Integrating Additive and Traditional Manufacturing for Multiscale Bone Tissue Engineering Scaffolds
Abstract
1. Introduction
2. Literature Search and Bibliometric Mapping
3. Multiscale Structural Dimensions and Their Relevance to Bone Tissue Biomimicry
3.1. Structural Hierarchies of Materials
3.2. Hierarchical Scales of Bone Structure and Their Physiological Significance
4. Inspiration from the Hierarchical Structure of Natural Bone for BTE Scaffold Design
5. Macroscale Construction Techniques and Strategies for BTE Scaffolds
5.1. Three-Dimensional Printing Technologies for Macroscale Structural Construction
5.2. Strategies for Macroscale Structural Construction
6. Mesoscale Construction Techniques and Strategies for BTE Scaffolds
6.1. Three-Dimensional Printing Technologies for Mesoscale Structural Construction
6.2. Strategies for Mesoscale Structural Construction
6.2.1. Traditional Techniques for Mesoscale Pre-Processing in 3D Printing
6.2.2. Traditional Techniques for Mesoscale Post-Processing in 3D Printing
6.2.3. Mesoscale-Oriented Integration of Traditional and 3D Printing Techniques
3D Printing + Freeze-Drying
3D Printing + Particulate Leaching/Solvent Casting
3D Printing + Sol—Gel Self-Assembly
3D Printing + Thermal-Induced Phase Separation
3D Printing + Gas Foaming
7. Microscale Construction Techniques and Strategies for BTE Scaffolds
7.1. Three-Dimensional Printing Technologies for Microscale Structural Construction
7.2. Strategies for Microscale Structural Construction
7.2.1. Traditional Techniques for Microscale Pre-Processing in 3D Printing
7.2.2. Traditional Techniques for Microscale Post-Processing in 3D Printing
7.2.3. Microscale-Oriented Integration of Traditional and 3D Printing Techniques
3D Printing + Electrospinning
3D Printing + In Vitro Mineralization
8. The Final Step of BTE Scaffolds—Towards Clinical Application
8.1. In Vivo Evidence and Performance
8.2. Challenges and Opportunities
9. Summary and Outlook
9.1. Navigating the Mechanics–Biology Trade-Off in BTE Scaffold Design
9.2. In Situ Integration of Macro–Meso and Macro–Micro Structures
9.3. Construction of Macro–Meso–Micro Multiscale Integrated Technologies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AM | Additive manufacturing |
BTE | Bone tissue engineering |
BMP | Bone morphogenetic protein |
rhBMP-2 | Recombinant human bone morphogenetic protein-2 |
HA | Hydroxyapatite |
TPMS | Triply periodic minimal surface |
GBR | Guided bone regeneration |
VEGF | Vascular endothelial growth factor |
NGF | Nerve growth factor |
BDNF | Brain-derived neurotrophic factor |
PLA | Polylactic acid |
XGMA | Xanthan-glycidyl methacrylate |
GelMA | Gelatin methacryloyl |
FDM | Fused deposition modeling |
SLA | Stereolithography |
DLP | Digital light processing |
PDA | Polydopamine |
CAD | Computer-aided design |
CT | Computed tomography |
MRI | Magnetic resonance imaging |
SLM | Selective laser melting |
TPU | Thermoplastic polyurethane |
DIW | Direct ink writing |
HIPE | High internal phase emulsions |
rBMSC | Rat bone marrow mesenchymal stem cell |
hBMSC | Human bone marrow mesenchymal stem cell |
PLGA | Poly(lactic-co-glycolic acid) |
PPF | Poly(propylene fumarate) |
TIPS | Thermally induced phase separation |
PEG | Polyethylene glycol |
LTDM | Low-temperature deposition manufacturing |
TCP | Tricalcium phosphate |
FFF | Fused filament fabrication |
FRESH | Freeform Reversible Embedding of Suspended Hydrogels |
AJP | Aerosol Jet Printing |
COBICS | Cellular Suspension Ceramic Omnidirectional Bioprinting in Cell Spheroids |
TPP | Two-Photon Polymerization |
μMIP-SL | Micro Mask-Image Projection Stereolithography |
MAO | Micro-arc oxidation |
MEW | Melt electrowriting |
PTMC | Poly(trimethylene carbonate) |
HDPE | High density polyethylene |
Qu | Quercetin |
CS | Chitosan |
ABG | Allogeneic bone graft |
References
- Liu, L.; Liu, C.; Deng, C.; Wang, X.; Liu, X.; Luo, M.; Wang, S.; Liu, J. Design and Performance Analysis of 3D-Printed Stiffness Gradient Femoral Scaffold. J. Orthop. Surg. 2023, 18, 120. [Google Scholar] [CrossRef]
- Wilke, B.K.; Houdek, M.T.; Rose, P.S.; Sim, F.H. Proximal Femoral Allograft-Prosthetic Composites: Do They Really Restore Bone? A Retrospective Review of Revision Allograft-Prosthetic Composites. J. Arthroplast. 2019, 34, 346–351. [Google Scholar] [CrossRef]
- Rupp, M.; Klute, L.; Baertl, S.; Walter, N.; Mannala, G.-K.; Frank, L.; Pfeifer, C.; Alt, V.; Kerschbaum, M. The Clinical Use of Bone Graft Substitutes in Orthopedic Surgery in Germany—A 10-Years Survey from 2008 to 2018 of 1,090,167 Surgical Interventions. J. Biomed. Mater. Res. B Appl. Biomater. 2022, 110, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; de Barros, N.R.; Zheng, T.; Gomez, A.; Doyle, M.; Zhu, J.; Nanda, H.S.; Li, X.; Khademhosseini, A.; Li, B. 3D Printing and Surface Engineering of Ti6Al4V Scaffolds for Enhanced Osseointegration in an In Vitro Study. Biomimetics 2024, 9, 423. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yeung, K.W.K. Bone Grafts and Biomaterials Substitutes for Bone Defect Repair: A Review. Bioact. Mater. 2017, 2, 224–247. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.V.; Atala, A. 3D Bioprinting of Tissues and Organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef]
- Pan, N. Exploring the Significance of Structural Hierarchy in Material Systems—A Review. Appl. Phys. Rev. 2014, 1, 021302. [Google Scholar] [CrossRef]
- Lisa, M.A.; Pratt, S.; Soltz, R.; Wiedemann, U. Femtoscopy in Relativistic Heavy Ion Collisions: Two Decades of Progress. Annu. Rev. Nucl. Part. Sci. 2005, 55, 357–402. [Google Scholar] [CrossRef]
- Katz, J.L.; Misra, A.; Spencer, P.; Wang, Y.; Bumrerraj, S.; Nomura, T.; Eppell, S.J.; Tabib-Azar, M. Multiscale Mechanics of Hierarchical Structure/Property Relationships in Calcified Tissues and Tissue/Material Interfaces. Mater. Sci. Eng. C 2007, 27, 450–468. [Google Scholar] [CrossRef]
- Reed, M.A.; Kirk, W.P. Introduction. In Nanostructures and Mesoscopic Systems; Kirk, W.P., Reed, M.A., Eds.; Academic Press: Cambridge, MA, USA, 1992; pp. 3–8. ISBN 978-0-12-409660-8. [Google Scholar]
- Hu, K.; Yu, T.; Tang, S.; Xu, X.; Guo, Z.; Qian, J.; Cheng, Y.; Zhao, Y.; Yan, S.; Zhang, H.; et al. Dual Anisotropicity Comprising 3D Printed Structures and Magnetic Nanoparticle Assemblies: Towards the Promotion of Mesenchymal Stem Cell Osteogenic Differentiation. NPG Asia Mater. 2021, 13, 19. [Google Scholar] [CrossRef]
- Yang, L.; Jurczak, K.M.; Ge, L.; van Rijn, P. High-Throughput Screening and Hierarchical Topography-Mediated Neural Differentiation of Mesenchymal Stem Cells. Adv. Healthc. Mater. 2020, 9, 2000117. [Google Scholar] [CrossRef]
- Gui, X.; Zhang, B.; Song, P.; Su, Z.; Gao, C.; Xing, F.; Liu, L.; Wei, W.; Hui, D.; Gu, L.; et al. 3D Printing of Biomimetic Hierarchical Porous Architecture Scaffold with Dual Osteoinduction and Osteoconduction Biofunctions for Large Size Bone Defect Repair. Appl. Mater. Today 2024, 37, 102085. [Google Scholar] [CrossRef]
- Müller, R.; Rüegsegger, P. Three-Dimensional Finite Element Modelling of Non-Invasively Assessed Trabecular Bone Structures. Med. Eng. Phys. 1995, 17, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jiao, X.; Yang, X.; Ma, J.; Wang, T.; Jin, W.; Li, W.; Yang, H.; Mao, Y.; Gan, Y.; et al. 3D Bioprinting of Osteon-Mimetic Scaffolds with Hierarchical Microchannels for Vascularized Bone Tissue Regeneration. Biofabrication 2022, 14, 035008. [Google Scholar] [CrossRef]
- Zhang, W.; Yelick, P.C. Craniofacial Tissue Engineering. Cold Spring Harb. Perspect. Med. 2018, 8, a025775. [Google Scholar] [CrossRef]
- Zheng, L.-Z.; Wang, J.-L.; Xu, J.-K.; Zhang, X.-T.; Liu, B.-Y.; Huang, L.; Zhang, R.; Zu, H.-Y.; He, X.; Mi, J.; et al. Magnesium and Vitamin C Supplementation Attenuates Steroid-Associated Osteonecrosis in a Rat Model. Biomaterials 2020, 238, 119828. [Google Scholar] [CrossRef]
- Florencio-Silva, R.; da Silva Sasso, G.R.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Res. Int. 2015, 2015, 421746. [Google Scholar] [CrossRef] [PubMed]
- Veidal, S.S.; Vassiliadis, E.; Bay-Jensen, A.-C.; Tougas, G.; Vainer, B.; Karsdal, M.A. Procollagen Type I N-Terminal Propeptide (PINP) Is a Marker for Fibrogenesis in Bile Duct Ligation-Induced Fibrosis in Rats. Fibrogenesis Tissue Repair 2010, 3, 5. [Google Scholar] [CrossRef]
- Carvalho, M.S.; Cabral, J.M.S.; da Silva, C.L.; Vashishth, D. Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix. Polymers 2021, 13, 1095. [Google Scholar] [CrossRef]
- Kurka, D.W.; Niehues, M.; Ravoo, B.J. Self-Assembly of Colloidal Molecules Based on Host–Guest Chemistry and Geometric Constraints. Langmuir 2020, 36, 3924–3931. [Google Scholar] [CrossRef]
- Koushik, T.M.; Miller, C.M.; Antunes, E. Bone Tissue Engineering Scaffolds: Function of Multi-Material Hierarchically Structured Scaffolds. Adv. Healthc. Mater. 2023, 12, 2202766. [Google Scholar] [CrossRef]
- Karageorgiou, V.; Kaplan, D. Porosity of 3D Biomaterial Scaffolds and Osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef]
- Roosa, S.M.M.; Kemppainen, J.M.; Moffitt, E.N.; Krebsbach, P.H.; Hollister, S.J. The Pore Size of Polycaprolactone Scaffolds Has Limited Influence on Bone Regeneration in an In Vivo Model. J. Biomed. Mater. Res. A 2010, 92A, 359–368. [Google Scholar] [CrossRef]
