Effects of Caffeine on Dental Mesenchymal Stem Cells: Implications for Regenerative Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. DPSCs Culture
2.2. Reduction in Cell Metabolic Assay
2.3. DPSCs Metabolic Activity
2.4. Antibacterial Activity
2.5. Differentiation of DPSCs into Adipogenic, Chondrogenic, and Osteogenic Lineages
2.6. Western Blotting
2.7. Statistical Analysis
3. Results
3.1. Reduction in Cell Metabolic Assay
3.2. DPSCs Metabolic Activity
3.3. Antibacterial Effect
3.4. Differentiation of DPSCs into Adipogenic, Chondrogenic, and Osteogenic Lineages
3.5. COX-1 and -2 Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
μM | Micromole |
Strep. mutans | Streptococcus mutans |
Esch. coli | Escherichia coli |
Staph. aureus | Staphylococcus aureus |
DPSC | Dental pulp stem cells |
COX-2 | Cyclooxygenase 2 |
SC | Stem cells |
BMMSC | Bone marrow mesenchymal stem cells |
CFU-F | Colony-forming unit-fibroblast |
ENES Leon | Escuela Nacional de Estudios Superiores, Unidad León |
LII | Laboratorio de Investigación Interdisciplinaria |
PBS | Phosphate buffer saline |
EDTA | Ethylenediaminetetraacetic acid |
h | Hours |
MTT | 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide |
mg/mL | Milligrams per milliliter |
MEM | Minimal essential medium |
min | Minutes |
DMSO | Dimethyl sulfoxide |
nm | nanometers |
ISO | International Organization for Standardization |
mL | Milliliters |
μL | Microliters |
°C | Celsius degrees |
D-MEM | Supplemented minimal essential medium |
BMP-1 | Bone morphogenetic protein 1 |
IL-33 | Interleukin 33 |
SDS-PAGE | Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis |
PVDF | Polyvinylidene Fluoride |
COX-1 | Cyclooxygenase 1 |
HRP | Horseradish peroxidase |
UV-VIS | Ultraviolet visible |
Cdk4 | Cyclin-dependent kinase 4 |
MIC | Minimal inhibitory concentration |
μg/mL | Micrograms per milliliter |
SOX-9 | SRY-related HMG box gene 9 |
Runx2 | Runt-related transcription factor 2 |
Osterix | Sp7 transcription factor |
Pparg | Perioxisome proliferator-activated receptor gamma |
Fabp4 | Fatty acid-binding protein 4 |
IL-6 | Interleukin 6 |
p38MAPK | Mitogen-activated protein kinase 38 |
NF-κB | Nuclear factor kappa B |
UV–VIS | Ultraviolet visible |
mg | Milligrams |
References
- Maske, B.S.; Rathod, S.; Wanikar, I. Critical issues in periodontal regeneration. SRM J. Res. Dent. Sci. 2018, 9, 119–124. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, L.; Li, X.; Liu, S.; Du, J.; Xu, J.; Hu, J.; Liu, Y. Challenges and Tissue Engineering Strategies of Periodontal-Guided Tissue Regeneration. Tissue Eng. Part C Methods 2022, 28, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Larsson, L.; Decker, A.; Nibali, L.; Pilipchuk, S.; Berglundh, T.; Giannobile, W. Regenerative Medicine for Periodontal and Peri-implant Diseases. J. Dent. Res. 2015, 95, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Rios, H.F.; Cochran, D.L. Emerging Regenerative Approaches for Periodontal Reconstruction: A Systematic Review from the AAP Regeneration Workshop. J. Periodontol. 2015, 86, S134–S152. [Google Scholar] [CrossRef] [PubMed]
