Antibacterial Activity of a Trace-Cu-Modified Mg Alloy in Simulated Intestinal Fluid
Abstract
1. Introduction
2. Experiments
2.1. Material Preparation
2.2. Microstructural Characterization
2.3. Electrochemical and Immersion Tests
2.4. Extract Preparation
2.5. Antibacterial Evaluation
2.6. Cytocompatibility Assay
3. Results
3.1. Microstructures
3.2. Degradation
3.3. Antibacterial Activity and Cytocompatibility
4. Discussion
4.1. Divergent Biodegradation Behavior in SIF vs. Hank’s Solution
4.2. Antibacterial Mechanism of Trace-Cu-Modified Mg Alloy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, M.; Na, D.; Ni, X.; Song, L.; Etim, I.P.; Yang, K.; Tan, L.; Ma, Z. The mechanical property and corrosion resistance of Mg-Zn-Nd alloy fine wires in vitro and in vivo. Bioact. Mater. 2021, 6, 55–63. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, L.; Wu, H.; Li, K.; Li, N.; Liu, Y. The design, development, and in vivo performance of intestinal anastomosis ring fabricated by magnesium-zinc-strontium alloy. Mater. Sci. Eng. C 2020, 106, 110158. [Google Scholar] [CrossRef]
- Fallingborg, J. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull. 1999, 46, 183–196. [Google Scholar] [PubMed]
- Wang, J.H.; Huang, J.J.; Li, Z.; Chen, K.; Ren, H.J.; Wu, X.W.; Ren, J.A.; Li, Z.A. Whole model path planning-guided multi-axis and multi-material printing of high-performance intestinal implantable stent. Adv. Healthc. Mater. 2023, 12, 2301313. [Google Scholar] [CrossRef]
- Liu, X.-M.; Wang, Z.-X.; Ai, L.-Z.; Fan, Y.-Q.; Wang, G.-Q.; Gu, T.-Y.; Wang, F.-H.; Xu, D.-K.; Li, Z. Microbial corrosion of 316L stainless steel stents by gut Lactobacillus plantarum via extracellular electron transfer. J. Mater. Sci. Technol. 2025, 243, 283–293. [Google Scholar] [CrossRef]
- Durukan, B.K.; Sagdic, K.; Kockar, B.; Inci, F. Modifying NiTi shape memory alloys to reduce nickel ions release through ethylenediamine plasma polymerization for biomedical applications. Prog. Org. Coat. 2024, 189, 108158. [Google Scholar] [CrossRef]
- Yan, J.; Chen, Y.G.; Yuan, Q.L.; Wang, X.H.; Yu, S.; Qiu, W.C.; Wang, Z.G.; Ai, K.X.; Zhang, X.N.; Zhang, S.X.; et al. Comparison of the effects of Mg–6Zn and Ti–3Al–2.5V alloys on TGF-β/TNF-α/VEGF/b-FGF in the healing of the intestinal tract in vivo. Bioact. Mater. 2014, 9, 025011. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, Y.; Chen, T.; Dong, C.; Zhang, K.; Bao, X. A short review of medical-grade stainless steel: Corrosion resistance and novel techniques. J. Mater. Res. Technol. 2024, 29, 2788–2798. [Google Scholar] [CrossRef]
- Wu, M.; Zhao, M.; Cai, Y.; Yao, J.; Wang, P.; Atrens, A. Recent advances in bio-functional Ta-based bone materials: Materials design and bioactivity. Int. J. Extreme Manuf. 2024, 6, 062010. [Google Scholar] [CrossRef]
- Ivanescu, M.C.; Munteanu, C.; Cimpoesu, R.; Istrate, B.; Lupu, F.C.; Benchea, M.; Sindilar, E.V.; Vlasa, A.; Stamatin, O.; Zegan, G. The influence of Ca on mechanical properties of the Mg-Ca-Zn-RE-Zr alloy for orthopedic applications. J. Funct. Biomater. 2025, 16, 170. [Google Scholar] [CrossRef]
- Tong, X.; Dong, Y.; Zhou, R.; Shen, X.; Li, Y.; Jiang, Y.; Wang, H.; Wang, J.; Lin, J.; Wen, C. Enhanced Mechanical Properties, Corrosion Resistance, Cytocompatibility, Osteogenesis, and Antibacterial Performance of Biodegradable Mg–2Zn–0.5Ca–0.5Sr/Zr Alloys for Bone-Implant Application. Adv. Healthc. Mater. 2024, 13, e2303975. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, F.Z.; Sarraf, M.; Ghomi, E.R.; Kumar, V.V.; Salehi, M.; Ramakrishna, S.; Bae, S. A state-of-the-art review on recent advances in the fabrication and characteristics of magnesium-based alloys in biomedical applications. J. Magnes. Alloys 2024, 12, 2569–2594. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, J.; Wang, X.; Liu, H.; Shao, Y.; Chu, C.; Xue, F.; Bai, J. The effect of enzymes on the in vitro degradation behavior of Mg alloy wires in simulated gastric fluid and intestinal fluid. Bioact. Mater. 2022, 7, 217–226. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, Z.; Cheng, C.; Liu, C.; Ma, N.; Sun, D.; Li, D.; Wang, C. Bone regeneration and antibacterial properties of calcium-phosphorus coatings induced by gentamicin-loaded polydopamine on magnesium alloys. Biomed. Technol. 2024, 5, 87–101. [Google Scholar] [CrossRef]