- Matar, H.E.; Selvaratnam, V.; Jain, M.; Board, T.N.; Shah, N. Cortical Strut Allografts in Salvage Revision Arthroplasty: Surgical Technique and Clinical Outcomes. J. Clin. Orthop. Trauma 2021, 17, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.T.; Rosenbaum, A.J. Bone Grafts, Bone Substitutes and Orthobiologics. Organogenesis 2012, 8, 114–124. [Google Scholar] [CrossRef]
- Chu, C.-F.; Ho, C.-Y.; Tsai, C.-H.; Chen, C.-T.; Chen, C.-H. Optimizing the Handling of Cancellous Bone Grafts to Preserve Their Osteogenic Potential in Craniofacial Surgery. Int. J. Mol. Sci. 2025, 26, 4255. [Google Scholar] [CrossRef] [PubMed]
- Aprile, P.; Letourneur, D.; Simon-Yarza, T. Membranes for Guided Bone Regeneration: A Road from Bench to Bedside. Adv. Healthc. Mater. 2020, 9, 2000707. [Google Scholar] [CrossRef] [PubMed]
- Özcolak, B.; Erenay, B.; Odabaş, S.; Jandt, K.D.; Garipcan, B. Effects of Bone Surface Topography and Chemistry on Macrophage Polarization. Sci. Rep. 2024, 14, 12721. [Google Scholar] [CrossRef]
- Kook, Y.-M.; Jeong, Y.; Lee, K.; Koh, W.-G. Design of Biomimetic Cellular Scaffolds for Co-Culture System and Their Application. J. Tissue Eng. 2017, 8, 2041731417724640. [Google Scholar] [CrossRef]
- Cui, Z.; Zhou, L.; Huang, J.; Xu, L.; Ding, Z.; Hu, H.; Cao, X.; Zhao, M.; Wu, S. Dual-Model Biomanufacturing of Porous Biomimetic Scaffolds with Concentrated Growth Factors and Embedded Endothelial Vascular Channels for Bone Defect Regeneration. Chem. Eng. J. 2024, 483, 148933. [Google Scholar] [CrossRef]
- West, J.L.; Moon, J.J. Vascularization of Engineered Tissues: Approaches to Promote Angiogenesis in Biomaterials. Curr. Top. Med. Chem. 2008, 8, 300–310. [Google Scholar] [CrossRef]
- Sun, W.; Ye, B.; Chen, S.; Zeng, L.; Lu, H.; Wan, Y.; Gao, Q.; Chen, K.; Qu, Y.; Wu, B.; et al. Neuro–Bone Tissue Engineering: Emerging Mechanisms, Potential Strategies, and Current Challenges. Bone Res. 2023, 11, 65. [Google Scholar] [CrossRef]
- Garnero, P. The Role of Collagen Organization on the Properties of Bone. Calcif. Tissue Int. 2015, 97, 229–240. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, W.; Wang, Z.; Yang, Y.; Sahai, N. Structure Analysis of Collagen Fibril at Atomic-Level Resolution and Its Implications for Intra-Fibrillar Transport in Bone Biomineralization. Phys. Chem. Chem. Phys. 2018, 20, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, A.; Zhao, Z.; Ying, T.; Deng, S.; Jian, Z.; Zhang, X.; Yi, C.; Li, D. Application and Progress of 3D Printed Biomaterials in Osteoporosis. Front. Bioeng. Biotechnol. 2025, 3, 1541746. [Google Scholar] [CrossRef] [PubMed]
- Freeman, F.E.; Pitacco, P.; van Dommelen, L.H.A.; Nulty, J.; Browe, D.C.; Shin, J.-Y.; Alsberg, E.; Kelly, D.J. 3D Bioprinting Spatiotemporally Defined Patterns of Growth Factors to Tightly Control Tissue Regeneration. Sci. Adv. 2020, 6, eabb5093. [Google Scholar] [CrossRef] [PubMed]
- Hann, S.Y.; Cui, H.; Esworthy, T.; Zhou, X.; Lee, S.; Plesniak, M.W.; Zhang, L.G. Dual 3D Printing for Vascularized Bone Tissue Regeneration. Acta Biomater. 2021, 123, 263–274. [Google Scholar] [CrossRef]
- Awad, A.; Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. Advances in Powder Bed Fusion 3D Printing in Drug Delivery and Healthcare. Adv. Drug Deliv. Rev. 2021, 174, 406–424. [Google Scholar] [CrossRef]
- Sing, S.L.; Yeong, W.Y. Laser Powder Bed Fusion for Metal Additive Manufacturing: Perspectives on Recent Developments. Virtual Phys. Prototyp. 2020, 15, 359–370. [Google Scholar] [CrossRef]
- Zhao, C.; Shi, B.; Chen, S.; Du, D.; Sun, T.; Simonds, B.J.; Fezzaa, K.; Rollett, A.D. Laser Melting Modes in Metal Powder Bed Fusion Additive Manufacturing. Rev. Mod. Phys. 2022, 94, 045002. [Google Scholar] [CrossRef]
- Raj, A.; Chandrakar, A.S.; Tyagi, B.; Jain, A.; Gupta, H.; Bhardwaj, L.; Goyal, A.; Layal, P.K.; Rajora, A.; Malik, G.; et al. Advancements in Material Extrusion Based Three-Dimensional Printing of Sensors: A Review. Int. J. Interact. Des. Manuf. (IJIDeM) 2024, 18, 627–648. [Google Scholar] [CrossRef]
- Joharji, L.; Mishra, R.B.; Alam, F.; Tytov, S.; Al-Modaf, F.; El-Atab, N. 4D Printing: A Detailed Review of Materials, Techniques, and Applications. Microelectron. Eng. 2022, 265, 111874. [Google Scholar] [CrossRef]
- Chartrain, N.A.; Gilchrist, K.H.; Ho, V.B.; Klarmann, G.J. 3D Bioprinting for the Repair of Articular Cartilage and Osteochondral Tissue. Bioprinting 2022, 28, e00239. [Google Scholar] [CrossRef]
- Zhang, F.; Saleh, E.; Vaithilingam, J.; Li, Y.; Tuck, C.J.; Hague, R.J.M.; Wildman, R.D.; He, Y. Reactive Material Jetting of Polyimide Insulators for Complex Circuit Board Design. Addit. Manuf. 2019, 25, 477–484. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Shin, Y.-S.; Jung, H.-D.; Hwang, C.-J.; Baik, H.-S.; Cha, J.-Y. Precision and Trueness of Dental Models Manufactured with Different 3-Dimensional Printing Techniques. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 144–153. [Google Scholar] [CrossRef]
- Liu, W.C.; Chou, V.H.Y.; Behera, R.P.; Le Ferrand, H. Magnetically Assisted Drop-on-Demand 3D Printing of Microstructured Multimaterial Composites. Nat. Commun. 2022, 13, 5015. [Google Scholar] [CrossRef]
- Zhong, S.; Shi, Q.; Deng, Y.; Sun, Y.; Politis, C.; Yang, S. High-Performance Zirconia Ceramic Additively Manufactured via NanoParticle Jetting. Ceram. Int. 2022, 48, 33485–33498. [Google Scholar] [CrossRef]
- Gülcan, O.; Günaydın, K.; Tamer, A. The State of the Art of Material Jetting—A Critical Review. Polymers 2021, 13, 2829. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Bosio, F.; Gilani, N.; Phutela, C.; Hague, R.J.M.; Tuck, C.J. Chapter Six—Additive Manufacturing Processes for Metals. In Quality Analysis of Additively Manufactured Metals; Kadkhodapour, J., Schmauder, S., Sajadi, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 201–258. ISBN 978-0-323-88664-2. [Google Scholar]
- Szymczyk-Ziółkowska, P.; Łabowska, M.B.; Detyna, J.; Michalak, I.; Gruber, P. A Review of Fabrication Polymer Scaffolds for Biomedical Applications Using Additive Manufacturing Techniques. Biocybern. Biomed. Eng. 2020, 40, 624–638. [Google Scholar] [CrossRef]
- Buchanan, C.; Gardner, L. Metal 3D Printing in Construction: A Review of Methods, Research, Applications, Opportunities and Challenges. Eng. Struct. 2019, 180, 332–348. [Google Scholar] [CrossRef]
- An, J.; Leong, K.F. Multi-Material and Multi-Dimensional 3D Printing for Biomedical Materials and Devices. Biomed. Mater. Devices 2023, 1, 38–48. [Google Scholar] [CrossRef]
- Frketic, J.; Dickens, T.; Ramakrishnan, S. Automated Manufacturing and Processing of Fiber-Reinforced Polymer (FRP) Composites: An Additive Review of Contemporary and Modern Techniques for Advanced Materials Manufacturing. Addit. Manuf. 2017, 14, 69–86. [Google Scholar] [CrossRef]
- Ahn, D.-G. Directed Energy Deposition (DED) Process: State of the Art. Int. J. Precis. Eng. Manuf. Green Technol. 2021, 8, 703–742. [Google Scholar] [CrossRef]
- Al Rashid, A.; Ahmed, W.; Khalid, M.Y.; Koç, M. Vat Photopolymerization of Polymers and Polymer Composites: Processes and Applications. Addit. Manuf. 2021, 47, 102279. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.W.; Stucker, B. Development of Additive Manufacturing Technology. In Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing; Gibson, I., Rosen, D.W., Stucker, B., Eds.; Springer: Boston, MA, USA, 2010; pp. 36–58. ISBN 978-1-4419-1120-9. [Google Scholar]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Gungor-Ozkerim, P.S.; Inci, I.; Zhang, Y.S.; Khademhosseini, A.; Dokmeci, M.R. Bioinks for 3D Bioprinting: An Overview. Biomater. Sci. 2018, 6, 915–946. [Google Scholar] [CrossRef]
- Matai, I.; Kaur, G.; Seyedsalehi, A.; McClinton, A.; Laurencin, C.T. Progress in 3D Bioprinting Technology for Tissue/Organ Regenerative Engineering. Biomaterials 2020, 226, 119536. [Google Scholar] [CrossRef]
- Han, X.; Saiding, Q.; Cai, X.; Xiao, Y.; Wang, P.; Cai, Z.; Gong, X.; Gong, W.; Zhang, X.; Cui, W. Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds. Nano-Micro Lett. 2023, 15, 239. [Google Scholar] [CrossRef]
- Lai, J.; Wang, M. Developments of Additive Manufacturing and 5D Printing in Tissue Engineering. J. Mater. Res. 2023, 38, 4692–4725. [Google Scholar] [CrossRef]
- Ratner, B.D. Surface Modification of Polymers: Chemical, Biological and Surface Analytical Challenges. Biosens. Bioelectron. 1995, 10, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Michna, S.; Wu, W.; Lewis, J.A. Concentrated Hydroxyapatite Inks for Direct-Write Assembly of 3-D Periodic Scaffolds. Biomaterials 2005, 26, 5632–5639. [Google Scholar] [CrossRef]
- Calafel, M.I.; Criado-Gonzalez, M.; Aguirresarobe, R.; Fernández, M.; Mijangos, C. From Rheological Concepts to Additive Manufacturing Assessment of Hydrogel-Based Materials for Advanced Bioprinting Applications. Mater. Adv. 2025, 6, 4566–4597. [Google Scholar] [CrossRef]
- Anaya-Sampayo, L.M.; Roa, N.S.; Martínez-Cardozo, C.; García-Robayo, D.A.; Rodríguez-Lorenzo, L.M. Influence of Hydroxyapatite and Gelatin Content on Crosslinking Dynamics and HDFn Cell Viability in Alginate Bioinks for 3D Bioprinting. Polymers 2024, 16, 3224. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Cruz, M.R.; Postma, A.; Frith, J.E.; Meagher, L. Printability and Bio-Functionality of a Shear Thinning Methacrylated Xanthan–Gelatin Composite Bioink. Biofabrication 2021, 13, 035023. [Google Scholar] [CrossRef]