- Sculean, A.; Chapple, I.L.C.; Giannobile, W.V. Wound models for periodontal and bone regeneration: The role of biologic research. Periodontology 2000 2015, 68, 7–20. [Google Scholar] [CrossRef]
- Saraiva, S.M.; Jacinto, T.A.; Gonçalves, A.C.; Gaspar, D.; Silva, L.R. Overview of Caffeine Effects on Human Health and Emerging Delivery Strategies. Pharmaceuticals 2023, 16, 1067. [Google Scholar] [CrossRef]
- Chu, Y.-F.; Chen, Y.; Brown, P.H.; Lyle, B.J.; Black, R.M.; Cheng, I.H.; Ou, B.; Prior, R.L. Bioactivities of crude caffeine: Antioxidant activity, cyclooxygenase-2 inhibition, and enhanced glucose uptake. Food Chem. 2012, 131, 564–568. [Google Scholar] [CrossRef]
- Hwang, J.-H.; Kim, K.-J.; Ryu, S.-J.; Lee, B.-Y. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish. Chem. Interact. 2016, 248, 1–7. [Google Scholar] [CrossRef]
- Daglia, M.; Papetti, A.; Grisoli, P.; Aceti, C.; Spini, V.; Dacarro, C.; Gazzani, G. Isolation, Identification, and Quantification of Roasted Coffee Antibacterial Compounds. J. Agric. Food Chem. 2007, 55, 10208–10213. [Google Scholar] [CrossRef]
- Almeida, A.; Naghetini, C.; Santos, V.; Antonio, A.; Farah, A.; Glória, M. Influence of natural coffee compounds, coffee extracts and increased levels of caffeine on the inhibition of Streptococcus mutans. Food Res. Int. 2012, 49, 459–461. [Google Scholar] [CrossRef]
- Mohammed, M.J.; Al-Bayati, F.A. Isolation, identification and purification of caffeine from Coffea arabica L. and Camellia sinensis L.: A combination antibacterial study. Int. J. Green Pharm. 2009, 3, 52–57. [Google Scholar] [CrossRef]
- Hua, R.; Zou, J.; Ma, Y.; Wang, X.; Chen, Y.; Li, Y.; Du, J. Psoralidin prevents caffeine-induced damage and abnormal differentiation of bone marrow mesenchymal stem cells via the classical estrogen receptor pathway. Ann. Transl. Med. 2021, 9, 1245. [Google Scholar] [CrossRef]
- Kong, L.; Xu, M.; Qiu, Y.; Liao, M.; Zhang, Q.; Yang, L.; Zheng, G. Chlorogenic acid and caffeine combination attenuates adipogenesis by regulating fat metabolism and inhibiting adipocyte differentiation in 3T3-L1 cells. J. Food Biochem. 2021, 45, e13795. [Google Scholar] [CrossRef]
- Su, S.-H.; Shyu, H.-W.; Yeh, Y.-T.; Chen, K.-M.; Yeh, H.; Su, S.-J. Caffeine inhibits adipogenic differentiation of primary adipose-derived stem cells and bone marrow stromal cells. Toxicol. Vitr. 2013, 27, 1830–1837. [Google Scholar] [CrossRef]
- Reis, A.M.S.; Raad, R.V.; Ocarino, N.d.M.; Serakides, R. Efeitos in vitro da cafeína na cartilagem de crescimento de ratos. Acta Ortop. Bras. 2013, 21, 307–309. [Google Scholar] [CrossRef]
- Poliwoda, S.; Noor, N.; Downs, E.; Schaaf, A.; Cantwell, A.; Ganti, L.; Kaye, A.D.; Mosel, L.I.; Carroll, C.B.; Viswanath, O.; et al. Stem cells: A comprehensive review of origins and emerging clinical roles in medical practice. Orthop. Rev. 2022, 14, 37498. [Google Scholar] [CrossRef]
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef] [PubMed]
