Three-Dimensional Objective Evaluation of the Changes in the Alveolar Ridge Before and After Horizontal Bone Augmentation Along with Implant Placement Using Intraoral Digital Scanning: A Prospective Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Selection Criteria
- Patients who underwent implant placement and horizontal bone augmentation for a missing maxillary anterior tooth at least 2 months after tooth extraction;
- Patients aged ≥20 and ≤65 years at the time of providing consent;
- Patients who themselves provided their written consent to participate in this study.
- Smokers;
- Patients with a history of bone metabolism disorders;
- Patients with a history of receiving antiresorptive drugs;
- Patients with a history of rheumatoid arthritis;
- Patients with a systemic disease, such as diabetes mellitus and heart disease;
- Patients who previously had an implant placed adjacent to the target site;
- Patients with malocclusions, such as tooth crowding or transposition;
- Patients who underwent ARP at the target site;
- Patients who wore removable dentures covering the target site.
2.2. Surgical Technique
2.3. Acquisition of Optical Impression and Intraoral Photographs
2.4. Digital Measurement of Changes in the Alveolar Ridge in the Region of Interest
2.4.1. Establishing a Region of Interest
2.4.2. Measurement of the Volumetric Changes
2.4.3. Measurement of the Cross-Sectional Dimensional Changes
2.5. Statistical Analysis
3. Results
3.1. Volumetric Changes (Table 2)
3.2. Dimensional Changes in Cross-Section
3.2.1. Horizontal Dimension (Table 3, Figure 8, Figure 9 and Figure 10)
Horizontal dimensional changes in cross-section, mean (mm) ± SD | ||||
T1 | T2 | T3 | ||
H1 mm | Means ± SD | 1.30 ± 0.61 | 0.39 ± 0.86 | 0.39 ± 0.73 |
p value | 0.0003 | 0.0002 | 0.5579 | |
95% CI | [0.85 1.67] | [−0.19 1.67] | [−0.15 0.83] | |
H3 mm | Means ± SD | 1.76 ± 0.80 | 0.94 ± 0.50 | 0.72 ± 0.60 |
p value | 0.0006 | 0.0001 | 0.0305 | |
95% CI | [1.18 2.26] | [0.60 1.29] | [0.33 1.15] | |
H5 mm | Means ± SD | 2.56 ± 1.32 | 1.68 ± 0.95 | 1.25 ± 1.13 |
p value | 0.017 | 0.0022 | 0.017 | |
95% CI | [1.60 3.40] | [1.09 2.38] | [0.53 2.07] | |
Vertical dimensional changes in cross-section, mean (mm) ± SD | ||||
T1 | T2 | T3 | ||
Vertical dimensional changes | Means ± SD | 0.65 ± 0.58 | −0.21 ± 0.56 | −0.18 ± 0.57 |
p value | 0.0056 | 0.0106 | 0.3063 | |
95% CI | [0.22 0.98] | [−0.59 0.18] | [−0.52 0.25] |
3.2.2. Vertical Dimension (Table 3, Figure 11)
4. Discussion
5. Conclusions
- The alveolar ridge width increased proportionally with the distance from the crest toward the root apex after horizontal bone augmentation.
- The vertical dimension of the alveolar ridge crest showed a marked decrease following augmentation.
- Intraoral digital scanning proved useful for the temporal and objective evaluation of alveolar ridge changes.
- To enhance volumetric stability at the crest and prevent graft displacement, membrane fixation with titanium pins or tenting screw techniques may be considered.
