Recent Progress in the Application of Electrospinning Technology in the Biomedical Field
Abstract
1. Introduction
2. Overview of Electrospinning Technology
2.1. Principle of Electrospinning Technology
2.2. Classification of Electrospinning Technology
2.3. Factors Affecting Electrospinning
3. Overview of Biomedical Materials
3.1. Introduction to Biomedical Materials
3.2. Requirements of Electrospun Biomedical Materials
4. Application of Electrospinning Technology in the Preparation of Biomaterials
4.1. Tissue Engineering Scaffolds
4.1.1. Bone Tissue Engineering
4.1.2. Cartilage Tissue Engineering
4.1.3. Vascular Tissue Engineering
4.1.4. Skin Tissue Engineering
4.1.5. Dental Implants Scaffolds
4.1.6. Summary
4.2. Drug Delivery Carriers
4.2.1. Anti-Infective Drug Delivery System Using Electrospun Nanofibers
4.2.2. Electrostatically Spun Nanofiber Drug Delivery System with Anti-Inflammatory Properties
4.2.3. Anti-Tumor Class Electrospun Nanofiber Drug Delivery System
4.2.4. Intelligent Response Electrospun Nanofiber DDS
- (i).
- pH-stimulated response drug delivery system
- (ii).
- Temperature-stimulated response drug delivery system
4.2.5. Summary
4.3. Enzyme Immobilization Materials
4.4. Biosensor Materials
4.5. Application in Mask Filter Materials
5. Conclusions and Outlook
5.1. Conclusions
5.2. Challenges and Opportunities
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ECM | extracellular matrix |
DDS | drug delivery systems |
PLCL | copolymer of lactide and caprolactone |
Gel | gelatin |
Col | collagen |
P34HB | poly(3-hydroxybutyrate-co-4-hydroxybutyrate) |
PANI | polyaniline |
PCL | polycaprolactone |
BT | barium titanate |
CTS-g-PTh | chitosan-grafted polythiophene |
PHB-CTS | poly(3-hydroxybutyrate)-chitosan |
GAS | glucosamine sulfate |
HNTs | halloysite nanotubes |
CFX | cefixime trihydrate |
PLA | polylactic acid |
SF | silk fibroin |
PCR | polymerase chain reaction |
PLGA | polylactic acid-glycolic acid copolymer |
PET | polyethylene glycol terephthalate |
MNA | metronidazole |
PVA | polyvinyl alcohol |
CTS | chitosan |
SCLE | syzygium cumini leaf extract |
PChS | polyvinyl alcohol-chitosan |
AS | aspirin |
ST | corn starch |
DOX | doxorubicin |
P(NIPAAm-MAA-VP) | N-isopropylacrylamide-methacrylic acid-vinyl pyrrolidone |
PDANPs | polydopamine nanoparticles |
HA | hyaluronic acid |
PNIPAM | N-isopropylacrylamide |
P(HEA-CA-EMA) | poly(hydroxyethyl acrylate-coumarate acrylate-ethyl methacrylate) |
NIPAM | N-isopropylacrylamide |
PVDF | polyvinylidene fluoride |
MMP | matrix metalloproteinases |
MKI67 | proliferation marker protein Ki-67 |
PEG | polyethylene glycol |
RSV NFS | resveratrol-loaded nanofibrous scaffolds |
References
- Berdimurodov, E.; Dagdag, O.; Berdimuradov, K.; Rbaa, M.; Safin, F.O.; El Ibrahimi, B. Green Electrospun Nanofibers for Biomedicine and Biotechnology. Technologies 2023, 11, 150. [Google Scholar] [CrossRef]
- Liu, S.; Yu, J.; Gan, Y.; Qiao, Y.; Wu, S.; Zhao, W.; Wang, Y.; Zhou, Q. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: New biosynthesis methods, recent advances, and emerging applications. Mil. Med. Res. 2024, 11, 50–79. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; You, C.; Xu, Y.; Liu, T.; Zhang, B.; Li, F. Research Advances in Electrospun Nanofiber Membranes for Non-Invasive Medical Applications. Micromachines 2024, 15, 1226. [Google Scholar] [CrossRef] [PubMed]