- Khorsand, A.; Eslaminejad, M.B.; Arabsolghar, M.; Paknejad, M.; Ghaedi, B.; Rokn, A.R.; Moslemi, N.; Nazarian, H.; Jahangir, S. Autologous Dental Pulp Stem Cells in Regeneration of Defect Created in Canine Periodontal Tissue. J. Oral Implant. 2013, 39, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Nakamura, S.; Ito, K.; Sugito, T.; Yoshimi, R.; Nagasaka, T.; Ueda, M. A Feasibility of Useful Cell-Based Therapy by Bone Regeneration with Deciduous Tooth Stem Cells, Dental Pulp Stem Cells, or Bone-Marrow-Derived Mesenchymal Stem Cells for Clinical Study Using Tissue Engineering Technology. Tissue Eng. Part A 2010, 16, 1891–1900. [Google Scholar] [CrossRef] [PubMed]
- Gl, S.P.; Ramalingam, S.; Udhayakumar, Y. Human dental pulp stem cells and its applications in regenerative medicine—A literature review. J. Glob. Oral Heal. 2019, 2, 59–67. [Google Scholar] [CrossRef]
- Tatullo, M.; Marrelli, M.; Shakesheff, K.M.; White, L.J. Dental pulp stem cells: Function, isolation and applications in regenerative medicine. J. Tissue Eng. Regen. Med. 2015, 9, 1205–1216. [Google Scholar] [CrossRef]
- Garcia-Contreras, R.; Chavez-Granados, P.A.; Jurado, C.A.; Aranda-Herrera, B.; Afrashtehfar, K.I.; Nurrohman, H. Natural Bioactive Epigallocatechin-Gallate Promote Bond Strength and Differentiation of Odontoblast-like Cells. Biomimetics 2023, 8, 75. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-5: 2009; Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Sedghi, L.M.; Bacino, M.; Kapila, Y.L. Periodontal Disease: The Good, The Bad, and The Unknown. Front. Cell. Infect. Microbiol. 2021, 11, 766944. [Google Scholar] [CrossRef] [PubMed]
- Dubey, P.S.; Mittal, N. A systematic review on periodontal disease. J. Res. Med. Dent. Sci. 2020, 8, 153–162. [Google Scholar]
- Nocini, R.; Lippi, G.; Mattiuzzi, C. Periodontal disease: The portrait of an epidemic. J. Public Heal. Emerg. 2020, 4, 10. [Google Scholar] [CrossRef]
- Diakoumopoulou, D.; Magana, M.; Karoussis, I.K.; Nikolaou, C.; Chatzipanagiotou, S.; Ioannidis, A. The ever-changing landscape in modern dentistry therapeutics–Enhancing the emptying quiver of the periodontist. Heliyon 2021, 7, e08342. [Google Scholar] [CrossRef]
- Schmidlin, P.R. Periodontal Therapy of the Future—Many Challenges and Opportunities. Front. Dent. Med. 2020, 1, 1–3. [Google Scholar] [CrossRef]
- Portillo, O.R.; Arévalo, A.C. Caffeine. A critical review of contemporary scientific literature. Bionatura 2022, 7, 1–15. [Google Scholar] [CrossRef]
- Goto, M.; Yatani, A.; Ehara, T. Interaction between Caffeine and Adenosine on the Membrane Current and Tension Component in the Bullfrog Atrial Muscle. Jpn. J. Physiol. 1979, 29, 393–409. [Google Scholar] [CrossRef]
- Rosales-Aguilar, M.; Ortiz, E.C.; Trujillo, C.G.D.; Sánchez-Díaz, M.d.L.R. Consumo de bebidas con cafeína y sus efectos en estudiantes de Medicina de la Universidad Autónoma de Baja California, Tijuana/Consumption of Beverages with Caffeine and its Effects in Medical Students of the Autonomous University of Baja California, Tijuana. RICS Rev. Iberoam. Cienc. Salud. 2018, 7, 33–51. [Google Scholar]