- Well-designed controlled clinical trials are required to validate these findings and establish definitive clinical recommendations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
STL | Standard Tessellation Language |
CBCT | Cone-beam computed tomography |
DICOM | Digital Imaging and Communications in Medicine |
IOS | Intraoral scanner |
3D | Three-dimensional |
CAD/CAM software | Computer-Aided Design/Computer-Aided Manufacturing software |
GBR | Guided bone regeneration |
References
- Buser, D.; Janner, S.F.M.; Wittneben, J.; Brägger, U.; Ramseier, C.A.; Salvi, G.E. 10-Year Survival and Success Rates of 511 Titanium Implants with a Sandblasted and Acid-Etched Surface: A Retrospective Study in 303 Partially Edentulous Patients. Clin. Implant. Dent. Relat. Res. 2012, 14, 839–851. [Google Scholar] [CrossRef]
- Hämmerle, C.H.F.; Araújo, M.G.; Simion, M. On Behalf of the Osteology Consensus Group 2011. Evidence-based Knowledge on the Biology and Treatment of Extraction Sockets. Clin. Oral Implant. Res. 2012, 23, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.L.; Wong, T.L.T.; Wong, M.C.M.; Lang, N.P. A Systematic Review of Post-extractional Alveolar Hard and Soft Tissue Dimensional Changes in Humans. Clin. Oral Implant. Res. 2012, 23, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Barootchi, S.; Tavelli, L.; Majzoub, J.; Stefanini, M.; Wang, H.; Avila-Ortiz, G. Alveolar Ridge Preservation: Complications and cost-effectiveness. Periodontol. 2000 2023, 92, 235–262. [Google Scholar] [CrossRef]
- Hamilton, A.; Gonzaga, L.; Amorim, K.; Wittneben, J.; Martig, L.; Morton, D.; Martin, W.; Gallucci, G.O.; Wismeijer, D. Selection Criteria for Immediate Implant Placement and Immediate Loading for Single Tooth Replacement in the Maxillary Esthetic Zone: A Systematic Review and Meta-analysis. Clin. Oral Implant. Res. 2023, 34, 304–348. [Google Scholar] [CrossRef]
- Valles, C.; Vilarrasa, J.; Barallat, L.; Pascual, A.; Nart, J. Efficacy of Soft Tissue Augmentation Procedures on Tissue Thickening around Dental Implants: A Systematic Review and Meta-analysis. Clin. Oral Implant. Res. 2022, 33, 72–99. [Google Scholar] [CrossRef]
- Calciolari, E.; Corbella, S.; Gkranias, N.; Viganó, M.; Sculean, A.; Donos, N. Efficacy of Biomaterials for Lateral Bone Augmentation Performed with Guided Bone Regeneration. A Network Meta-analysis. Periodontol. 2000 2023, 93, 77–106. [Google Scholar] [CrossRef]
- Kernen, F.; Kramer, J.; Wanner, L.; Wismeijer, D.; Nelson, K.; Flügge, T. A Review of Virtual Planning Software for Guided Implant Surgery—Data Import and Visualization, Drill Guide Design and Manufacturing. BMC Oral Health 2020, 20, 251. [Google Scholar] [CrossRef]
- Chrabieh, E.; Hanna, C.; Mrad, S.; Rameh, S.; Bassil, J.; Zaarour, J. Accuracy of Computer-Guided Implant Surgery in Partially Edentulous Patients: A Prospective Observational Study. Int. J. Implant. Dent. 2024, 10, 36. [Google Scholar] [CrossRef]
- Ku, J.-K.; Lee, J.; Lee, H.-J.; Yun, P.-Y.; Kim, Y.-K. Accuracy of Dental Implant Placement with Computer-Guided Surgery: A Retrospective Cohort Study. BMC Oral Health. 2022, 22, 8. [Google Scholar] [CrossRef]