- Saba, F.; Hadi, M.N.; Siavash, I. Nanophotocatalysts in biomedicine: Cancer therapeutic, tissue engineering, biosensing, and drug delivery applications. Environ. Res. 2023, 231, 116287. [Google Scholar] [CrossRef] [PubMed]
- Maran, V.A.B.; Jeyachandran, S.; Kimura, M. A Review on the Electrospinning of Polymer Nanofibers and Its Biomedical Applications. J. Compos. Sci. 2024, 8, 32. [Google Scholar] [CrossRef]
- Chronakis, I.S. Micro-/nano-fibers by electrospinning technology: Processing, properties and applications. Micro Manuf. Eng. Technol. 2010, 16, 264–286. [Google Scholar]
- Pant, B.; Park, M.; Park, S.J. Drug Delivery Applications of Core-Sheath Nanofibers Prepared by Coaxial Electrospinning: A Review. Pharmaceutics 2019, 11, 305. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Fan, Z.; Zhang, Z.; Wang, P.; Deng, H.; Tao, J. Electrospinning technology: A promising approach for tendon-bone interface tissue engineering. RSC Adv. 2024, 14, 26077–26090. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.S.; Miao, L.Y.; Sun, W.B. Research Progress of Near-Field Electrospinning Technology in Biological Fields. Oral Biomed. 2017, 8, 193–197. [Google Scholar]
- Bulu, E.; Sakarya, G.; Altndal, T.; Yaman, E.; Ayten, N.Y.; Kamacı, Ö.; Akkaş, M. Effects and Characterization of Electrospinning Technique Working Parameters on Polymeric Membrane Morphology. In Proceedings of the International Agricultural, Biological & Life Science Conference, Edirne, Turkey, 7–9 July 2020; Volume 9, pp. 1–3. [Google Scholar]
- Zhao, X.H.; Liu, G.Y.; Duan, C.M. Application of Electrospun Fibers in Biomedical Field. Text. Sci. Technol. Prog. 2016, 2, 23–30. [Google Scholar]
- Formhals, A. Process and Apparatus for Preparing Artificial Threads. U.S. Patent 1975504, 2 October 1934. [Google Scholar]
- Liu, C.K. Research Progress of Electrospinning Technology. Synth. Fiber Ind. 2012, 35, 53–56. [Google Scholar]
- Zhang, Y.L. Optimization of Rotary Cup Electrospinning Device and Process; Donghua University: Shanghai, China, 2015; pp. 1–66. [Google Scholar]
- Guan, S.; Gai, G.Q. Application of Electrospinning Technology in Various Fields. Technol. Dev. Chem. Ind. 2022, 51, 80–83. [Google Scholar]
- Wang, Y.Z. Brief History and Applications of Electrospinning Technology. Synth. Fiber Ind. 2018, 41, 41–46. [Google Scholar]
- Manea, L.R.; Bertea, A.; Popa, A.; Hristian, L.; Bertea, V.P. Melt Electrospinning–Characteristics, Application Areas and Perspectives. IOP Conf. Ser. Mater. Sci. Eng. 2018, 374, 012063. [Google Scholar] [CrossRef]
- Wang, Y. Study on Electrospinning of Water-Soluble Polymer Solutions; Beijing University of Chemical Technology: Beijing, China, 2015; pp. 1–83. [Google Scholar]
- Bachs-Herrera, A.; Yousefzade, O.; Del Valle Núñez, L.J.; Puiggalí, J.; Alshamsi, A.A. Melt electrospinning of polymers: Blends, nanocomposites, additives and applications. Appl. Sci. 2021, 11, 1808. [Google Scholar] [CrossRef]
- Li, X.Y.; Liu, J.L.; Li, C.J. Application of melt electrospinning technology in tissue Engineering. New Chem. Mater. 2012, 40, 31–33,55. [Google Scholar]
- Huang, T.; Marshall, L.R.; Armantrout, J.E.; Yembrick, S.; Dunn, W.H.; Oconnor, J.M.; Mueller, T.; Avgousti, M.; Wetzel, M.D. Production of Nanofibers by Melt Spinning. U.S. Patent 8,277,711, 2 October 2012. [Google Scholar]