- Orimoto, A.; Kyakumoto, S.; Eitsuka, T.; Nakagawa, K.; Kiyono, T.; Fukuda, T.; Papaccio, G. Efficient immortalization of human dental pulp stem cells with expression of cell cycle regulators with the intact chromosomal condition. PLoS ONE 2020, 15, e0229996. [Google Scholar] [CrossRef]
- Hussein, A.M.; Darwish, Z.E.; Raslan, H.S.; Attia, M.A.; Abdel-Hamid, H.M. Dental STEM cells (Concepts and Applications). Alex. Dent. J. 2020, 46, 66–71. [Google Scholar] [CrossRef]
- Habib, N.M.; Elgendy, A.A.E.; Yehia, T. Characterization of Human Dental Pulp Stem Cells. Ain Shams Dent. J. 2021, 24, 11–16. [Google Scholar] [CrossRef]
- Machado, K.L.; Marinello, P.C.; Silva, T.N.X.; Silva, C.F.N.; Luiz, R.C.; Cecchini, R.; Cecchini, A.L. Oxidative Stress in Caffeine Action on the Proliferation and Death of Human Breast Cancer Cells MCF-7 and MDA-MB-231. Nutr. Cancer 2020, 73, 1378–1388. [Google Scholar] [CrossRef] [PubMed]
- Kazaks, A.; Collier, M.; Conley, M. Cytotoxicity of Caffeine on MCF-7 Cells Measured by XTT Cell Proliferation Assay (P06-038-19). Curr. Dev. Nutr. 2019, 3, 1. [Google Scholar] [CrossRef]
- Tiwari, K.K.; Chu, C.; Couroucli, X.; Moorthy, B.; Lingappan, K. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro. Biochem. Biophys. Res. Commun. 2014, 450, 1345–1350. [Google Scholar] [CrossRef]
- Hashimoto, T.; He, Z.; Ma, W.-Y.; Schmid, P.C.; Bode, A.M.; Yang, C.S.; Dong, Z. Caffeine Inhibits Cell Proliferation by G0/G1 Phase Arrest in JB6 Cells. Cancer Res. 2004, 64, 3344–3349. [Google Scholar] [CrossRef]
- Gaul, J.; Donegan, K. Caffeine and its effect on bacteria growth. J. Biol. Sci. 2015, 1, 4–8. [Google Scholar]
- Garcia-Urkia, N.; Luzuriaga, J.; Uribe-Etxebarria, V.; Irastorza, I.; Fernandez-San-Argimiro, F.J.; Olalde, B.; Briz, N.; Unda, F.; Ibarretxe, G.; Madarieta, I.; et al. Enhanced Adipogenic Differentiation of Human Dental Pulp Stem Cells in Enzymatically Decellularized Adipose Tissue Solid Foams. Biology 2022, 11, 1–19. [Google Scholar] [CrossRef]
- Su, S.-J.; Chang, K.-L.; Su, S.-H.; Yeh, Y.-T.; Shyu, H.-W.; Chen, K.-M. Caffeine regulates osteogenic differentiation and mineralization of primary adipose-derived stem cells and a bone marrow stromal cell line. Int. J. Food Sci. Nutr. 2013, 64, 429–436. [Google Scholar] [CrossRef]
- Arias, Z.; Nizami, M.Z.I.; Chen, X.; Chai, X.; Xu, B.; Kuang, C.; Omori, K.; Takashiba, S. Recent Advances in Apical Periodontitis Treatment: A Narrative Review. Bioengineering 2023, 10, 488. [Google Scholar] [CrossRef] [PubMed]
- Alshaibani, D.A.; Kamadjaja, M.J.; Sitalaksmi, R.M.; Ridwan, R.D.; Al-Gabri, R.S.; Zafar, M.S.; Ramalingam, S.; Alqutaibi, A.Y. Regenerative potential of human dental pulp stem cells in scaffold-based alveolar and jaw bone reconstruction: A systematic review. BMC Oral Heal. 2025, 25, 1–18. [Google Scholar] [CrossRef]