- Vercruyssen, M.; Fortin, T.; Widmann, G.; Jacobs, R.; Quirynen, M. Different Techniques of Static/Dynamic Guided Implant Surgery: Modalities and Indications. Periodontol. 2000 2014, 66, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Putra, R.H.; Yoda, N.; Astuti, E.R.; Sasaki, K. The Accuracy of Implant Placement with Computer-Guided Surgery in Partially Edentulous Patients and Possible Influencing Factors: A Systematic Review and Meta-Analysis. J. Prosthodont. Res. 2022, 66, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, V.; Chenchev, I.; Zlatev, S.; Iordanov, G.; Mijiritsky, E. Comparative Study between a Novel In Vivo Method and CBCT for Assessment of Ridge Alterations after Socket Preservation—Pilot Study. Int. J. Environ. Res. Public Health 2019, 16, 127. [Google Scholar] [CrossRef]
- Park, J.; Chung, H.; Strauss, F.; Lee, J. Dimensional Changes after Horizontal and Vertical Guided Bone Regeneration without Membrane Fixation Using the Retentive Flap Technique: A 1-year Retrospective Study. Clin. Implant. Dent. Relat. Res. 2023, 25, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Avila-Ortiz, G.; Gubler, M.; Romero-Bustillos, M.; Nicholas, C.L.; Zimmerman, M.B.; Barwacz, C.A. Efficacy of Alveolar Ridge Preservation: A Randomized Controlled Trial. J. Dent. Res. 2020, 99, 402–409. [Google Scholar] [CrossRef]
- Fienitz, T.; Moses, O.; Klemm, C.; Happe, A.; Ferrari, D.; Kreppel, M.; Ormianer, Z.; Gal, M.; Rothamel, D. Histological and Radiological Evaluation of Sintered and Non-Sintered Deproteinized Bovine Bone Substitute Materials in Sinus Augmentation Procedures. A Prospective, Randomized-Controlled, Clinical Multicenter Study. Clin. Oral Investig. 2017, 21, 787–794. [Google Scholar] [CrossRef]
- Aludden, H.; Starch-Jensen, T.; Dahlin, C.; Sdik, J.; Cederlund, A.; Mordenfeld, A. Histological and Radiological Outcome after Horizontal Guided Bone Regeneration with Bovine Bone Mineral Alone or in Combination with Bone in Edentulous Atrophic Maxilla: A Randomized Controlled Trial. Clin. Oral Implant. Res. 2024, 35, 396–406. [Google Scholar] [CrossRef]
- Buser, D.; Chappuis, V.; Bornstein, M.M.; Wittneben, J.; Frei, M.; Belser, U.C. Long-Term Stability of Contour Augmentation With Early Implant Placement Following Single Tooth Extraction in the Esthetic Zone: A Prospective, Cross-Sectional Study in 41 Patients With a 5- to 9-Year Follow-Up. J. Periodontol. 2013, 84, 1517–1527. [Google Scholar] [CrossRef]
- Hashemipoor, M.; Asghari, N.; Mohammadi, M.; Kalantari, M.; Arabsolghar, M.; Ranjbar, H. Radiological and Histological Evaluation of Horizontal Ridge Augmentation Using Corticocancellous Freeze-Dried Bone Allograft with and without Autogenous Bone: A Randomized Controlled Clinical Trial. Clin. Implant. Dent. Relat. Res. 2020, 22, 582–592. [Google Scholar] [CrossRef]
- Kim, H.-W.; Lim, K.-O.; Lee, W.-P.; Seo, Y.-S.; Shin, H.-I.; Choi, S.-H.; Kim, B.-O.; Yu, S.-J. Sinus Floor Augmentation Using Mixture of Mineralized Cortical Bone and Cancellous Bone Allografts: Radiographic and Histomorphometric Evaluation. J. Dent. Sci. 2020, 15, 257–264. [Google Scholar] [CrossRef]
- Al Qabbani, A.; Al Kawas, S.; Razak, N.H.A.; Al Bayatti, S.W.; Enezei, H.H.; Samsudin, A.R.; Sheikh Ab Hamid, S. Three-Dimensional Radiological Assessment of Alveolar Bone Volume Preservation Using Bovine Bone Xenograft. J. Craniofacial Surg. 2018, 29, e203–e209. [Google Scholar] [CrossRef]
- Chappuis, V.; Engel, O.; Reyes, M.; Shahim, K.; Nolte, L.-P.; Buser, D. Ridge Alterations Post-Extraction in the Esthetic Zone: A 3D Analysis with CBCT. J. Dent. Res. 2013, 92 (Suppl. S12), 195S–201S. [Google Scholar] [CrossRef] [PubMed]