- Dayan, C.B.; Afghah, F.; Okan, B.S.; Yildiz, O.; Menceloglu, Y.Z. Modeling 3D melt electrospinning writing by response surface methodology. Mater. Des. 2018, 148, 87–95. [Google Scholar] [CrossRef]
- Zhou, H.; Green, T.B.; Joo, Y.L. The thermal effects on electrospinning of polylactic acid melts. Polymer 2006, 47, 7497–7505. [Google Scholar] [CrossRef]
- Dalton, P.D.; Grafahrend, D.; Klinkhammer, K.; Klee, D.; Möller, M. Electrospinning of polymer melts: Phenomenological observations. Polymer 2007, 48, 6823–6833. [Google Scholar] [CrossRef]
- Hutmacher, D.W.; Dalton, P.D. Melt electrospinning. Chem. Asian J. 2011, 6, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Liu, Y.; Ding, Y.; Zhu, M. Melt electrospinning of low-density polyethylene having a low-melt flow index. J. Appl. Polym. Sci. 2009, 114, 166–175. [Google Scholar] [CrossRef]
- Hochleitner, G.; Youssef, A.; Hrynevich, A.; Dalton, P.D.; Groll, J. Fibre pulsing during melt electrospinning writing. BioNanoMaterials 2016, 17, 159–171. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, D.J.; Zhang, T.J.; Zhang, M.L.; Wang, C. Preparation of thermoplastic polyimide ultrafine fiber nonwovens by solution electrospinning. J. Mater. Eng. 2018, 46, 41–49. [Google Scholar]
- Fang, N.Z.; Feng, H.; Dai, L.X. Effects of freezing treatment on electrospinning of a-PVA/s-PVA blend solution. Synth. Fiber Ind. 2009, 32, 30–32+35. [Google Scholar]
- Song, J.; Kim, M.; Lee, H. Recent advances on nanofiber fabrications: Unconventional state-of-the-art spinning techniques. Polymers 2020, 12, 1386. [Google Scholar] [CrossRef] [PubMed]
- Mogharbel, R.T.; Almahri, A.; Alaysuy, O.; Al-Lohedan, H.A.; Elaasser, M.M.; Bakhsh, E.M.; Alzamel, N.Z. Preparation of photochromic solution blow spun polycarbonate nanofibers from recycled plastic for optical anticounterfeiting. Opt. Mater. 2023, 141, 113936. [Google Scholar] [CrossRef]
- Dai, L.Q.; Zhang, R.Q. Application and Development Trends of Electrospinning Technology. J. Wuhan Text. Univ. 2013, 26, 1–5. [Google Scholar]
- Liu, Y.S. Study on Preparation and Properties of Functional Fibers by Electrospinning; University of Jinan: Jinan, China, 2016; pp. 1–94. [Google Scholar]
- Blechta, V. Permeable Membranes PUR/TETA and PUR/TEPA for CO2 Capture Prepared with One-Step Electrospinning Technology. Fibers 2022, 10, 100. [Google Scholar] [CrossRef]
- Cheng, L.; Gao, Y.; Zhou, J.; Xu, Y.; Zhang, J. Classification and Features of Medical Dressings. China Med. Devices 2011, 26, 99–101. [Google Scholar]
- Renukadevi, C.R.; Ayyanaar, S.; Kesavan, M.P.; Dhas, T.; Sivagnanam, U.T. Reactive oxygen species responsive magnetic polylactic co-glycolic acid microspheres: In vitro drug release studies. Mater. Today Commun. 2023, 34, 105474. [Google Scholar] [CrossRef]
- Shaowei, D.; Allison, A.C.; Igor, L.M.; Rotello, V.M. Increasing the activity of immobilized enzymes with nanoparticle conjugation. Curr. Opin. Biotechnol. 2015, 34, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.; Zhu, D.; Zhang, Y.; Wang, L.; Fan, C. DNA nanotechnology-enabled biosensors. Biosens. Bioelectron. 2016, 76, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Niinomi, M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2008, 1, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Asad, M.; Sana, M. Potential of titanium based alloys in the biomedical sector and their surface modification techniques: A review. Proc. Inst. Mech. Eng. C 2023, 237, 30. [Google Scholar] [CrossRef]