- Lyu, P.; Song, Y.; Bi, R.; Li, Z.; Wei, Y.; Huang, Q.; Cui, C.; Song, D.; Zhou, X.; Fan, Y. Protective Actions in Apical Periodontitis: The Regenerative Bioactivities Led by Mesenchymal Stem Cells. Biomolecules 2022, 12, 1737. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.S.; Radhakrishnan, M.; Ravindrran, M.B.; Alagarsamy, V.; Palanisamy, G.S. Functionalized Nanoparticles: A Paradigm Shift in Regenerative Endodontic Procedures. Cureus 2022, 14, e32678. [Google Scholar] [CrossRef]
- Talaat, S.; Hashem, A.A.; Abu-Seida, A.; Wahed, A.A.; Aziz, T.M.A. Regenerative potential of mesoporous silica nanoparticles scaffold on dental pulp and root maturation in immature dog’s teeth: A histologic and radiographic study. BMC Oral Heal. 2024, 24, 1–15. [Google Scholar] [CrossRef]
- Iohara, K.; Tominaga, M.; Watanabe, H.; Nakashima, M. Periapical bacterial disinfection is critical for dental pulp regenerative cell therapy in apical periodontitis in dogs. Stem Cell Res. Ther. 2024, 15, 1–14. [Google Scholar] [CrossRef] [PubMed]
Lineage | Adipogenic | Chondrogenic | Osteogenic |
---|---|---|---|
Composition of the differentiation medium | D-MEM, dexamethasone (0.1 mM), β-glycerophosphate (10 mM), ascorbic acid (50 μg/mL), insulin and L-Glutamine | D-MEM, dexamethasone (0.1 mM), β-glycerophosphate (10 mM), ascorbic acid (50 μg/mL), BMP-4 | D-MEM, dexamethasone (0.1 mM), β-glycerophosphate (10 mM), ascorbic acid (50 μg/mL) |
Differentiation time | 4 weeks | 2 weeks | 4 weeks |
Staining | Oil Red (0.3) + isopropanol 60% v/v (100 mL) | Safranin (0.1%) | Alizarin Red S |
Staining time | 1 h | 5 min | 10 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lugo-Sanchez, A.A.; Chavez-Granados, P.A.; Jurado, C.A.; Allahem, Z.; Ramirez-Lopez, J.E.; Lopez-Ayuso, C.A.; Aranda-Herrera, B.; Alshabib, A.; Garcia-Contreras, R. Effects of Caffeine on Dental Mesenchymal Stem Cells: Implications for Regenerative Applications. J. Funct. Biomater. 2025, 16, 314. https://doi.org/10.3390/jfb16090314
Lugo-Sanchez AA, Chavez-Granados PA, Jurado CA, Allahem Z, Ramirez-Lopez JE, Lopez-Ayuso CA, Aranda-Herrera B, Alshabib A, Garcia-Contreras R. Effects of Caffeine on Dental Mesenchymal Stem Cells: Implications for Regenerative Applications. Journal of Functional Biomaterials. 2025; 16(9):314. https://doi.org/10.3390/jfb16090314
Chicago/Turabian StyleLugo-Sanchez, Axel Alejandro, Patricia Alejandra Chavez-Granados, Carlos A. Jurado, Ziyad Allahem, Jorge Emmanuel Ramirez-Lopez, Christian Andrea Lopez-Ayuso, Benjamin Aranda-Herrera, Abdulrahman Alshabib, and Rene Garcia-Contreras. 2025. "Effects of Caffeine on Dental Mesenchymal Stem Cells: Implications for Regenerative Applications" Journal of Functional Biomaterials 16, no. 9: 314. https://doi.org/10.3390/jfb16090314
APA StyleLugo-Sanchez, A. A., Chavez-Granados, P. A., Jurado, C. A., Allahem, Z., Ramirez-Lopez, J. E., Lopez-Ayuso, C. A., Aranda-Herrera, B., Alshabib, A., & Garcia-Contreras, R. (2025). Effects of Caffeine on Dental Mesenchymal Stem Cells: Implications for Regenerative Applications. Journal of Functional Biomaterials, 16(9), 314. https://doi.org/10.3390/jfb16090314