- Chang, R.; Nam, J.; Sun, W. Effects of Dispensing Pressure and Nozzle Diameter on Cell Survival from Solid Freeform Fabrication–Based Direct Cell Writing. Tissue Eng. Part A 2008, 14, 41–48. [Google Scholar] [CrossRef] [PubMed]
- McCauley, P.J.; Fromen, C.A.; Bayles, A.V. Cell Viability in Extrusion Bioprinting: The Impact of Process Parameters, Bioink Rheology, and Cell Mechanics. Rheol. Acta 2025. [Google Scholar] [CrossRef]
- Ashish; Ahmad, N.; Gopinath, P.; Vinogradov, A. Chapter 1—3D Printing in Medicine: Current Challenges and Potential Applications. In 3D Printing Technology in Nanomedicine; Ahmad, N., Gopinath, P., Dutta, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–22. ISBN 978-0-12-815890-6. [Google Scholar]
- Weems, A.C.; Arno, M.C.; Yu, W.; Huckstepp, R.T.R.; Dove, A.P. 4D Polycarbonates via Stereolithography as Scaffolds for Soft Tissue Repair. Nat. Commun. 2021, 12, 3771. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Du, X.; Smit, T.; Bissacco, E.G.; Seiler, D.; de Wild, M.; Ferguson, S.J. 3D-Printed LEGO®-Inspired Titanium Scaffolds for Patient-Specific Regenerative Medicine. Biomater. Adv. 2023, 154, 213617. [Google Scholar] [CrossRef]
- Bobbert, F.S.L.; Janbaz, S.; van Manen, T.; Li, Y.; Zadpoor, A.A. Russian Doll Deployable Meta-Implants: Fusion of Kirigami, Origami, and Multi-Stability. Mater. Des. 2020, 191, 108624. [Google Scholar] [CrossRef]
- Janbaz, S.; Noordzij, N.; Widyaratih, D.S.; Hagen, C.W.; Fratila-Apachitei, L.E.; Zadpoor, A.A. Origami Lattices with Free-Form Surface Ornaments. Sci. Adv. 2017, 3, eaao1595. [Google Scholar] [CrossRef]
- Callens, S.J.P.; Tümer, N.; Zadpoor, A.A. Hyperbolic Origami-Inspired Folding of Triply Periodic Minimal Surface Structures. Appl. Mater. Today 2019, 15, 453–461. [Google Scholar] [CrossRef]
- Leeflang, S.; Janbaz, S.; Zadpoor, A.A. Metallic Clay. Addit. Manuf. 2019, 28, 528–534. [Google Scholar] [CrossRef]
- Ahmadi, S.M.; Campoli, G.; Amin Yavari, S.; Sajadi, B.; Wauthle, R.; Schrooten, J.; Weinans, H.; Zadpoor, A.A. Mechanical Behavior of Regular Open-Cell Porous Biomaterials Made of Diamond Lattice Unit Cells. J. Mech. Behav. Biomed. Mater. 2014, 34, 106–115. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Q.; Yarlagadda, P.K.D.V.; Zhu, F.; Li, Q.; Li, Z. Single-Parameter Mechanical Design of a 3D-Printed Octet Truss Topological Scaffold to Match Natural Cancellous Bones. Mater. Des. 2021, 209, 109986. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Z.; Wang, M.Y.; Feih, S. Hierarchical Sheet Triply Periodic Minimal Surface Lattices: Design, Geometric and Mechanical Performance. Mater. Des. 2021, 209, 109931. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, R.; Wang, X.; Xue, J.; Deng, C.; Feng, C.; Zhuang, H.; Ma, J.; Qin, C.; Wan, L.; et al. 3D Printing of Haversian Bone–Mimicking Scaffolds for Multicellular Delivery in Bone Regeneration. Sci. Adv. 2020, 6, eaaz6725. [Google Scholar] [CrossRef] [PubMed]
- Heo, D.N.; Ayan, B.; Dey, M.; Banerjee, D.; Wee, H.; Lewis, G.S.; Ozbolat, I.T. Aspiration-Assisted Bioprinting of Co-Cultured Osteogenic Spheroids for Bone Tissue Engineering. Biofabrication 2020, 13, 015013. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zou, B.; Lai, Q.; Wang, Y.; Zhu, K.; Deng, Y.; Huang, C. 3D Printing and Osteogenesis of Loofah-like Hydroxyapatite Bone Scaffolds. Ceram. Int. 2021, 47, 20352–20361. [Google Scholar] [CrossRef]
- An, X.; Fan, H. Hybrid Design and Energy Absorption of Luffa-Sponge-like Hierarchical Cellular Structures. Mater. Des. 2016, 106, 247–257. [Google Scholar] [CrossRef]
- Bar-Sinai, Y.; Julien, J.-D.; Sharon, E.; Armon, S.; Nakayama, N.; Adda-Bedia, M.; Boudaoud, A. Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves. PLoS Comput. Biol. 2016, 12, e1004819. [Google Scholar] [CrossRef]
- Satpathy, A.; Mohanty, R.; Rautray, T.R. Bio-Mimicked Guided Tissue Regeneration/Guided Bone Regeneration Membranes with Hierarchical Structured Surfaces Replicated from Teak Leaf Exhibits Enhanced Bioactivity. J. Biomed. Mater. Res. B Appl. Biomater. 2022, 110, 144–156. [Google Scholar] [CrossRef]
- Manapat, J.Z.; Mangadlao, J.D.; Tiu, B.D.B.; Tritchler, G.C.; Advincula, R.C. High-Strength Stereolithographic 3D Printed Nanocomposites: Graphene Oxide Metastability. ACS Appl. Mater. Interfaces 2017, 9, 10085–10093. [Google Scholar] [CrossRef]
- Ho, C.-C.; Chen, Y.-W.; Wang, K.; Lin, Y.-H.; Chen, T.-C.; Shie, M.-Y. Effect of Mussel-Inspired Polydopamine on the Reinforced Properties of 3D Printed β-Tricalcium Phosphate/Polycaprolactone Scaffolds for Bone Regeneration. J. Mater. Chem. B 2023, 11, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Huang, S.; Huang, W.; Wu, H.; Wang, Y.; Wen, Z.; Yin, H.; Wang, Y.; Xu, W.; Wa, Q. Polydopamine-Modified 3D-Printed Polycaprolactone Scaffolds for Promoting Bone Regeneration. Int. J. Bioprinting 2024, 11, 418–438. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L.; Zhang, B.; Zhang, G.; Huo, F.; Zhou, C.; Liang, X.; Fan, Y.; Tian, W.; Tan, Y. Preparation of BMP-2/PDA-BCP Bioceramic Scaffold by DLP 3D Printing and Its Ability for Inducing Continuous Bone Formation. Front. Bioeng. Biotechnol. 2022, 10, 854693. [Google Scholar] [CrossRef] [PubMed]
- Kalogeropoulou, M.; Díaz-Payno, P.J.; Mirzaali, M.J.; van Osch, G.J.V.M.; Fratila-Apachitei, L.E.; Zadpoor, A.A. 4D Printed Shape-Shifting Biomaterials for Tissue Engineering and Regenerative Medicine Applications. Biofabrication 2024, 16, 022002. [Google Scholar] [CrossRef]
- Munir, K.S.; Li, Y.; Wen, C. 1—Metallic Scaffolds Manufactured by Selective Laser Melting for Biomedical Applications. In Metallic Foam Bone; Wen, C., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 1–23. ISBN 978-0-08-101289-5. [Google Scholar]
- Amirpour, M.; Cracknell, D.; Amirian, A.; Alipour, A.N. Hybrid 3D Printing of Fluid-Filled Lattices for Biomedical Applications: A Review. Int. J. Adv. Manuf. Technol. 2025, 136, 4083–4105. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, M.; Sun, Y.; Li, M.; Han, F.; Wu, C. Haversian Bone-Mimicking Bioceramic Scaffolds Enhancing MSC-Macrophage Osteo-Imunomodulation. Prog. Nat. Sci. Mater. Int. 2021, 31, 883–890. [Google Scholar] [CrossRef]
- Kjar, A.; McFarland, B.; Mecham, K.; Harward, N.; Huang, Y. Engineering of Tissue Constructs Using Coaxial Bioprinting. Bioact. Mater. 2021, 6, 460–471. [Google Scholar] [CrossRef]
- Shyam Mohan, T.; Datta, P.; Nesaei, S.; Ozbolat, V.; Ozbolat, I.T. 3D Coaxial Bioprinting: Process Mechanisms, Bioinks and Applications. Prog. Biomed. Eng. 2022, 4, 022003. [Google Scholar] [CrossRef]
- Ravanbakhsh, H.; Karamzadeh, V.; Bao, G.; Mongeau, L.; Juncker, D.; Zhang, Y.S. Emerging Technologies in Multi-Material Bioprinting. Adv. Mater. 2021, 33, 2104730. [Google Scholar] [CrossRef]
- Li, J.; Zhang, B.; Luo, Y.; Yang, H. Design of a High Precision Multichannel 3D Bioprinter. Chin. J. Mech. Eng. 2023, 36, 140. [Google Scholar] [CrossRef]
- Freeman, S.; Ramos, R.; Alexis Chando, P.; Zhou, L.; Reeser, K.; Jin, S.; Soman, P.; Ye, K. A Bioink Blend for Rotary 3D Bioprinting Tissue Engineered Small-Diameter Vascular Constructs. Acta Biomater. 2019, 95, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Pearson, C.; Hawi, S.; Lira, C.; Goel, S.; Yazdani Nezhad, H. Magnetic Field Assisted 3D Printing of Short Carbon Fibre-Reinforced Polymer Composites. Mater. Today Proc. 2022, 64, 1403–1411. [Google Scholar] [CrossRef]
- Kokkinis, D.; Schaffner, M.; Studart, A.R. Multimaterial Magnetically Assisted 3D Printing of Composite Materials. Nat. Commun. 2015, 6, 8643. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, Y.; Qin, H. Electric Field Assisted Direct Writing and 3D Printing of Low-Melting Alloy. Adv. Eng. Mater. 2022, 24, 2200091. [Google Scholar] [CrossRef]
- Gaurkhede, S.G.; Deng, J. Electric Field Assisted Fused Deposition Modeling for Improving Nozzle Cleanliness. Manuf. Lett. 2022, 33, 739–743. [Google Scholar] [CrossRef]
- Kim, M.; Yun, H.; Kim, G.H. Electric-Field Assisted 3D-Fibrous Bioceramic-Based Scaffolds for Bone Tissue Regeneration: Fabrication, Characterization, and in Vitro Cellular Activities. Sci. Rep. 2017, 7, 3166. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Li, Y.; Li, L. Ultrasound-Assisted 3D Printing of Continuous Fiber-Reinforced Thermoplastic (FRTP) Composites. Addit. Manuf. 2019, 30, 100926. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Cui, B.; Zheng, T.F. Ultrasound-Assisted 3D Printing Platform and Method Capable of Flexibly Adjusting Layer Thickness and Rotation Angle. J. Phys. Conf. Ser. 2021, 1798, 012039. [Google Scholar] [CrossRef]
- Khodaei, M.; Razavi, H.; Nosrati, H. Effects of Ultrasonic Vibration on 3D Printing of Polylactic Acid/Akermanite Nanocomposite Scaffolds. Heliyon 2024, 10, e39240. [Google Scholar] [CrossRef]
- He, Y.; Yang, F.; Zhao, H.; Gao, Q.; Xia, B.; Fu, J. Research on the Printability of Hydrogels in 3D Bioprinting. Sci. Rep. 2016, 6, 29977. [Google Scholar] [CrossRef]
- Nikolova, M.P.; Chavali, M.S. Recent Advances in Biomaterials for 3D Scaffolds: A Review. Bioact. Mater. 2019, 4, 271–292. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-W. Bioabsorbable Osteofixation for Orthognathic Surgery. Maxillofac. Plast. Reconstr. Surg. 2015, 37, 6. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, J.; Xing, W.; Cao, L.; Liu, C. Surface-Modified Pliable PDLLA/PCL/β-TCP Scaffolds as a Promising Delivery System for Bone Regeneration. J. Appl. Polym. Sci. 2014, 131, 40951. [Google Scholar] [CrossRef]