- LeGeros, R.Z. Properties of osteoconductive biomaterials: Calcium phosphates. Clin. Orthop. Relat. Res. 2002, 395, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Kocagoz, S.; Arnholt, C.; Huet, R.; Ueno, M. Advances in zirconia toughened alumina biomaterials for total joint replacement. J. Mech. Behav. Biomed. Mater. 2014, 31, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.A. The manufacturing techniques of various drug-loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000, 21, 2475–2490. [Google Scholar] [CrossRef] [PubMed]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Manasa, M.T.; Ramanamurthy, K.V.; Arun Bhupathi, P. Electrospun nanofibrous wound dressings: A review on chitosan composite nanofibers as potential wound dressings. Int. J. Appl. Pharm. 2023, 15, 1–11. [Google Scholar] [CrossRef]
- Thein-Han, W.W.; Misra, R.D.K. Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 2009, 5, 1182–1197. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Devine, J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Sharma, N.; Kango, S.; Singh, R.; Saini, V.K.; Thakur, V.K. Developments of PEEK (polyetheretherketone) as a biomedical material: A focused review. Eur. Polym. J. 2021, 147, 110295. [Google Scholar] [CrossRef]
- Badylak, S.F. The extracellular matrix as a biologic scaffold material. Biomaterials 2007, 28, 3587–3593. [Google Scholar] [CrossRef] [PubMed]
- Altman, G.H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R.L.; Chen, J.; Lu, H.H.; Richmond, J.; Kaplan, D.L. Silk-based biomaterials. Biomaterials 2003, 24, 401–416. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.H.; Kenchegowda, M.; Angolkar, M.; Singh, R.; Bansal, S.; Yadav, S.K. A review of silk fibroin-based drug delivery systems and their applications. Eur. Polym. J. 2024, 216, 26. [Google Scholar] [CrossRef]
- Guo, L.L. Construction of Biofunctional Coatings on Biomedical Materials and Their Antibacterial/Antifouling Properties; Southwest University: Chongqing, China, 2021; pp. 1–98. [Google Scholar]
- Zhang, T.F.; Liu, Z.Y.; Zhang, Y.; Wang, L.; Li, J.; Zhao, X. Research Status of Materials and Preparation Methods for Tissue Engineering Scaffolds. China Rubber Plast. Technol. Equip. 2022, 48, 48–53. [Google Scholar]
- Song, J.K. Preparation of Cellulose Nanofibers and Their Application in Tissue Engineering Scaffolds; South China University of Technology: Guangzhou, China, 2012; pp. 1–72. [Google Scholar]
- Wu, G.L.; Ren, T.B.; Cao, C.H.; Li, Y.; Zhang, L.; Liu, J.; Wang, X. Preparation of PLCL/gelatin and PLCL/collagen guided bone tissue regeneration membranes by electrospinning and their structure, properties and cytology. Mater. Rev. 2010, 24, 385–388. [Google Scholar]
- Fu, N.; Meng, Z.; Jiao, T.; Li, Y.; Wang, Y.; Zhang, L.; Liu, C. Radial P34HB Electrospun Fiber: A Scaffold for Bone Tissue Engineering. J. Nanosci. Nanotechnol. 2020, 20, 6161–6167. [Google Scholar] [CrossRef] [PubMed]