- Barone, A.; Toti, P.; Quaranta, A.; Alfonsi, F.; Cucchi, A.; Calvo-Guirado, J.L.; Negri, B.; Di Felice, R.; Covani, U. Volumetric Analysis of Remodelling Pattern after Ridge Preservation Comparing Use of Two Types of Xenografts. A Multicentre Randomized Clinical Trial. Clin. Oral Implant. Res. 2016, 27, e105–e115. [Google Scholar] [CrossRef] [PubMed]
- Windisch, S.I.; Jung, R.E.; Sailer, I.; Studer, S.P.; Ender, A.; Hämmerle, C.H.F. A New Optical Method to Evaluate Three-dimensional Volume Changes of Alveolar Contours: A Methodological in Vitro Study. Clin. Oral Implant. Res. 2007, 18, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Ender, A.; Attin, T.; Mehl, A. In Vivo Precision of Conventional and Digital Methods of Obtaining Complete-Arch Dental Impressions. J. Prosthet. Dent. 2016, 115, 313–320. [Google Scholar] [CrossRef]
- Ender, A.; Mehl, A. Accuracy of Complete-Arch Dental Impressions: A New Method of Measuring Trueness and Precision. J. Prosthet. Dent. 2013, 109, 121–128. [Google Scholar] [CrossRef]
- Ender, A.; Zimmermann, M.; Mehl, A. Accuracy of Complete- and Partial-Arch Impressions of Actual Intraoral Scanning Systems in Vitro. Int. J. Comput. Dent. 2019, 22, 11–19. [Google Scholar] [CrossRef]
- Abad-Coronel, C.; Atria, P.J.; Romero Muñoz, C.; Conejo, J.; Mena Córdova, N.; Pendola, M.; Blatz, M. Analysis of the Mesh Resolution of an .STL Exported from an Intraoral Scanner File. J. Esthet. Restor. Dent. 2022, 34, 816–825. [Google Scholar] [CrossRef]
- Strauss, F.J.; Gil, A.; Smirani, R.; Rodriguez, A.; Jung, R.; Thoma, D. The Use of Digital Technologies in Peri-implant Soft Tissue Augmentation—A Narrative Review on Planning, Measurements, Monitoring and Aesthetics. Clin. Oral Implant. Res. 2024, 35, 922–938. [Google Scholar] [CrossRef]
- Bienz, S.P.; Sailer, I.; Sanz-Martín, I.; Jung, R.E.; Hämmerle, C.H.F.; Thoma, D.S. Volumetric Changes at Pontic Sites with or without Soft Tissue Grafting: A Controlled Clinical Study with a 10-year Follow-up. J. Clin. Periodontol. 2017, 44, 178–184. [Google Scholar] [CrossRef]
- Cosyn, J.; Wessels, R.; Garcia Cabeza, R.; Ackerman, J.; Eeckhout, C.; Christiaens, V. Soft Tissue Metric Parameters, Methods and Aesthetic Indices in Implant Dentistry: A Critical Review. Clin. Oral Implant. Res. 2021, 32, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Gamal, N.; Shemais, N.; Al-Nawawy, M.; Ghallab, N.A. Post-Extraction Volumetric Analysis of Alveolar Ridge Contour Using Subepithelial Connective Tissue Graft in Esthetic Zone: A Randomized Controlled Clinical Trial. Clin. Oral Investig. 2023, 27, 6503–6512. [Google Scholar] [CrossRef] [PubMed]
- Rojo, E.; Stroppa, G.; Sanz-Martin, I.; Gonzalez-Martín, O.; Alemany, A.S.; Nart, J. Soft Tissue Volume Gain around Dental Implants Using Autogenous Subepithelial Connective Tissue Grafts Harvested from the Lateral Palate or Tuberosity Area. A Randomized Controlled Clinical Study. J. Clin. Periodontol. 2018, 45, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Rojo, E.; Stroppa, G.; Sanz-Martin, I.; Gonzalez-Martín, O.; Nart, J. Soft Tissue Stability around Dental Implants after Soft Tissue Grafting from the Lateral Palate or the Tuberosity Area—A Randomized Controlled Clinical Study. J. Clin. Periodontol. 2020, 47, 892–899. [Google Scholar] [CrossRef]