- Habibovic, P.; Sees, T.M.; van den Doel, M.A.; van Blitterswijk, C.A.; de Groot, K. Osteoinduction by Biomaterials—Physicochemical and Structural Influences. J. Biomed. Mater. Res. A 2006, 77A, 747–762. [Google Scholar] [CrossRef] [PubMed]
- Vyas, J.; Raytthatha, N.; Vyas, P.; Prajapati, B.G.; Uttayarat, P.; Singh, S.; Chittasupho, C. Biomaterial-Based Additive Manufactured Composite/Scaffolds for Tissue Engineering and Regenerative Medicine: A Comprehensive Review. Polymers 2025, 17, 1090. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Z.; Ai, F.; Wu, C.; Zhou, K.; Cao, C.; Li, W. Characterization and Evaluation of Polycaprolactone/Hydroxyapatite Composite Scaffolds with Extra Surface Morphology by Cryogenic Printing for Bone Tissue Engineering. Mater. Des. 2021, 205, 109712. [Google Scholar] [CrossRef]
- Murphy, C.M.; Haugh, M.G.; O’Brien, F.J. The Effect of Mean Pore Size on Cell Attachment, Proliferation and Migration in Collagen–Glycosaminoglycan Scaffolds for Bone Tissue Engineering. Biomaterials 2010, 31, 461–466. [Google Scholar] [CrossRef]
- Li, X.; van Blitterswijk, C.A.; Feng, Q.; Cui, F.; Watari, F. The Effect of Calcium Phosphate Microstructure on Bone-Related Cells in Vitro. Biomaterials 2008, 29, 3306–3316. [Google Scholar] [CrossRef]
- Shabab, T.; Bas, O.; Dargaville, B.L.; Ravichandran, A.; Tran, P.A.; Hutmacher, D.W. Microporous/Macroporous Polycaprolactone Scaffolds for Dental Applications. Pharmaceutics 2023, 15, 1340. [Google Scholar] [CrossRef]
- Du, X.; Dehghani, M.; Alsaadi, N.; Nejad, M.G.; Saber-Samandari, S.; Toghraie, D.; Su, C.-H.; Nguyen, H.C. A Femoral Shape Porous Scaffold Bio-Nanocomposite Fabricated Using 3D Printing and Freeze-Drying Technique for Orthopedic Application. Mater. Chem. Phys. 2022, 275, 125302. [Google Scholar] [CrossRef]
- Song, X.; Tetik, H.; Jirakittsonthon, T.; Parandoush, P.; Yang, G.; Lee, D.; Ryu, S.; Lei, S.; Weiss, M.L.; Lin, D. Biomimetic 3D Printing of Hierarchical and Interconnected Porous Hydroxyapatite Structures with High Mechanical Strength for Bone Cell Culture. Adv. Eng. Mater. 2019, 21, 1800678. [Google Scholar] [CrossRef]
- Dou, Y.; Huang, J.; Xia, X.; Wei, J.; Zou, Q.; Zuo, Y.; Li, J.; Li, Y. A Hierarchical Scaffold with a Highly Pore-Interconnective 3D Printed PLGA/n-HA Framework and an Extracellular Matrix like Gelatin Network Filler for Bone Regeneration. J. Mater. Chem. B 2021, 9, 4488–4501. [Google Scholar] [CrossRef]
- Li, T.; Zhai, D.; Ma, B.; Xue, J.; Zhao, P.; Chang, J.; Gelinsky, M.; Wu, C. 3D Printing of Hot Dog-Like Biomaterials with Hierarchical Architecture and Distinct Bioactivity. Adv. Sci. 2019, 6, 1901146. [Google Scholar] [CrossRef] [PubMed]
- Jakus, A.E.; Geisendorfer, N.R.; Lewis, P.L.; Shah, R.N. 3D-Printing Porosity: A New Approach to Creating Elevated Porosity Materials and Structures. Acta Biomater. 2018, 72, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.P.; Vaquette, C.; Shabab, T.; Pérez, R.A.; Yang, Y.; Dargaville, T.R.; Shafiee, A.; Tran, P.A. Porous 3D Printed Scaffolds For Guided Bone Regeneration in a Rat Calvarial Defect Model. Appl. Mater. Today 2020, 20, 100706. [Google Scholar] [CrossRef]
- Iglesias-Mejuto, A.; Malandain, N.; Ferreira-Gonçalves, T.; Ardao, I.; Reis, C.P.; Laromaine, A.; Roig, A.; García-González, C.A. Cellulose-in-Cellulose 3D-Printed Bioaerogels for Bone Tissue Engineering. Cellulose 2024, 31, 515–534. [Google Scholar] [CrossRef]
- Yousefi, A.-M.; Liu, J.; Sheppard, R.; Koo, S.; Silverstein, J.; Zhang, J.; James, P.F. I-Optimal Design of Hierarchical 3D Scaffolds Produced by Combining Additive Manufacturing and Thermally Induced Phase Separation. ACS Appl. Bio Mater. 2019, 2, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Chen, S.; Liu, K.; Wen, W.; Lu, L.; Ding, S.; Zhou, C.; Luo, B. 3D Poly (L-Lactide)/Chitosan Micro/Nano Fibrous Scaffolds Functionalized with Quercetin-Polydopamine for Enhanced Osteogenic and Anti-Inflammatory Activities. Chem. Eng. J. 2020, 391, 123524. [Google Scholar] [CrossRef]
- Choi, W.J.; Hwang, K.S.; Kwon, H.J.; Lee, C.; Kim, C.H.; Kim, T.H.; Heo, S.W.; Kim, J.-H.; Lee, J.-Y. Rapid Development of Dual Porous Poly(Lactic Acid) Foam Using Fused Deposition Modeling (FDM) 3D Printing for Medical Scaffold Application. Mater. Sci. Eng. C 2020, 110, 110693. [Google Scholar] [CrossRef]
- Song, P.; Zhou, C.; Fan, H.; Zhang, B.; Pei, X.; Fan, Y.; Jiang, Q.; Bao, R.; Yang, Q.; Dong, Z.; et al. Novel 3D Porous Biocomposite Scaffolds Fabricated by Fused Deposition Modeling and Gas Foaming Combined Technology. Compos. Part B Eng. 2018, 152, 151–159. [Google Scholar] [CrossRef]
- Schaefer, D.; Martin, I.; Shastri, P.; Padera, R.F.; Langer, R.; Freed, L.E.; Vunjak-Novakovic, G. In Vitro Generation of Osteochondral Composites. Biomaterials 2000, 21, 2599–2606. [Google Scholar] [CrossRef]
- Guo, W.; Jiang, Z.; Zhong, H.; Chen, G.; Li, X.; Yan, H.; Zhang, C.; Zhao, L. 3D Printing of Multifunctional Gradient Bone Scaffolds with Programmable Component Distribution and Hierarchical Pore Structure. Compos. Part Appl. Sci. Manuf. 2023, 166, 107361. [Google Scholar] [CrossRef]
- Bonthu, D.; Bharath, H.S.; Gururaja, S.; Prabhakar, P.; Doddamani, M. 3D Printing of Syntactic Foam Cored Sandwich Composite. Compos. Part C Open Access 2020, 3, 100068. [Google Scholar] [CrossRef]
- Ye, X.; He, Z.; Liu, Y.; Liu, X.; He, R.; Deng, G.; Peng, Z.; Liu, J.; Luo, Z.; He, X.; et al. Cryogenic 3D Printing of w/o Pickering Emulsions Containing Bifunctional Drugs for Producing Hierarchically Porous Bone Tissue Engineering Scaffolds with Antibacterial Capability. Int. J. Mol. Sci. 2022, 23, 9722. [Google Scholar] [CrossRef] [PubMed]
- Park, B.K.; Hwang, D.J.; Kwon, D.E.; Yoon, T.J.; Lee, Y.-W. Fabrication and Characterization of Multiscale PLA Structures Using Integrated Rapid Prototyping and Gas Foaming Technologies. Nanomaterials 2018, 8, 575. [Google Scholar] [CrossRef] [PubMed]
- Bharath, H.S.; Sawardekar, A.; Waddar, S.; Jeyaraj, P.; Doddamani, M. Mechanical Behavior of 3D Printed Syntactic Foam Composites. Compos. Struct. 2020, 254, 112832. [Google Scholar] [CrossRef]
- Hu, B.; Li, M.; Jiang, J.; Zhai, W. Development of Microcellular Thermoplastic Polyurethane Honeycombs with Tailored Elasticity and Energy Absorption via CO2 Foaming. Int. J. Mech. Sci. 2021, 197, 106324. [Google Scholar] [CrossRef]
- Fereshteh, Z. 7—Freeze-Drying Technologies for 3D Scaffold Engineering. In Functional 3D Tissue Engineering Scaffolds; Deng, Y., Kuiper, J., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 151–174. ISBN 978-0-08-100979-6. [Google Scholar]
- Jung, J.-Y.; Naleway, S.E.; Maker, Y.N.; Kang, K.Y.; Lee, J.; Ha, J.; Hur, S.S.; Chien, S.; McKittrick, J. 3D Printed Templating of Extrinsic Freeze-Casting for Macro–Microporous Biomaterials. ACS Biomater. Sci. Eng. 2019, 5, 2122–2133. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, Q.; Wang, M. Cryogenic 3D Printing for Producing Hierarchical Porous and rhBMP-2-Loaded Ca-P/PLLA Nanocomposite Scaffolds for Bone Tissue Engineering. Biofabrication 2017, 9, 025031. [Google Scholar] [CrossRef] [PubMed]
- Abie, N.; Ünlü, C.; Pinho, A.R.; Gomes, M.C.; Remmler, T.; Herb, M.; Grumme, D.; Tabesh, E.; Shahbazi, M.-A.; Mathur, S.; et al. Designing of a Multifunctional 3D-Printed Biomimetic Theragenerative Aerogel Scaffold via Mussel-Inspired Chemistry: Bioactive Glass Nanofiber-Incorporated Self-Assembled Silk Fibroin with Antibacterial, Antiosteosarcoma, and Osteoinductive Properties. ACS Appl. Mater. Interfaces 2024, 16, 22809–22827. [Google Scholar] [CrossRef]
- Marascio, M.G.M.; Antons, J.; Pioletti, D.P.; Bourban, P.-E. 3D Printing of Polymers with Hierarchical Continuous Porosity. Adv. Mater. Technol. 2017, 2, 1700145. [Google Scholar] [CrossRef]
- Dukle, A.; Murugan, D.; Nathanael, A.J.; Rangasamy, L.; Oh, T.-H. Can 3D-Printed Bioactive Glasses Be the Future of Bone Tissue Engineering? Polymers 2022, 14, 1627. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, H.; Zhang, L.; Jia, S.; Liu, J.; Xiong, Z.; Sun, W. Biomimetic Design and Fabrication of Multilayered Osteochondral Scaffolds by Low-Temperature Deposition Manufacturing and Thermal-Induced Phase-Separation Techniques. Biofabrication 2017, 9, 025021. [Google Scholar] [CrossRef]
- Kim, H.; Yang, G.H.; Choi, C.H.; Cho, Y.S.; Kim, G. Gelatin/PVA Scaffolds Fabricated Using a 3D-Printing Process Employed with a Low-Temperature Plate for Hard Tissue Regeneration: Fabrication and Characterizations. Int. J. Biol. Macromol. 2018, 120, 119–127. [Google Scholar] [CrossRef]
- Li, M.; Jiang, J.; Hu, B.; Zhai, W. Fused Deposition Modeling of Hierarchical Porous Polyetherimide Assisted by an In-Situ CO2 Foaming Technology. Compos. Sci. Technol. 2020, 200, 108454. [Google Scholar] [CrossRef]
- Ghosh, S.; Yadav, A.; Rani, S.; Takkar, S.; Kulshreshtha, R.; Nandan, B.; Srivastava, R.K. 3D Printed Hierarchical Porous Poly(ε-Caprolactone) Scaffolds from Pickering High Internal Phase Emulsion Templating. Langmuir 2023, 39, 1927–1946. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Grijpma, D.W.; Feijen, J. Porous Polymeric Structures for Tissue Engineering Prepared by a Coagulation, Compression Moulding and Salt Leaching Technique. Biomaterials 2003, 24, 1937–1947. [Google Scholar] [CrossRef]
