alamri, D.; Almakenzi, S.; Eldwakhly, E.; Aldegheishem, A. Influence of Sintering Parameters on the Mechanical Behaviour of Lithium Disilicate Glass Ceramics: An In-Vitro Study. J. Funct. Biomater. 2025, 16, 408. https://doi.org/10.3390/jfb16110408
Soliman M, Alotaibi R, Almutairi A, Alzahrani A, Abunyan R, Rozi A, Alamri D, Almakenzi S, Eldwakhly E, Aldegheishem A. Influence of Sintering Parameters on the Mechanical Behaviour of Lithium Disilicate Glass Ceramics: An In-Vitro Study. Journal of Functional Biomaterials. 2025; 16(11):408. https://doi.org/10.3390/jfb16110408
Chicago/Turabian StyleSoliman, Mai, Raghad Alotaibi, Abrar Almutairi, Asma Alzahrani, Reem Abunyan, Aseel Rozi, Dalia Alamri, Shahad Almakenzi, Elzahraa Eldwakhly, and Alhanoof Aldegheishem. 2025. "Influence of Sintering Parameters on the Mechanical Behaviour of Lithium Disilicate Glass Ceramics: An In-Vitro Study" Journal of Functional Biomaterials 16, no. 11: 408. https://doi.org/10.3390/jfb16110408
APA StyleSoliman, M., Alotaibi, R., Almutairi, A., Alzahrani, A., Abunyan, R., Rozi, A., Alamri, D., Almakenzi, S., Eldwakhly, E., & Aldegheishem, A. (2025). Influence of Sintering Parameters on the Mechanical Behaviour of Lithium Disilicate Glass Ceramics: An In-Vitro Study. Journal of Functional Biomaterials, 16(11), 408. https://doi.org/10.3390/jfb16110408