- Rahim, M.I.; Rohde, M.; Rais, B.; Seitz, J.-M.; Mueller, P.P. Susceptibility of metallic magnesium implants to bacterial biofilm infections. J. Biomed. Mater. Res. A 2016, 104, 1489–1499. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Wan, P.; Zhai, Z.; Mao, Z.; Ouyang, Z.; Yu, D.; Sun, Q.; Tan, L.; Ren, L.; et al. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations. Biomaterials 2016, 106, 250–263. [Google Scholar] [CrossRef]
- Xie, B.; Zhao, M.-C.; Xu, R.; Zhao, Y.-C.; Yin, D.-F.; Gao, C.; Atrens, A. Biodegradation, Antibacterial Performance, and Cytocompatibility of a Novel ZK30-Cu-Mn Biomedical Alloy Produced by Selective Laser Melting. Int. J. Bioprint. 2021, 7, 78–89. [Google Scholar] [CrossRef]
- Zhao, X.; Wan, P.; Wang, H.; Zhang, S.; Liu, J.; Chang, C.; Yang, K.; Pan, Y.; Lerner, H. An Antibacterial Strategy of Mg-Cu Bone Grafting in Infection-Mediated Periodontics. BioMed. Res. Int. 2020, 2020, 7289208. [Google Scholar] [CrossRef]
- Yan, X.; Wan, P.; Tan, L.; Zhao, M.; Shuai, C.; Yang, K. Influence of hybrid extrusion and solution treatment on the microstructure and degradation behavior of Mg-0.1Cu alloy. Mater. Sci. Eng. B 2018, 229, 105–117. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, M.-C.; Yang, Y.; Tan, L.; Zhao, Y.-C.; Yin, D.-F.; Yang, K.; Atrens, A. Improvement of biodegradable and antibacterial properties by solution treatment and micro-arc oxidation (MAO) of a magnesium alloy with a trace of copper. Corros. Sci. 2019, 156, 125–138. [Google Scholar] [CrossRef]
- Liu, D.; Qin, J.; Gu, T. The structure of liquid Mg–Cu binary alloys. J. Non-Cryst. Solids 2010, 356, 1587–1592. [Google Scholar] [CrossRef]
- Zhao, M.-C.; Deng, Y.-L.; Zhang, X.-M. Strengthening and improvement of ductility without loss of corrosion performance in a magnesium alloy by homogenizing annealing. Scr. Mater. 2008, 58, 560–563. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Yin, D.; Cai, Y.; Xiao, D.; Zhao, M.; Wen, C.; Atrens, A. Microwave-Sintered Nano-SiC Reinforced 8SiC/Ti-3Cu Composite: Fabrication, Wear Resistance, Antibacterial Function, and Biocompatibility. Adv. Healthc. Mater. 2025, 14, e2403626. [Google Scholar] [CrossRef]
- Morcillo, E.M.; Veleva, L. Degradation of AZ31 and AZ91 magnesium alloys in different physiological media: Effect of surface layer stability on electrochemical behaviour. J. Magnes. Alloys 2020, 8, 667–675. [Google Scholar] [CrossRef]
- Dinodi, N.; Shetty, N. Electrochemical investigations on the corrosion behaviour of magnesium alloy ZE41 in a combined medium of chloride and sulphate. J. Magnes. Alloys 2013, 1, 201–209. [Google Scholar] [CrossRef]
- Xie, B.; Zhao, M.-C.; Tao, J.-X.; Zhao, Y.-C.; Yin, D.; Gao, C.; Shuai, C.; Atrens, A. Comparison of the biodegradation of ZK30 subjected to solid solution treating and selective laser melting. J. Mater. Res. Technol. 2021, 10, 722–729. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, J.; Lu, M.; Shao, Y.; Jiang, K.; Yang, X.; Xiong, X.; Wang, S.; Chu, C.; Xue, F.; et al. A biodegradable magnesium surgical staple for colonic anastomosis: In vitro and in vivo evaluation. Bioact. Mater. 2022, 22, 225–238. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, Y.; Wang, J.; Wu, L.; Cao, F.; Zhang, L.; Pan, F. Controllable degradation behavior of Mg-Sr-Y alloys for the bio-applications. npj Mater. Degrad. 2023, 7, 1–17. [Google Scholar] [CrossRef]