- Xue, F.; Zhang, R.; Cai, Y.; Zhang, Y.; Kang, N.; Luan, Q. Three-dimensional Quantitative Measurement of Buccal Augmented Tissue with Modified Coronally Advanced Tunnel Technique and De-epithelialized Gingival Graft: A Prospective Case Series. BMC Oral Health 2021, 21, 157. [Google Scholar] [CrossRef]
- Fons-Badal, C.; Alonso Pérez-Barquero, J.; Martínez- Martínez, N.; Faus-López, J.; Fons-Font, A.; Agustín-Panadero, R. A Novel, Fully Digital Approach to Quantifying Volume Gain after Soft Tissue Graft Surgery. A Pilot Study. J. Clin. Periodontol. 2020, 47, 614–620. [Google Scholar] [CrossRef]
- Gil, A.; Bakhshalian, N.; Min, S.; Nart, J.; Zadeh, H. Three-Dimensional Volumetric Analysis of Multiple Gingival Recession Defects Treated by the Vestibular Incision Subperiosteal Tunnel Access (VISTA) Procedure. Int. J. Periodontics Restor. Dent. 2019, 39, 687–695. [Google Scholar] [CrossRef]
- Parvini, P.; Müller, K.M.; Cafferata, E.A.; Schwarz, F.; Obreja, K. Immediate versus Delayed Implant Placement in the Esthetic Zone: A Prospective 3D Volumetric Assessment of Peri-Implant Tissue Stability. Int. J. Implant. Dent. 2022, 8, 58. [Google Scholar] [CrossRef]
- Benic, G.I.; Ge, Y.; Gallucci, G.O.; Jung, R.E.; Schneider, D.; Hämmerle, C.H.F. Guided Bone Regeneration and Abutment Connection Augment the Buccal Soft Tissue Contour: 3-year Results of a Prospective Comparative Clinical Study. Clin. Oral Implant. Res. 2017, 28, 219–225. [Google Scholar] [CrossRef]
- Nulty, A.B. A Comparison of Full Arch Trueness and Precision of Nine Intra-Oral Digital Scanners and Four Lab Digital Scanners. Dent. J. 2021, 9, 75. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Wang, Q.; Li, J.; Wang, F.; Li, Z.; Cui, J.; Zhang, J. The Impact of Collagen Membrane Fixation Protocols on Volume Stability in Horizontal Ridge Augmentation in the Aesthetic Area: A Retrospective Study. Clin. Implant. Dent. Relat. Res. 2024, 26, 1354–1365. [Google Scholar] [CrossRef]
- Arnal, H.M.; Angioni, C.D.; Gaultier, F.; Urbinelli, R.; Urban, I.A. Horizontal Guided Bone Regeneration on Knife-edge Ridges: A Retrospective Case–Control Pilot Study Comparing Two Surgical Techniques. Clin. Implant. Dent. Relat. Res. 2022, 24, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Mertens, C.; Braun, S.; Krisam, J.; Hoffmann, J. The Influence of Wound Closure on Graft Stability: An in Vitro Comparison of Different Bone Grafting Techniques for the Treatment of One-wall Horizontal Bone Defects. Clin. Implant. Dent. Relat. Res. 2019, 21, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Munakata, M.; Kataoka, Y.; Yamaguchi, K.; Sanda, M. Risk Factors for Early Implant Failure and Selection of Bone Grafting Materials for Various Bone Augmentation Procedures: A Narrative Review. Bioengineering 2024, 11, 192. [Google Scholar] [CrossRef]
- Troeltzsch, M.; Troeltzsch, M.; Kauffmann, P.; Gruber, R.; Brockmeyer, P.; Moser, N.; Rau, A.; Schliephake, H. Clinical Efficacy of Grafting Materials in Alveolar Ridge Augmentation: A Systematic Review. J. Cranio-Maxillofac. Surg. 2016, 44, 1618–1629. [Google Scholar] [CrossRef]
- Bernardi, S.; Marchetti, E.; Torge, D.; Simeone, D.; Macchiarelli, G.; Bianchi, S. Ultrastructural Assessment of Human Periodontal Ligament Fibroblast Interaction with Bovine Pericardium Membranes: An in Vitro Study. Histol. Histopathol. 2024, 40, 1185–1194. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Munakata, M.; Sato, D.; Kataoka, Y.; Kawamata, R. The Effectiveness and Practicality of a Novel Barrier Membrane for the Open Window in Maxillary Sinus Augmentation with a Lateral Approach, with Risk Indicators for Bone Graft Displacement and Bone Height Decrease: A Prospective Study in Humans. Bioengineering 2023, 10, 1110. [Google Scholar] [CrossRef]