- Peidavosi, N.; Azami, M.; Beheshtizadeh, N.; Ebrahimi-Barough, S.; Saber-Samandari, S.; Akbari, J.; Mozafari, M. Piezoelectric conductive electrospun nanocomposite PCL/Polyaniline/Barium Titanate scaffold for tissue engineering applications. Sci. Rep. 2022, 12, 20828. [Google Scholar] [CrossRef] [PubMed]
- Massoumi, B.; Abbasian, M.; Khalilzadeh, B.; Fathi, M.; Farajzadeh, M.A.; Aghajani, H.; Davoodi, J. Electrically Conductive Nanofibers Composed of Chitosan-grafted Polythiophene and Poly(ε-caprolactone) as Tissue Engineering Scaffold. Fibers Polym. 2021, 22, 49–58. [Google Scholar] [CrossRef]
- Stoddart, M.J.; Della, B.E.; Armiento, A.R. Cartilage Tissue Engineering: An Introduction. Methods Mol. Biol. 2023, 2598, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sadat, N.G.; Saeed, K.; Elahe, M.; Rezaei, M.; Farajzadeh, M.; Jafari, S.M.; Akbari, J. Evaluation of the effects of glucosamine sulfate on poly(3-hydroxybutyrate)-chitosan/carbon nanotubes electrospun scaffold for cartilage tissue engineering applications. Polym.-Plast. Technol. Mater. 2022, 61, 1244–1264. [Google Scholar] [CrossRef]
- Xu, Z.L.; Liu, J.; Zhang, C.Q. Construction of a cartilage tissue engineering scaffold by electrospun polycaprolactone-gelatin nanofiber membranes combined with rabbit bone marrow mesenchymal stem cells. Int. J. Orthop. 2013, 34, 115–118. [Google Scholar]
- Movahedi, M.; Karbasi, S. Electrospun halloysite nanotube loaded polyhydroxybutyrate-starch fibers for cartilage tissue engineering. Int. J. Biol. Macromol. 2022, 214, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Samie, M.; Khan, A.F.; Hardy, J.G.; Saeb, M.R.; Mozafari, M.; Annabi, N. Electrospun antibacterial composites for cartilage tissue engineering. Macromol. Biosci. 2022, 22, 2200219. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Feng, Y.K.; Yang, J.; Fu, J.X.; Lv, J.; Zhang, L.; Guo, J.T.; Ren, X.K.; Zhang, W.C. Electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) for endothelial cell growth. J. Mater. Sci. Mater. Med. 2015, 26, 56. [Google Scholar] [CrossRef] [PubMed]
- Huang, C. Preparation of Electrospun Tubular Scaffolds and Their Application in Tissue Engineering; Donghua University: Shanghai, China, 2013; pp. 1–80. [Google Scholar]
- Chernonosova, V.; Gostev, A.; Murashov, I.; Krivandin, A.; Shishatskiy, S.; Filatov, A. Assessment of Electrospun Pellethane-Based Scaffolds for Vascular Tissue Engineering. Materials 2021, 14, 3678. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, S.; Zarei-Behjani, Z.; Bohlouli, M.; Khorasani, M.; Akbari, J.; Mozafari, M. Fabrication and optimization of bioactive cylindrical scaffold prepared by electrospinning for vascular tissue engineering. Iran. Polym. J. 2021, 12, 127–141. [Google Scholar] [CrossRef]
- Wu, T. Electrospun Protein-Polysaccharide-Poly(lactide-co-caprolactone) Composite Nanofiber Scaffolds for Small-Diameter Vascular Tissue Engineering; Donghua University: Shanghai, China, 2014; pp. 1–117. [Google Scholar]
- Su, L.A.; Leng, X.F.; He, C.; Zhang, Y.; Li, J.; Wang, X. Effect of a novel electrospun nano-scaffold dressing on rat skin wound. J. Qingdao Univ. Med. Sci. 2022, 58, 63–67. [Google Scholar]
- Lei, Y.; Zhang, L.F. Experimental study on electrospun PLGA-collagen scaffold for skin tissue engineering. J. Biomed. Eng. Res. 2013, 32, 105–108. [Google Scholar]
- Li, A.; Li, X.L. Research progress on electrospun nanofiber skin wound dressings. China J. Lepr. Skin. Dis. 2022, 38, 265–268. [Google Scholar]