- Prasad, A.; Sankar, M.R.; Katiyar, V. State of Art on Solvent Casting Particulate Leaching Method for Orthopedic ScaffoldsFabrication. Mater. Today Proc. 2017, 4, 898–907. [Google Scholar] [CrossRef]
- Brinker, C.J.; Scherer, G.W. Chapter 1—Introduction. In Sol-Gel Science; Brinker, C.J., Scherer, G.W., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 16–18. ISBN 978-0-08-057103-4. [Google Scholar]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of Hybrid Organic–Inorganic Nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592. [Google Scholar] [CrossRef]
- Jones, J.R. Review of Bioactive Glass: From Hench to Hybrids. Acta Biomater. 2013, 9, 4457–4486. [Google Scholar] [CrossRef]
- Pierre, A.C.; Pajonk, G.M. Chemistry of Aerogels and Their Applications. Chem. Rev. 2002, 102, 4243–4266. [Google Scholar] [CrossRef]
- Soleimani Dorcheh, A.; Abbasi, M.H. Silica Aerogel; Synthesis, Properties and Characterization. J. Mater. Process. Technol. 2008, 199, 10–26. [Google Scholar] [CrossRef]
- Maleki, H. Recent Advances in Aerogels for Environmental Remediation Applications: A Review. Chem. Eng. J. 2016, 300, 98–118. [Google Scholar] [CrossRef]
- Maleki, H.; Durães, L.; García-González, C.A.; del Gaudio, P.; Portugal, A.; Mahmoudi, M. Synthesis and Biomedical Applications of Aerogels: Possibilities and Challenges. Adv. Colloid Interface Sci. 2016, 236, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Maleki, H.; Shahbazi, M.-A.; Montes, S.; Hosseini, S.H.; Eskandari, M.R.; Zaunschirm, S.; Verwanger, T.; Mathur, S.; Milow, B.; Krammer, B.; et al. Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration. ACS Appl. Mater. Interfaces 2019, 11, 17256–17269. [Google Scholar] [CrossRef]
- Kaou, M.H.; Furkó, M.; Balázsi, K.; Balázsi, C. Advanced Bioactive Glasses: The Newest Achievements and Breakthroughs in the Area. Nanomaterials 2023, 13, 2287. [Google Scholar] [CrossRef]
- Kesse, X.; Vichery, C.; Nedelec, J.-M. Deeper Insights into a Bioactive Glass Nanoparticle Synthesis Protocol to Control Its Morphology, Dispersibility, and Composition. ACS Omega 2019, 4, 5768–5775. [Google Scholar] [CrossRef]
- Kleinfehn, A.P.; Lammel Lindemann, J.A.; Razvi, A.; Philip, P.; Richardson, K.; Nettleton, K.; Becker, M.L.; Dean, D. Modulating Bioglass Concentration in 3D Printed Poly(Propylene Fumarate) Scaffolds for Post-Printing Functionalization with Bioactive Functional Groups. Biomacromolecules 2019, 20, 4345–4352. [Google Scholar] [CrossRef]
- Mîrț, A.-L.; Ficai, D.; Oprea, O.-C.; Vasilievici, G.; Ficai, A. Current and Future Perspectives of Bioactive Glasses as Injectable Material. Nanomaterials 2024, 14, 1196. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Monavari, M.; Zheng, K.; Distler, T.; Ouyang, L.; Heid, S.; Jin, Z.; He, J.; Li, D.; Boccaccini, A.R. 3D Bioprinting of Multifunctional Dynamic Nanocomposite Bioinks Incorporating Cu-Doped Mesoporous Bioactive Glass Nanoparticles for Bone Tissue Engineering. Small 2022, 18, 2104996. [Google Scholar] [CrossRef]
- Ma, P.X. Scaffolds for Tissue Fabrication. Mater. Today 2004, 7, 30–40. [Google Scholar] [CrossRef]
- Yu, W.; Li, R.; Long, J.; Chen, P.; Hou, A.; Li, L.; Sun, X.; Zheng, G.; Meng, H.; Wang, Y.; et al. Use of a Three-Dimensional Printed Polylactide-Coglycolide/Tricalcium Phosphate Composite Scaffold Incorporating Magnesium Powder to Enhance Bone Defect Repair in Rabbits. J. Orthop. Transl. 2019, 16, 62–70. [Google Scholar] [CrossRef]
- Dong, Z.; Cui, H.; Zhang, H.; Wang, F.; Zhan, X.; Mayer, F.; Nestler, B.; Wegener, M.; Levkin, P.A. 3D Printing of Inherently Nanoporous Polymers via Polymerization-Induced Phase Separation. Nat. Commun. 2021, 12, 247. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, W.; Liu, T. Fused Deposition Modeling 3D Printing of Polyamide-Based Composites and Its Applications. Compos. Commun. 2020, 21, 100413. [Google Scholar] [CrossRef]
- Peng, J.; Srithep, Y.; Wang, J.; Yu, E.; Turng, L.-S.; Peng, X.-F. Comparisons of Microcellular Polylactic Acid Parts Injection Molded with Supercritical Nitrogen and Expandable Thermoplastic Microspheres: Surface Roughness, Tensile Properties, and Morphology. J. Cell. Plast. 2013, 49, 33–45. [Google Scholar] [CrossRef]
- Kmetty, Á.; Litauszki, K. Development of Poly (Lactide Acid) Foams with Thermally Expandable Microspheres. Polymers 2020, 12, 463. [Google Scholar] [CrossRef] [PubMed]
- Andersson, H.; Örtegren, J.; Zhang, R.; Grauers, M.; Olin, H. Variable Low-Density Polylactic Acid and Microsphere Composite Material for Additive Manufacturing. Addit. Manuf. 2021, 40, 101925. [Google Scholar] [CrossRef]
- Drotárová, L.; Slámečka, K.; Balint, T.; Remešová, M.; Hudák, R.; Živčák, J.; Schnitzer, M.; Čelko, L.; Montufar, E.B. Biodegradable WE43 Mg Alloy/Hydroxyapatite Interpenetrating Phase Composites with Reduced Hydrogen Evolution. Bioact. Mater. 2024, 42, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Dobbenga, S.; Fratila-Apachitei, L.E.; Zadpoor, A.A. Nanopattern-Induced Osteogenic Differentiation of Stem Cells—A Systematic Review. Acta Biomater. 2016, 46, 3–14. [Google Scholar] [CrossRef]
- Davoodi, E.; Sarikhani, E.; Montazerian, H.; Ahadian, S.; Costantini, M.; Swieszkowski, W.; Willerth, S.M.; Walus, K.; Mofidfar, M.; Toyserkani, E.; et al. Extrusion and Microfluidic-Based Bioprinting to Fabricate Biomimetic Tissues and Organs. Adv. Mater. Technol. 2020, 5, 1901044. [Google Scholar] [CrossRef]
- Colosi, C.; Shin, S.R.; Manoharan, V.; Massa, S.; Costantini, M.; Barbetta, A.; Dokmeci, M.R.; Dentini, M.; Khademhosseini, A. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink. Adv. Mater. 2016, 28, 677–684. [Google Scholar] [CrossRef]
- Yu, F.; Choudhury, D. Microfluidic Bioprinting for Organ-on-a-Chip Models. Drug Discov. Today 2019, 24, 1248–1257. [Google Scholar] [CrossRef]
- Wu, C.A.; Zhu, Y.; Venkatesh, A.; Stark, C.J.; Lee, S.H.; Woo, Y.J. Optimization of Freeform Reversible Embedding of Suspended Hydrogel Microspheres for Substantially Improved Three-Dimensional Bioprinting Capabilities. Tissue Eng. Part C Methods 2023, 29, 85–94. [Google Scholar] [CrossRef]
- Lee, A.; Hudson, A.R.; Shiwarski, D.J.; Tashman, J.W.; Hinton, T.J.; Yerneni, S.; Bliley, J.M.; Campbell, P.G.; Feinberg, A.W. 3D Bioprinting of Collagen to Rebuild Components of the Human Heart. Science 2019, 365, 482–487. [Google Scholar] [CrossRef]
- Hinton, T.J.; Jallerat, Q.; Palchesko, R.N.; Park, J.H.; Grodzicki, M.S.; Shue, H.-J.; Ramadan, M.H.; Hudson, A.R.; Feinberg, A.W. Three-Dimensional Printing of Complex Biological Structures by Freeform Reversible Embedding of Suspended Hydrogels. Sci. Adv. 2015, 1, e1500758. [Google Scholar] [CrossRef] [PubMed]
- Capel, A.J.; Smith, M.A.A.; Taccola, S.; Pardo-Figuerez, M.; Rimington, R.P.; Lewis, M.P.; Christie, S.D.R.; Kay, R.W.; Harris, R.A. Digitally Driven Aerosol Jet Printing to Enable Customisable Neuronal Guidance. Front. Cell Dev. Biol. 2021, 9, 722294. [Google Scholar] [CrossRef] [PubMed]
- Vlnieska, V.; Gilshtein, E.; Kunka, D.; Heier, J.; Romanyuk, Y.E. Aerosol Jet Printing of 3D Pillar Arrays from Photopolymer Ink. Polymers 2022, 14, 3411. [Google Scholar] [CrossRef]
- Romanazzo, S.; Molley, T.G.; Nemec, S.; Lin, K.; Sheikh, R.; Gooding, J.J.; Wan, B.; Li, Q.; Kilian, K.A.; Roohani, I. Synthetic Bone-Like Structures Through Omnidirectional Ceramic Bioprinting in Cell Suspensions. Adv. Funct. Mater. 2021, 31, 2008216. [Google Scholar] [CrossRef]
- Jalandhra, G.; Romanazzo, S.; Nemec, S.; Roohani, I.; Kilian, K.A. Ceramic Omnidirectional Bioprinting in Cell-Laden Suspensions for the Generation of Bone Analogs. J. Vis. Exp. 2022, e63943. [Google Scholar] [CrossRef]
- Jalandhra, G.K.; Molley, T.G.; Hung, T.; Roohani, I.; Kilian, K.A. In Situ Formation of Osteochondral Interfaces Through “Bone-Ink” Printing in Tailored Microgel Suspensions. Acta Biomater. 2023, 156, 75–87. [Google Scholar] [CrossRef]
- Wu, S.; Serbin, J.; Gu, M. Two-Photon Polymerisation for Three-Dimensional Micro-Fabrication. J. Photochem. Photobiol. Chem. 2006, 181, 1–11. [Google Scholar] [CrossRef]
- Tromayer, M.; Dobos, A.; Gruber, P.; Ajami, A.; Dedic, R.; Ovsianikov, A.; Liska, R. A Biocompatible Diazosulfonate Initiator for Direct Encapsulation of Human Stem Cells via Two-Photon Polymerization. Polym. Chem. 2018, 9, 3108–3117. [Google Scholar] [CrossRef]
- He, Z.; He, S. Two-Photon Polymerization of Hydrogel Cellular Scaffolds. Opt. Commun. 2025, 574, 131161. [Google Scholar] [CrossRef]
- Jing, X.; Fu, H.; Yu, B.; Sun, M.; Wang, L. Two-Photon Polymerization for 3D Biomedical Scaffolds: Overview and Updates. Front. Bioeng. Biotechnol. 2022, 10, 994355. [Google Scholar] [CrossRef]
- Liu, W.; Deng, T.; Sun, D.; Jia, Z.; Li, M.; Tang, A. A Study of Mask Planning in Projection-Based Stereolithography Using Digital Image Correlation. Int. J. Adv. Manuf. Technol. 2019, 104, 451–461. [Google Scholar] [CrossRef]
- Seol, Y.-J.; Park, D.Y.; Park, J.Y.; Kim, S.W.; Park, S.J.; Cho, D.-W. A New Method of Fabricating Robust Freeform 3D Ceramic Scaffolds for Bone Tissue Regeneration. Biotechnol. Bioeng. 2013, 110, 1444–1455. [Google Scholar] [CrossRef]
- Greer, A.I.M.; Barbour, E.; Cutiongco, M.F.; Stormonth-Darling, J.M.; Convery, N.; Alsaigh, R.E.; Lavery, M.P.J.; Gadegaard, N. Large Volume Nanoscale 3D Printing: Nano-3DP. Appl. Mater. Today 2020, 21, 100782. [Google Scholar] [CrossRef]