- Abidin, N.I.Z.; Atrens, A.D.; Martin, D.; Atrens, A. Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37 °C. Corros. Sci. 2011, 53, 3542–3556. [Google Scholar] [CrossRef]
- Li, X.; Shi, C.; Bai, J.; Guo, C.; Xue, F.; Lin, P.-H.; Chu, C.-L. Degradation behaviors of surface modified magnesium alloy wires in different simulated physiological environments. Front. Mater. Sci. 2014, 8, 281–294. [Google Scholar] [CrossRef]
- Yang, X.J.; Yin, X.H.; He, Y.L.; Cheng, J.J.; Li, X.; Chen, G.P. Selective laser melted Fe-30Mn-6Cu alloy: A multifunctional candidate for MRI-compatible, biodegradable, antibacterial, and biocompatible orthopedic implants. Int. J. Bioprint. 2025, 11, 358–380. [Google Scholar]
- Wang, W.; Li, X.; Zhao, C.; Atrens, A.; Zhao, M.-C. Unprecedented laser metal deposition (LMD) biofabrication of nano-ZrO2 reinforced structure-function-integrated Ti–Cu composite: Fabrication, wear, biofunctionality. Compos. Part B: Eng. 2025, 298, 112379. [Google Scholar] [CrossRef]
- Salah, I.; Parkin, I.P.; Allan, E. Copper as an antimicrobial agent: Recent advances. RSC Adv. 2021, 11, 18179–18186. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-L.; Zou, L.; Juaim, A.N.; Ma, C.-X.; Zhu, M.-Z.; Xu, F.; Chen, X.-N.; Wang, Y.-Z.; Zhou, X.-W. Copper release and ROS in antibacterial activity of Ti-Cu alloys against implant-associated infection. Rare Met. 2023, 42, 2007–2019. [Google Scholar] [CrossRef]
- Padan, E.; Bibi, E.; Ito, M.; Krulwich, T.A. Alkaline pH homeostasis in bacteria: New insights. Bba-biomembranes 2005, 1717, 67–88. [Google Scholar] [CrossRef]
- Huzum, R.M.; Huzum, B.; Hînganu, M.V.; Lozneanu, L.; Lupu, F.C.; Hînganu, D. Immunohistochemical and Ultrastructural Study of the Degenerative Processes of the Hip Joint Capsule and Acetabular Labrum. Diagnostics 2025, 15, 1932. [Google Scholar] [CrossRef] [PubMed]
- Panta, P.R.; Doerrler, W.T. A link between pH homeostasis and colistin resistance in bacteria. Sci. Rep. 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Tan, J.; Wang, D.; Cao, H.; Qiao, Y.; Zhu, H.; Liu, X. Effect of local alkaline microenvironment on the behaviors of bacteria and osteogenic cells. ACS Appl. Mater. Interfaces 2018, 10, 42018–42029. [Google Scholar] [CrossRef]
- Slonczewski, J.L.; Fujisawa, M.; Dopson, M.; Krulwich, T.A. Cytoplasmic pH Measurement and Homeostasis in Bacteria and Archaea. Adv. Microb. Physiol. 2009, 55, 1–79. [Google Scholar]
- Krulwich, T.A.; Sachs, G.; Padan, E. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 2011, 9, 330–343. [Google Scholar] [CrossRef]











| Nominal Composition | Actual Composition | ||||
|---|---|---|---|---|---|
| Cu | Fe | Si | Ni | Mg | |
| Mg-0.05Cu | 0.057 | <0.005 | 0.012 | <0.001 | Balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, B.; Wei, Z.; Yao, Y.; Jiang, L.; Zhou, M.; Li, J.; Liu, W.; Li, X.; Zhao, M.-C. Antibacterial Activity of a Trace-Cu-Modified Mg Alloy in Simulated Intestinal Fluid. J. Funct. Biomater. 2025, 16, 344. https://doi.org/10.3390/jfb16090344
Zhong B, Wei Z, Yao Y, Jiang L, Zhou M, Li J, Liu W, Li X, Zhao M-C. Antibacterial Activity of a Trace-Cu-Modified Mg Alloy in Simulated Intestinal Fluid. Journal of Functional Biomaterials. 2025; 16(9):344. https://doi.org/10.3390/jfb16090344
Chicago/Turabian StyleZhong, Baiyun, Zemeng Wei, Yi Yao, Lixun Jiang, Manli Zhou, Jinping Li, Weidong Liu, Xin Li, and Ming-Chun Zhao. 2025. "Antibacterial Activity of a Trace-Cu-Modified Mg Alloy in Simulated Intestinal Fluid" Journal of Functional Biomaterials 16, no. 9: 344. https://doi.org/10.3390/jfb16090344
APA StyleZhong, B., Wei, Z., Yao, Y., Jiang, L., Zhou, M., Li, J., Liu, W., Li, X., & Zhao, M.-C. (2025). Antibacterial Activity of a Trace-Cu-Modified Mg Alloy in Simulated Intestinal Fluid. Journal of Functional Biomaterials, 16(9), 344. https://doi.org/10.3390/jfb16090344