- Park, J.-Y.; Lee, J.-Y.; Park, S.; Cha, J.-K.; Lee, J.-S.; Jung, U.-W. Synchrotron Analysis of Damaged Extraction Sockets Augmented Using a Synthetic Bone Block: A Pilot Study. Int. J. Periodontics Restor. Dent. 2024, 44, 1–10. [Google Scholar] [CrossRef]
- Lee, H.; Fehmer, V.; Hicklin, S.; Noh, G.; Hong, S.-J.; Sailer, I. Three-Dimensional Evaluation of Peri-Implant Soft Tissue When Tapered Implants Are Placed: Pilot Study with Implants Placed Immediately or Early Following Tooth Extraction. Int. J. Oral Maxillofac Implant. 2020, 35, 1037–1044. [Google Scholar] [CrossRef]
- Wei, D.; Di, P.; Tian, J.; Zhao, Y.; Lin, Y. Evaluation of Intraoral Digital Impressions for Obtaining Gingival Contour in the Esthetic Zone: Accuracy Outcomes. Clin. Oral Investig. 2020, 24, 1401–1410. [Google Scholar] [CrossRef]
- Mainas, G.; Ruiz Magaz, V.; Valles, C.; Mora, J.; Candiago, J.; Pascual, A.; Nart, J. Keratinized Mucosa Changes around One-stage Implants: A Prospective Case Series. Clin. Implant. Dent. Relat. Res. 2022, 24, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, R.; Galli, M.; Chen, Z.; Mendonça, G.; Meirelles, L.; Wang, H.-L.; Chan, H.-L. Intraoral Scanning Reduces Procedure Time and Improves Patient Comfort in Fixed Prosthodontics and Implant Dentistry: A Systematic Review. Clin. Oral Investig. 2021, 25, 6517–6531. [Google Scholar] [CrossRef] [PubMed]
- Derakhshani, A.-J.; Beuer, F.; Böse, M.W.H.; Herklotz, I.; Unkovskiy, A. 3D Analysis of Soft Tissue Dimensional Changes after Dental Implant Placement with Butt-Joint vs. Conical Connection: A 12-Month Randomized Control Trial. Int. J. Implant. Dent. 2024, 10, 66. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.C.-Y.; Bahammam, S.O.; Kim, D.M.; Chang, W.-J. Novel Early Vertical Ridge Augmentation Technique. J. Dent. Sci. 2025, 20, 20–27. [Google Scholar] [CrossRef]
- Chasioti, E.; Chiang, F.T.; Drew, H.J. Maintaining Space in Localized Ridge Augmentation Using Guided Bone Regeneration with Tenting Screw Technology. Quintessence Int. 2013, 44, 763–771. [Google Scholar] [CrossRef]
- Linkevicius, T.; Puisys, A.; Linkevicius, R.; Alkimavicius, J.; Gineviciute, E.; Linkeviciene, L. The Influence of Submerged Healing Abutment or Subcrestal Implant Placement on Soft Tissue Thickness and Crestal Bone Stability. A 2-year Randomized Clinical Trial. Clin. Implant. Dent. Relat. Res. 2020, 22, 497–506. [Google Scholar] [CrossRef]
- Farias, D.; Caceres, F.; Sanz, A.; Olate, S. Horizontal Bone Augmentation in the Posterior Atrophic Mandible and Dental Implant Stability Using the Tenting Screw Technique. Int. J. Periodontics Restor. Dent. 2021, 41, e147–e155. [Google Scholar] [CrossRef]
- Felice, P.; Pistilli, R.; Pellegrino, G.; Bonifazi, L.; Tayeb, S.; Simion, M.; Barausse, C. A randomised controlled trial comparing the effectiveness of guided bone regeneration with polytetrafluoroethylene titanium-reinforced membranes, CAD/CAM semi-occlusive titanium meshes and CAD/CAM occlusive titanium foils in partially atrophic arches. Int. J. Oral Implantol. 2024, 17, 285–296. [Google Scholar]