- Gauss, C.; Pickering, K.L. A New Method for Producing Polylactic Acid Biocomposites for 3D Printing with Improved Tensile and Thermo-Mechanical Performance Using Grafted Nanofibrillated Cellulose. Addit. Manuf. 2023, 61, 103346. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, G.; Li, J.J. Advances in Implant Surface Modifications to Improve Osseointegration. Mater. Adv. 2021, 2, 6901–6927. [Google Scholar] [CrossRef]
- Miao, X.; Wang, D.; Xu, L.; Wang, J.; Zeng, D.; Lin, S.; Huang, C.; Liu, X.; Jiang, X. The Response of Human Osteoblasts, Epithelial Cells, Fibroblasts, Macrophages and Oral Bacteria to Nanostructured Titanium Surfaces: A Systematic Study. Int. J. Nanomed. 2017, 12, 1415–1430. [Google Scholar] [CrossRef]
- Chi, M.; Li, N.; Cui, J.; Karlin, S.; Rohr, N.; Sharma, N.; Thieringer, F.M. Biomimetic, Mussel-Inspired Surface Modification of 3D-Printed Biodegradable Polylactic Acid Scaffolds with Nano-Hydroxyapatite for Bone Tissue Engineering. Front. Bioeng. Biotechnol. 2022, 10, 989729. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, L.; Liu, Z.; Shen, Z.; Jia, W.; Hou, P.; Sang, S. 3D Printed-Electrospun PCL/Hydroxyapatite/MWCNTs Scaffolds for the Repair of Subchondral Bone. Regen. Biomater. 2023, 10, rbac104. [Google Scholar] [CrossRef]
- Belgheisi, G.; Nazarpak, M.H.; Solati-Hashjin, M. Microstructure, Mechanical, and In Vitro Performance of a Novel Combination of Layered Double Hydroxides and Polycaprolactone Electrospun/3D Printed Scaffolds for Bone Tissue Engineering. Fibers Polym. 2023, 24, 3085–3099. [Google Scholar] [CrossRef]
- Diogo, G.S.; Marques, C.F.; Sotelo, C.G.; Pérez-Martín, R.I.; Pirraco, R.P.; Reis, R.L.; Silva, T.H. Cell-Laden Biomimetically Mineralized Shark-Skin-Collagen-Based 3D Printed Hydrogels for the Engineering of Hard Tissues. ACS Biomater. Sci. Eng. 2020, 6, 3664–3672. [Google Scholar] [CrossRef]
- Zhou, Y.; Lian, X.-J.; Lu, Y.; Zhu, Q.; Fu, T.; Feng, H.-N.; Lei, Q.; Huang, D. Harnessing Oriented Arrangement of Collagen Fibers by 3D Printing for Enhancing Mechanical and Osteogenic Properties of Mineralized Collagen Scaffolds. Biomed. Mater. 2024, 19, 045020. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chu, P.K.; Ding, C. Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications. Mater. Sci. Eng. R Rep. 2004, 47, 49–121. [Google Scholar] [CrossRef]
- Oh, S.; Daraio, C.; Chen, L.-H.; Pisanic, T.R.; Fiñones, R.R.; Jin, S. Significantly Accelerated Osteoblast Cell Growth on Aligned TiO2 Nanotubes. J. Biomed. Mater. Res. A 2006, 78A, 97–103. [Google Scholar] [CrossRef]
- Wen, X.; Zhou, Q.; Lin, S.; Mai, H.; Zhang, L. Selenium-Modified Hydroxyapatite Titanium Coating: Enhancing Osteogenesis and Inhibiting Cancer in Bone Invasion by Head and Neck Squamous Cell Carcinoma. Front. Bioeng. Biotechnol. 2025, 13, 1552661. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Wu, Y.; Liu, S.; Yang, L.; Yuan, H.; Cai, S.; Flesch, J.; Li, Z.; Tang, Y.; Li, X.; et al. Surface Modification of Polycaprolactone Scaffold with Improved Biocompatibility and Controlled Growth Factor Release for Enhanced Stem Cell Differentiation. Front. Bioeng. Biotechnol. 2022, 9, 802311. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Devine, J.N. PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar] [CrossRef]
- Gonzalez-Pujana, A.; Carranza, T.; Santos-Vizcaino, E.; Igartua, M.; Guerrero, P.; Hernandez, R.M.; de la Caba, K. Hybrid 3D Printed and Electrospun Multi-Scale Hierarchical Polycaprolactone Scaffolds to Induce Bone Differentiation. Pharmaceutics 2022, 14, 2843. [Google Scholar] [CrossRef]
- Brennan, C.M.; Eichholz, K.F.; Hoey, D.A. The Effect of Pore Size within Fibrous Scaffolds Fabricated Using Melt Electrowriting on Human Bone Marrow Stem Cell Osteogenesis. Biomed. Mater. 2019, 14, 065016. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, X.; Shafiq, M.; Myles, G.; Radacsi, N.; Mo, X. Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering. Adv. Fiber Mater. 2022, 4, 959–986. [Google Scholar] [CrossRef]
- Pham, Q.P.; Sharma, U.; Mikos, A.G. Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review. Tissue Eng. 2006, 12, 1197–1211. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Li, C.; Zhao, S.; Li, Z.; Wu, J.; Li, J.; Zhou, H.; Yang, Y.; Xu, Y.; Xia, H. Integrating Coaxial Electrospinning and 3D Printing Technologies for the Development of Biphasic Porous Scaffolds Enabling Spatiotemporal Control in Tumor Ablation and Osteochondral Regeneration. Bioact. Mater. 2024, 34, 338–353. [Google Scholar] [CrossRef]
- Sun, D.; Chang, C.; Li, S.; Lin, L. Near-Field Electrospinning. Nano Lett. 2006, 6, 839–842. [Google Scholar] [CrossRef]
- Brown, T.D.; Dalton, P.D.; Hutmacher, D.W. Direct Writing by Way of Melt Electrospinning. Adv. Mater. 2011, 23, 5651–5657. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, T.G.; Kim, H.C.; Yang, D.-Y.; Park, T.G. Development of Dual Scale Scaffolds via Direct Polymer Melt Deposition and Electrospinning for Applications in Tissue Regeneration. Acta Biomater. 2008, 4, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.-J. Bone Mineralization in Electrospun-Based Bone Tissue Engineering. Polymers 2022, 14, 2123. [Google Scholar] [CrossRef]
- Olszta, M.J.; Cheng, X.; Jee, S.S.; Kumar, R.; Kim, Y.-Y.; Kaufman, M.J.; Douglas, E.P.; Gower, L.B. Bone Structure and Formation: A New Perspective. Mater. Sci. Eng. R Rep. 2007, 58, 77–116. [Google Scholar] [CrossRef]
- Jonášová, L.; Müller, F.A.; Helebrant, A.; Strnad, J.; Greil, P. Biomimetic Apatite Formation on Chemically Treated Titanium. Biomaterials 2004, 25, 1187–1194. [Google Scholar] [CrossRef]
- Jee, S.S.; Kasinath, R.K.; DiMasi, E.; Kim, Y.-Y.; Gower, L. Oriented Hydroxyapatite in Turkey Tendon Mineralized via the Polymer-Induced Liquid-Precursor (PILP) Process. CrystEngComm 2011, 13, 2077–2083. [Google Scholar] [CrossRef]
- Luo, Y.; Lode, A.; Wu, C.; Chang, J.; Gelinsky, M. Alginate/Nanohydroxyapatite Scaffolds with Designed Core/Shell Structures Fabricated by 3D Plotting and In Situ Mineralization for Bone Tissue Engineering. ACS Appl. Mater. Interfaces 2015, 7, 6541–6549. [Google Scholar] [CrossRef] [PubMed]
- Góes, J.C.; Figueiró, S.D.; Oliveira, A.M.; Macedo, A.A.M.; Silva, C.C.; Ricardo, N.M.P.S.; Sombra, A.S.B. Apatite Coating on Anionic and Native Collagen Films by an Alternate Soaking Process. Acta Biomater. 2007, 3, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, N.; Zhang, Z.; Hong, J.; Zhang, X.; Hao, Y.; Wang, J.; Xie, Q.; Zhang, Y.; Li, H.; et al. Beyond Hype: Unveiling the Real Challenges in Clinical Translation of 3D Printed Bone Scaffolds and the Fresh Prospects of Bioprinted Organoids. J. Nanobiotechnol. 2024, 22, 500. [Google Scholar] [CrossRef]
- Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone Tissue Engineering: Recent Advances and Challenges. Crit. Rev. Biomed. Eng. 2012, 40, 363–408. [Google Scholar] [CrossRef]
- Bakhtiari, H.; Nouri, A.; Aamir, M.; Najafi, M.; Tolouei-Rad, M. Impact of Biodegradation on the Mechanical and Fatigue Properties of 3D-Printed PLA Bone Scaffolds. J. Mech. Behav. Biomed. Mater. 2025, 168, 107039. [Google Scholar] [CrossRef]
- Ahmed, Y.; Alshami, A.S.; Al-Goraee, A.; Obeng, C.P.; Kennedy, R.; Abdelaziz, H.; Striker, R. Enhancing Bone Scaffold Fabrication: A Comparative Study of Manual Casting and Automated 3D Bioprinting. Ann. Biomed. Eng. 2025, 53, 2059–2070. [Google Scholar] [CrossRef]
- Khorasani, E.; Vahidi, B. 3D-Printed Scaffolds for Cranial Bone Regeneration: A Systematic Review of Design, Materials, and Computational Optimization. Biotechnol. Bioeng. 2025, 122, 1982–2008. [Google Scholar] [CrossRef]
- Spicer, P.; Kretlow, J.; Young, S.; Jansen, J.; Kasper, F.; Mikos, A. Evaluation of Bone Regeneration Using the Rat Critical Size Calvarial Defect. Nat. Protoc. 2012, 7, 1918–1929. [Google Scholar] [CrossRef]
- Ferguson, J.C.; Tangl, S.; Barnewitz, D.; Genzel, A.; Heimel, P.; Hruschka, V.; Redl, H.; Nau, T. A Large Animal Model for Standardized Testing of Bone Regeneration Strategies. BMC Vet. Res. 2018, 14, 330. [Google Scholar] [CrossRef]
- Teotia, A.K.; Dienel, K.; Qayoom, I.; van Bochove, B.; Gupta, S.; Partanen, J.; Seppälä, J.; Kumar, A. Improved Bone Regeneration in Rabbit Bone Defects Using 3D Printed Composite Scaffolds Functionalized with Osteoinductive Factors. ACS Appl. Mater. Interfaces 2020, 12, 48340–48356. [Google Scholar] [CrossRef]
- Suchý, T.; Vištejnová, L.; Šupová, M.; Klein, P.; Bartoš, M.; Kolinko, Y.; Blassová, T.; Tonar, Z.; Pokorný, M.; Sucharda, Z.; et al. Vancomycin-Loaded Collagen/Hydroxyapatite Layers Electrospun on 3D Printed Titanium Implants Prevent Bone Destruction Associated with S. Epidermidis Infection and Enhance Osseointegration. Biomedicines 2021, 9, 531. [Google Scholar] [CrossRef]
- Reis, M.E.; Bettencourt, A.; Ribeiro, H.M. The Regulatory Challenges of Innovative Customized Combination Products. Front. Med. 2022, 9, 821094. [Google Scholar] [CrossRef] [PubMed]
- Mladenovska, T.; Choong, P.F.; Wallace, G.G.; O’Connell, C.D. The Regulatory Challenge of 3D Bioprinting. Regen. Med. 2023, 18, 659–674. [Google Scholar] [CrossRef] [PubMed]
- Morrison, R.J.; Kashlan, K.N.; Flanangan, C.L.; Wright, J.K.; Green, G.E.; Hollister, S.J.; Weatherwax, K.J. Regulatory Considerations in the Design and Manufacturing of Implantable 3D-Printed Medical Devices. Clin. Transl. Sci. 2015, 8, 594–600. [Google Scholar] [CrossRef]