- Li, H.; Cheng, W.; Liu, K.; Zhang, Y.; Wang, L.; Zhao, X.; Chen, J. Reinforced collagen with oxidized microcrystalline cellulose shows improved hemostatic effects. Carbohydr. Polym. 2017, 165, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Ranjbarvan, P.; Mahmoudifard, M.; Kehtari, M.; Saber-Samandari, S.; Akbari, J.; Mozafari, M. Natural compounds for skin tissue engineering by electrospinning of nylon-Beta vulgaris. ASAIO J. 2018, 64, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Agnes Mary, S.; Giri Dev, V.R. Electrospun herbal nanofibrous wound dressings for skin tissue engineering. J. Text. Inst. 2015, 106, 886–895. [Google Scholar] [CrossRef]
- Norouzi, M.; Shabani, I.; Atyabi, F.; Dorkoosh, F.A.; Akbari, J. EGF-loaded nanofibrous scaffold for skin tissue engineering applications. Fibers Polym. 2015, 16, 782–787. [Google Scholar] [CrossRef]
- Li, X. Preparation and Characterization of Collagen/Chitosan Composite Antibacterial Dressing Membranes; Donghua University: Shanghai, China, 2017; pp. 1–75. [Google Scholar]
- Cui, J. Electrospun PVA-SbQ/zein Drug-Loaded Nanofibers for Wound Healing Materials; Jiangnan University: Wuxi, China, 2015; pp. 1–47. [Google Scholar]
- Xu, C.; Inai, R.; Kotaki, M.; Ramakrishna, S. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 2004, 10, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.; Kharbanda, O.P.; Koul, V.; Singh, T.; Gambhir, R.S. Fabrication and evaluation of antimicrobial biomimetic nanofiber coating for improved dental implant bioseal: An in vitro study. J. Periodontol. 2022, 93, 1578–1588. [Google Scholar] [CrossRef] [PubMed]
- Manju, V.; Iyer, S.; Menon, D.; Nair, S.V.; Jayakumar, R. Evaluation of osseointegration of staged or simultaneously placed dental implants with nanocomposite fibrous scaffolds in rabbit mandibular defect. Mater. Sci. Eng. C 2019, 104, 109864. [Google Scholar] [CrossRef] [PubMed]
- Anitua, E.; Orive, G.; Pla, R.; Andia, I.; Padilla, S.; Aguirre, J. The effects of PRGF on bone regeneration and on titanium implant osseointegration in goats: A histologic and histomorphometric study. J. Biomed. Mater. Res. A 2009, 91, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Safari, F.; Houshmand, B.; Nejad, A.E. Application of zeolite, a biomaterial agent, in dental science: A review article. Regen. Reconstr. Restor. 2019, 3, X–X. [Google Scholar] [CrossRef]
- Liu, W.; Jiao, T.; Su, Y. Electrospun porous poly (3-hydroxybutyrate-co-4-hydroxybutyrate)/lecithin scaffold for bone tissue engineering. RSC Adv. 2022, 12, 11913–11922. [Google Scholar] [CrossRef] [PubMed]
- Torres-Martínez, E.J.; Cornejo Bravo, J.M.; Serrano Medina, A.; García-García, A.; Alvarez-Lorenzo, C. A Summary of Electrospun Nanofibers as Drug Delivery System: Drugs Loaded and Biopolymers Used as Matrices. Curr. Drug Deliv. 2018, 15, 1360–1374. [Google Scholar] [CrossRef] [PubMed]