- Le, B.T.; Borzabadi-Farahani, A. Simultaneous Implant Placement and Bone Grafting with Particulate Mineralized Allograft in Sites with Buccal Wall Defects, a Three-Year Follow-up and Review of Literature. J. Cranio Maxillofac Surg. 2014, 42, 552–559. [Google Scholar] [CrossRef]
- Galarraga-Vinueza, M.E.; Obreja, K.; Magini, R.; Sculean, A.; Sader, R.; Schwarz, F. Volumetric Assessment of Tissue Changes Following Combined Surgical Therapy of Peri-implantitis: A Pilot Study. J. Clin. Periodontol. 2020, 47, 1159–1168. [Google Scholar] [CrossRef]
- Chappuis, V.; Engel, O.; Shahim, K.; Reyes, M.; Katsaros, C.; Buser, D. Soft Tissue Alterations in Esthetic Postextraction Sites: A 3-Dimensional Analysis. J. Dent. Res. 2015, 94 (Suppl. S9), 187S–193S. [Google Scholar] [CrossRef]
- Starch-Jensen, T.; Schou, S.; Terheyden, H.; Bruun, N.H.; Aludden, H. Bone Regeneration after Maxillary Sinus Floor Augmentation with Different Ratios of Autogenous Bone and Deproteinized Bovine Bone Mineral an in Vivo Experimental Study. Clin. Oral Implant. Res. 2023, 34, 1406–1416. [Google Scholar] [CrossRef]
Patient Number | Age | Sex | Tooth | Cause of Tooth Extraction |
---|---|---|---|---|
1 | 48 | Female | 21 | Root fracture |
2 | 27 | Male | 21 | Root fracture |
3 | 63 | Female | 21 | Unknown |
4 | 43 | Female | 21 | Apical periodontitis |
5 | 47 | Male | 11 | Apical periodontitis |
6 | 46 | Female | 12 | Unknown |
7 | 52 | Male | 12 | Root fracture |
8 | 65 | Female | 22 | Root fracture |
9 | 40 | Male | 11 | Root fracture |
10 | 22 | Female | 11 | Root fracture |
11 | 48 | Male | 13 | Apical periodontitis |
12 | 42 | Female | 21 | Root fracture |
13 | 52 | Female | 11 | Root fracture |
T1 | T2 | T3 | |
---|---|---|---|
Mean (mm3) ± SD | 33.53 ± 13.49 | 18.08 ± 10.10 | 11.79 ± 12.99 |
p value | 0.0006 | 0.0002 | 0.053 |
95% CI | [23.53 39.52] | [10.67 24.37] | [6.79 21.23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitamura, N.; Yamaguchi, K.; Himi, K.; Ishii, K.; Munakata, M. Three-Dimensional Objective Evaluation of the Changes in the Alveolar Ridge Before and After Horizontal Bone Augmentation Along with Implant Placement Using Intraoral Digital Scanning: A Prospective Study. J. Funct. Biomater. 2025, 16, 312. https://doi.org/10.3390/jfb16090312
Kitamura N, Yamaguchi K, Himi K, Ishii K, Munakata M. Three-Dimensional Objective Evaluation of the Changes in the Alveolar Ridge Before and After Horizontal Bone Augmentation Along with Implant Placement Using Intraoral Digital Scanning: A Prospective Study. Journal of Functional Biomaterials. 2025; 16(9):312. https://doi.org/10.3390/jfb16090312
Chicago/Turabian StyleKitamura, Naoki, Kikue Yamaguchi, Kaiya Himi, Kota Ishii, and Motohiro Munakata. 2025. "Three-Dimensional Objective Evaluation of the Changes in the Alveolar Ridge Before and After Horizontal Bone Augmentation Along with Implant Placement Using Intraoral Digital Scanning: A Prospective Study" Journal of Functional Biomaterials 16, no. 9: 312. https://doi.org/10.3390/jfb16090312
APA StyleKitamura, N., Yamaguchi, K., Himi, K., Ishii, K., & Munakata, M. (2025). Three-Dimensional Objective Evaluation of the Changes in the Alveolar Ridge Before and After Horizontal Bone Augmentation Along with Implant Placement Using Intraoral Digital Scanning: A Prospective Study. Journal of Functional Biomaterials, 16(9), 312. https://doi.org/10.3390/jfb16090312