- Stanco, D.; Urbán, P.; Tirendi, S.; Ciardelli, G.; Barrero, J. 3D Bioprinting for Orthopaedic Applications: Current Advances, Challenges and Regulatory Considerations. Bioprinting 2020, 20, e00103. [Google Scholar] [CrossRef]
- Nüssler, A. The New European Medical Device Regulation: Friend or Foe for Hospitals and Patients? Injury 2023, 54, 110907. [Google Scholar] [CrossRef] [PubMed]
- Walter, N.; Hierl, K.; Rupp, M.; Alt, V. Basics of Health Economics for Clinical Trials in Orthopaedic Trauma. Injury 2023, 54, 110878. [Google Scholar] [CrossRef]
- Li, J.J.; Roohani-Esfahani, S.-I.; Dunstan, C.R.; Quach, T.; Steck, R.; Saifzadeh, S.; Pivonka, P.; Zreiqat, H. Efficacy of Novel Synthetic Bone Substitutes in the Reconstruction of Large Segmental Bone Defects in Sheep Tibiae. Biomed. Mater. 2016, 11, 015016. [Google Scholar] [CrossRef]
- Peng, S.; Feng, P.; Wu, P.; Huang, W.; Yang, Y.; Guo, W.; Gao, C.; Shuai, C. Graphene Oxide as an Interface Phase between Polyetheretherketone and Hydroxyapatite for Tissue Engineering Scaffolds. Sci. Rep. 2017, 7, srep46604. [Google Scholar] [CrossRef] [PubMed]
- Takano, M.; Sugahara, K.; Koyachi, M.; Odaka, K.; Matsunaga, S.; Homma, S.; Abe, S.; Katakura, A.; Shibahara, T. Maxillary Reconstruction Using Tunneling Flap Technique with 3D Custom-Made Titanium Mesh Plate and Particulate Cancellous Bone and Marrow Graft: A Case Report. Maxillofac. Plast. Reconstr. Surg. 2019, 41, 43. [Google Scholar] [CrossRef] [PubMed]
- Omar, O.; Engstrand, T.; Kihlström Burenstam Linder, L.; Åberg, J.; Shah, F.A.; Palmquist, A.; Birgersson, U.; Elgali, I.; Pujari-Palmer, M.; Engqvist, H.; et al. In Situ Bone Regeneration of Large Cranial Defects Using Synthetic Ceramic Implants with a Tailored Composition and Design. Proc. Natl. Acad. Sci. USA 2020, 117, 26660–26671. [Google Scholar] [CrossRef]
- Li, J.; Cui, X.; Lindberg, G.C.J.; Alcala-Orozco, C.R.; Hooper, G.J.; Lim, K.S.; Woodfield, T.B.F. Hybrid Fabrication of Photo-Clickable Vascular Hydrogels with Additive Manufactured Titanium Implants for Enhanced Osseointegration and Vascularized Bone Formation. Biofabrication 2022, 14, 034103. [Google Scholar] [CrossRef]
- Probst, F.A.; Hutmacher, D.W.; Müller, D.F.; Machens, H.-G.; Schantz, J.-T. Rekonstruktion der Kalvaria durch ein präfabriziertes bioaktives Implantat. Handchir. Mikrochir. Plast. Chir. 2010, 42, 369–373. [Google Scholar] [CrossRef]
- Zadpoor, A.A. Meta-Biomaterials. Biomater. Sci. 2020, 8, 18–38. [Google Scholar] [CrossRef]
- Murr, L.E. Strategies for Creating Living, Additively Manufactured, Open-Cellular Metal and Alloy Implants by Promoting Osseointegration, Osteoinduction and Vascularization: An Overview. J. Mater. Sci. Technol. 2019, 35, 231–241. [Google Scholar] [CrossRef]
- Li, J.; Cui, X.; Hooper, G.J.; Lim, K.S.; Woodfield, T.B.F. Rational Design, Bio-Functionalization and Biological Performance of Hybrid Additive Manufactured Titanium Implants for Orthopaedic Applications: A Review. J. Mech. Behav. Biomed. Mater. 2020, 105, 103671. [Google Scholar] [CrossRef]
- Pobloth, A.-M.; Checa, S.; Razi, H.; Petersen, A.; Weaver, J.C.; Schmidt-Bleek, K.; Windolf, M.; Tatai, A.Á.; Roth, C.P.; Schaser, K.-D.; et al. Mechanobiologically Optimized 3D Titanium-Mesh Scaffolds Enhance Bone Regeneration in Critical Segmental Defects in Sheep. Sci. Transl. Med. 2018, 10, eaam8828. [Google Scholar] [CrossRef] [PubMed]
- Hutmacher, D.W. Scaffolds in Tissue Engineering Bone and Cartilage. Biomaterials 2000, 21, 2529–2543. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, A. An Overview of Recent Advancements in 4D Printing of Alginate Hydrogels for Tissue Regeneration. J. Biomater. Sci. Polym. Ed. 2025, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tijssen, K.C.H.; Bomans, P.H.H.; Akiva, A.; Friedrich, H.; Kentgens, A.P.M.; Sommerdijk, N.A.J.M. Microscopic Structure of the Polymer-Induced Liquid Precursor for Calcium Carbonate. Nat. Commun. 2018, 9, 2582. [Google Scholar] [CrossRef]
- Thula, T.T.; Rodriguez, D.E.; Lee, M.H.; Pendi, L.; Podschun, J.; Gower, L.B. In Vitro Mineralization of Dense Collagen Substrates: A Biomimetic Approach toward the Development of Bone-Graft Materials. Acta Biomater. 2011, 7, 3158–3169. [Google Scholar] [CrossRef]
- Gómez-Cerezo, M.N.; Peña, J.; Ivanovski, S.; Arcos, D.; Vallet-Regí, M.; Vaquette, C. Multiscale Porosity in Mesoporous Bioglass 3D-Printed Scaffolds for Bone Regeneration. Mater. Sci. Eng. C 2021, 120, 111706. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Jang, J.; Lee, J.-S.; Cho, D.-W. Current Advances in Three-Dimensional Tissue/Organ Printing. Tissue Eng. Regen. Med. 2016, 13, 612–621. [Google Scholar] [CrossRef]
- Yu, K.; Gao, Q.; Yao, Y.; Lin, Z.; Zhang, P.; Lu, L. Investigation of the Humidity Control in the Printing Space for the Material Extrusion of Medical Biodegradable Hydrogel. Addit. Manuf. 2024, 93, 104452. [Google Scholar] [CrossRef]
- Matamoros, M.; Gómez-Blanco, J.C.; Sánchez, Á.J.; Mancha, E.; Marcos, A.C.; Carrasco-Amador, J.P.; Pagador, J.B. Temperature and Humidity PID Controller for a Bioprinter Atmospheric Enclosure System. Micromachines 2020, 11, 999. [Google Scholar] [CrossRef]
Combining Strategy | Characterization | Mechanical Property | Cell Behavior | Reference |
---|---|---|---|---|
FDM + freeze-drying: A coating was prepared on the surface of FDM-printed PCL scaffolds using a chitosan solution containing wollastonite-hydroxyapatite, applied through a freeze-drying technique. | Macropore size: approximately 500 μm Micropore size: NA | Compressive strength: 3.5–4.9 MPa | NA | [117] |
DIW + freeze-drying: Preparation of HA suspension followed by 3D printing via injection extrusion onto a temperature-controlled platform, then freeze-drying and sintering. | Macropore size: submillimeter to millimeter level Micropore size: below 10 µm | Ultimate strength: 22 MPa | Cell adhesion and biocompatibility observed, no quantitative data reported | [118] |
3D bioprinting + freeze-drying: PLGA/ HA bioink is extruded through a low-temperature nozzle to fabricate scaffolds, followed by gelatin infiltration and freeze-drying. | Macropore size: 1100 μm Micropore size: 20–500 μm | Compressive strength: 13.7–16.8 MPa | Cell adhesion and in vitro mineralization on PLGA/HA/Gelatin scaffolds were superior to the control group, no quantitative data reported | [119] |
DIW+ freeze-drying: Scaffolds were 3D printed with a modified nozzle, infused with bioceramic slurry, bidirectionally frozen, freeze-dried, and sintered into hot dog-like structures | Macropore size: approximately 1 mm Micropore size:18–34 μm | NA | MTT: hot dog-like scaffolds > scaffolds without hot dog structures. Osteogenic genes: Runx2/OCN/OPN/ALP ↑ | [120] |
3D printing + salt-leaching: CuSO4-PLGA ink is rapidly printed via 3D-painting, followed by washing to dissociate and solubilize CuSO4 salts and their constituent ions | Macropore size: approximately 200 μm Micropore size: 1–10 µm | Tensile modulus (hydrated): 112.6 MPa → 2.7 MPa (as CuSO4 increases 25%→70%) | Greater double-stranded DNA and uniform cell coverage observed in 50% and 70% CuSO4-PLGA | [121] |
FDM + salt-leaching: The scaffolds were additively manufactured from medical grade polycaprolactone (mPCL) doped with porogen microparticles having an average size of 22 μm, which were subsequently leached to create microscale porosity. | Macropore size: 700 µm Micropore size: 20–70 µm | Young’s modulus: 357.5 ± 31.6 MPa (nonporous mPCL, nmPCL) → 261.6 ± 23.8 MPa (Dual scale porous mPCL with 44% porogen, pmPCL44) | Protein adsorption: pmPCL44 adsorbed 1.8 ± 0.1 μg BSA/scaffold (vs. 0.5 ± 0.3 μg for nmPCL) | [122] |
3D bioprinting + sol–gel: 3D-printed Methylcellulose-based hydrogels loaded with bacterial cellulose (BC)-nanofibers (NF)/ superparamagnetic iron oxide nanoparticles(SPIONs) were prepared, ethanol-gelled, then dried via supercritical CO2 or freeze-drying to obtain aerogels. | Macropore size:100–600 μm Mesopore size: 10–20 μm | NA | Resazurin test: cell viability > 90% after 24–72 h | [123] |
3D printing + TIPS: Embedding porous 3D-plotted polyethylene glycol (PEG) inside PLGA/nHA/1,4-dioxane or PLGA/1,4-dioxane solutions, followed by PEG extraction using deionized (DI) water. | Macropore size: 300 μm, 380 μm, and 460 μm Micropore size: 20–40 μm. | Compressive modulus: 0.37–5.16 MPa † | NA | [124] |
FDM + freeze-drying + TIPS: 3D-printed poly (L-lactide) (PLLA) scaffolds were modified via chitosan (CS) coating, freeze-drying, polydopamine (PDA) grafting, and quercetin (Qu) loading to obtain multifunctional hierarchical PLLA/CS-D/Qu scaffolds. | Macropore size: 380–390 μm Nanofiber diameter: 80–600 nm | Compressive strength: 13.1 MPa (PLLA dry) → 15.1 MPa (PLLA/CS-D/Qu dry) Compressive modulus: 0.112 GPa (PLLA dry) → 0.139 GPa (PLLA/CS-D/Qu dry) | Osteogenesis: PLLA/CS-D/Qu’s ALP activity and calcium deposition ~2 × PLLA Osteogenic genes: PLLA/CS-D/Qu’s Runx2, ALP, COL-I, OCN ~4–5 × PLLA | [125] |
FDM + gas foaming: PLA resin was blended with a chemical foaming agent (CFA) for filament extrusion, followed by 3D printing. | Macropore size: 200~300 μm Micropore size: 10–60 μm. | NA | Proliferation (NIH3T3): foamed PLA showed ~5 × higher proliferation vs. neat PLA after 10 d | [126] |
FDM + gas foaming: PLA and PVA were blended and extruded into filaments, FDM printed, and then gas foamed in a CO2-supersaturated hot water bath. | Macropore size: 300–700 μm Micropore size: 0.5–2 μm | Compressive modulus: 86.2 ± 13.4 MPa (unfoamed) → 17.9 ± 5.2 MPa (foamed + etched) Compressive strength: 27.5 ± 5.4 MPa (unfoamed) → 7.6 ± 2.3 MPa (foamed + etched) | NA | [127] |
Combining Strategy | Characterization | Mechanical Property | Cell Behavior | Reference |
---|---|---|---|---|
Extrusion-based 3D printing + electrospinning: The PCL/nHA/ multi-walled carbon nanotubes (MWCNTs) composite ink was first extruded via 3D printing, followed by the fabrication of a ~0.1 mm thick electrospun membrane on the scaffold surface using electrospinning. | Macropore size: 500 μm Nanofiber diameter: 1 μm. | Compressive modulus: 4.40 ± 0.09 MPa (PCL) → 8.23 ± 0.10 MPa (PCL/nHA) → 10.68 ± 0.24 MPa (PCL/nHA/MWCNTs) | Proliferation: CCK-8 ↑ to 464% at day 7 (PCL/nHA/MWCNTs > PCL/nHA > PCL) Osteogenesis: PCL/nHA/MWCNTs ‘s ALP activity ~3 × PCL | [191] |
DIW + electrospinning: control PCL (CP) grids were 3D printed and combined with electrospun PCL (PPF) or layered double hydroxide (LDH)/PCL (PLF) nanofiber mats. The nanofiber mats were fixed between printed layers using PCL glue (15%wt in DCM/DMF). | Macropore size: 386 to 459 µm, Nanofiber diameter: 150 to 500 nm. | Young’s modulus (dry): 0.07 ± 0.01 MPa (CP grid) → 0.1 ± 0.06 MPa (PPF) → 0.13 ± 0.05 MPa (PLF) Young’s modulus (wet): 0.06 ± 0.03 MPa (CP) → 0.12 ± 0.05 MPa (PPF) → 0.14 ± 0.07 MPa (PLF) | Viability: MG-63 > 98% after 7 and 14 days (MTT). Mineralization: PLF ‘s Alizarin Red–Ca deposition area ~3 × PPF | [192] |
FDM + electrospinning: The hybrid PCL scaffold was constructed by layer-by-layer stacking of 3D-printed PCL filaments and electrospun PCL solution, using a bioprinter equipped with both 3D printing and electrospinning patterns. | Macropore size: 300 µm Nanofiber diameter: 20.2 ± 6.0 µm. | Compression modulus: elastic up to 30% strain; shape recovery after 10 cycles (80% strain) | L-929 fibroblasts: >70% viability in direct and indirect ISO 10993–5 cytotoxicity assays (non-cytotoxic) | [200] |
Melt electrowriting (MEW): A high voltage was applied to the nozzle to induce the formation of a Taylor cone from PCL using a custom MEW machine. | macropore size: 100, 200, and 300 μm nanofiber diameter: 4.01 ± 0.06 μm. | Yield force: 100 µm scaffold showed 1.9× (vs. 200 µm) and 2.8× (vs. 300 µm) higher yield force | Seeding efficiency: 55.7% (100 µm) > 24.9% (200 µm) > 19.1% (300 µm) Mineralization: 100 µm scaffold showed 11.6× Ca vs. 300 µm, 2.2× vs. 200 µm at day 21 | [201] |
3D bioprinting+ alternate soaking: Blue shark collagen was in situ mineralized to form hydroxyapatite; after optimizing conditions, it was mixed with alginate at various ratios to prepare stable bioinks for 3D printing cell-laden hydrogels. | Nanometer-scale apatite crystals were observed on the collagen surface. | NA | Cells exhibit enhanced proliferative capacity in mineralized collagen hydrogel. Qualitative results only; no quantitative percentages reported. | [193] |
3D bioprinting+ alternate soaking: Using an acetic acid solution containing type I collagen as bio-ink, a traditional collagen (TC) scaffold was 3D-printed and subsequently mineralized in vitro via the alternate soaking method to obtain a mineralized collagen fiber (MCF) scaffold. | MCF scaffolds covered with nanometer-scale lamellar apatite crystals (Ca/P ratio 1.60–1.72 ≈ bone 1.67). | 0° oriented MCF: tensile strength ↑7×, tensile modulus ↑9× vs. TC 45° MCF: tensile strength ↑4×, modulus ↑2× 90° MCF: tensile strength ↑2×, modulus ~same as TC | MCF exhibited superior cell proliferation and in vitro osteogenic induction compared with TC. Qualitative results only; no quantitative percentages reported. | [194] |
Company/Product | Material/AM Process | Indication | Regulatory Status |
---|---|---|---|
Bone Graft Substitutes and Resorbable Scaffolds | |||
Dimension Inx–CMFlex® | 3D extruded CaP composite | Bone defect filling/shaping | FDA 510(k), 2023 |
Osteopore–Osteoplug®/Osteomesh® | 3D-printed PCL resorbable scaffold | CMF defects, burr hole repair | FDA 510(k), CE |
Patient-Specific CMF Implants | |||
Oxford Performance Materials–OsteoFab® PSC/PSF | Laser sintered PEKK | Patient-specific skull/jaw | FDA 510(k) |
3D Systems–VSP® PEEK/Metal CMF | PEEK and metal printing | Custom CMF reconstruction | FDA 510(k), 2024 |
KLS Martin–IPS® | L-PBF titanium | Custom cranio-maxillofacial | FDA 510(k), CE |
Spinal/Foot and Ankle Implants | |||
Stryker–TRITANIUM® | L-PBF porous titanium | Cervical/lumbar fusion | FDA 510(k) |
K2M–CASCADIA™ L-3D | Layered porous titanium | Spinal fusion | FDA 510(k) |
4WEB Medical–Truss System | L-PBF titanium truss | Spine, foot/ankle, trauma | Multiple FDA 510(k) |
DePuy Synthes/LimaCorporate | Trabecular titanium | Spinal cages, hip revision | FDA, CE |
Joint Reconstruction/Revision | |||
Stryker–Tritanium® | 3D-printed porous titanium | Hip/knee arthroplasty | FDA 510(k) |
LimaCorporate–Trabecular Titanium® | 3D-printed titanium | Hip/shoulder revision | CE, FDA shoulder component |
Methods | Concepts and Mechanisms | Strengths | Weaknesses | References |
---|---|---|---|---|
3D Printing + Freeze-Drying | Integration with freeze-drying during printing; ice crystal sublimation generates hierarchical porous structures (layered channels, directional pores). | Enables hierarchical porosity (macro + micro), preserves bioactivity, suitable for protein/drug sustained release; low-temperature conditions favor cell/factor preservation. | Complex process, limited layer thickness; low-temperature extrusion inks are difficult to stabilize; limited mechanical strength. | [118,119,120,136,137,138] |
3D Printing + Particulate Leaching/Solvent Casting | Incorporation of soluble salt particles into printable inks or matrix, followed by leaching to form micropores. | Controllable pore size, simple process, low cost; enables multi-scale porous structures. | Residual solvents may cause cytotoxicity; multiple washing steps required, time-consuming; limited structural stability. | [121,139,146] |
3D Printing + Sol–Gel Self-Assembly | Sol–gel precursor transformation and self-assembly form nano/micro networks; combined with 3D printing to enhance macromechanical strength. | High porosity, large surface area, potential for functionalization (magnetic response, self-healing, mineralization induction); low-temperature fabrication preserves bioactivity. | Pure sol–gel products have poor mechanical strength; drying/supercritical processing is complex; risk of condensation shrinkage. | [123,140,154,159] |
3D Printing + TIPS | Cooling or solvent phase separation generates hierarchical pores; extrusion printing allows gradient/core–shell structures. | Controllable pore size/interconnectivity; adaptable for soft/hard tissue; compatible with low-temperature printing to form functional composites. | Complex process, low-temperature scalability issues; risk of residual organic solvents; mechanical performance requires optimization. | [124,143,144,161,162] |
3D Printing + Gas Foaming | Chemical/physical foaming agents or supercritical gases generate bubble pores; can be embedded in filaments for in situ foaming. | Solvent-free, high porosity; integration with FDM enables macro–micro pore complementarity; suitable for scale-up. | Poor bubble uniformity, tendency to form dense outer layers; insufficient interconnectivity; complex parameter control. | [126,127,141,145,164,165,166,167] |
3D Printing + Electrospinning | Integration with or post-printing electrospinning; deposition of micro/nanofibers for ECM-like surfaces. | ECM-mimetic topology, enhanced cell adhesion/proliferation; enables multilayer composites. | Weak interfacial bonding, difficult to control fiber orientation; insufficient mechanical strength, limited load-bearing capacity. | [191,192,204] |
3D Printing + In Vitro Mineralization (SBF/PILP) | Printing collagen or other templates followed by mineralization in simulated body fluid (SBF) or precursor solutions to deposit hydroxyapatite. | High biomimicry, enhances osteogenesis and angiogenesis; allows synergistic fiber alignment + mineralization. | Long process, poor uniformity; difficult to achieve precise spatial control; limited scalability. | [193,194,210,211,212,213] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Gao, H.; Qiao, Q.; Yuan, Y.; Fang, D.; Bai, Y.; Jiang, Q. Integrating Additive and Traditional Manufacturing for Multiscale Bone Tissue Engineering Scaffolds. J. Funct. Biomater. 2025, 16, 349. https://doi.org/10.3390/jfb16090349
Zhu Y, Gao H, Qiao Q, Yuan Y, Fang D, Bai Y, Jiang Q. Integrating Additive and Traditional Manufacturing for Multiscale Bone Tissue Engineering Scaffolds. Journal of Functional Biomaterials. 2025; 16(9):349. https://doi.org/10.3390/jfb16090349
Chicago/Turabian StyleZhu, Yixuan, Haotian Gao, Qingchen Qiao, Yafei Yuan, Dongyu Fang, Yuxing Bai, and Qingsong Jiang. 2025. "Integrating Additive and Traditional Manufacturing for Multiscale Bone Tissue Engineering Scaffolds" Journal of Functional Biomaterials 16, no. 9: 349. https://doi.org/10.3390/jfb16090349
APA StyleZhu, Y., Gao, H., Qiao, Q., Yuan, Y., Fang, D., Bai, Y., & Jiang, Q. (2025). Integrating Additive and Traditional Manufacturing for Multiscale Bone Tissue Engineering Scaffolds. Journal of Functional Biomaterials, 16(9), 349. https://doi.org/10.3390/jfb16090349