- Grumezescu, A.M.; Stoica, A.E.; Dima-Bălcescu, M.Ș.; Mogoantă, L.; Andronescu, E. Electrospun Polyethylene Terephthalate Nanofibers Loaded with Silver Nanoparticles: Novel Approach in Anti-Infective Therapy. J. Clin. Med. 2019, 8, 1039. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; He, M.; Niu, Y.; Zhang, Y.; Li, J.; Wang, X. Preparation and in vivo efficient anti-infection property of GTR/GBR implant made by metronidazole loaded electrospun polycaprolactone nanofiber membrane. Int. J. Pharm. 2014, 475, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.; Ferrer, J.S.J.; Cornejo, C.I. Antimicrobial electrospun collagen nanofibers loaded with Silver nanoparticles and Vancomycin. In Proceedings of the Annual Meeting of The Japanese Pharmacological Society WCP2018 (The 18th World Congress of Basic and Clinical Pharmacology), Kyoto, Japan, 1–6 July 2018; Japanese Pharmacological Society: Tokyo, Japan, 2018; p. PO4-11. [Google Scholar]
- Vaishali, A.; Varma, K.M.; Bhupathi, P.A.; Reddy, S.K. In vitro evaluation of antimicrobial efficacy of 2% chlorhexidine loaded electrospun nanofibers. J. Pierre Fauchard Acad. 2017, 31, 105–108. [Google Scholar] [CrossRef]
- Virijević, K.; Živanović, M.; Pavić, J.; Marković, Z.; Jovanović, S. Electrospun Gelatin Scaffolds with Incorporated Antibiotics for Skin Wound Healing. Pharmaceuticals 2024, 17, 851. [Google Scholar] [CrossRef] [PubMed]
- Ashbaugh, A.G.; Jiang, X.; Zheng, J.; Anderson, D.G.; Bryers, J.D. Polymeric nanofiber coating with tunable combinatorial antibiotic delivery prevents biofilm-associated infection in vivo. Proc. Natl. Acad. Sci. USA 2016, 113, E6919–E6928. [Google Scholar] [CrossRef] [PubMed]
- Farzaei, M.H.; Derayat, P.; Pourmanouchehri, Z.; Shirazi, M.; Abdollahi, M. Characterization and Evaluation of Antibacterial and Wound Healing Activity of Naringenin-Loaded Polyethylene Glycol/Polycaprolactone Electrospun Nanofibers. J. Drug Deliv. Sci. Technol. 2023, 81, 104182. [Google Scholar] [CrossRef]
- Kazemi, M.H.; Sajadimajd, S.; Karaji, Z.G.; Jafari, S.M.; Akbari, J. In Vitro Investigation of Wound Healing Performance of PVA/Chitosan/Silk Electrospun Mat Loaded with Deferoxamine and Ciprofloxacin. Int. J. Biol. Macromol. 2023, 253, 126602. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wang, D.; Sønderskov, S.M.; Chen, X.; Li, Y.; Yang, F. Tannic Acid-Functionalized 3D Porous Nanofiber Sponge for Antibiotic-Free Wound Healing with Enhanced Hemostasis, Antibacterial, and Antioxidant Properties. J. Nanobiotechnol. 2023, 21, 190. [Google Scholar] [CrossRef] [PubMed]
- Abdelazim, E.B.; Abed, T.; Goher, S.S.; El-Sayed, N.; El-Sherbiny, I.M. In Vitro and in Vivo Studies of Syzygium Cumini-Loaded Electrospun PLGA/PMMA/Collagen Nanofibers for Accelerating Topical Wound Healing. RSC Adv. 2024, 14, 101–117. [Google Scholar] [CrossRef] [PubMed]
- El-Ghoul, Y.; Altuwayjiri, A.S.; Alharbi, G.A. Synthesis and Characterization of New Electrospun Medical Scaffold-Based Modified Cellulose Nanofiber and Bioactive Natural Propolis for Potential Wound Dressing Applications. RSC Adv. 2024, 14, 26183–26197. [Google Scholar] [CrossRef] [PubMed]
- Mehrdad, M.M.; Behrouz, F.; Reza, M.; Saeedi, M.; Atyabi, F. Evaluation of an antibacterial peptide-loaded amniotic membrane/silk fibroin electrospun nanofiber in wound healing. Int. Wound J. 2023, 20, 3443–3456. [Google Scholar] [CrossRef]
- Kamath, S.M.; Sridhar, K.; Jaison, D.; Mathew, A.K.; Nair, S.V.; Jayakumar, R. Fabrication of tri-layered electrospun polycaprolactone mats with improved sustained drug release profile. Sci. Rep. 2020, 10, 18179. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Zhang, E.; Wu, Z.Z.; Li, J.; Wang, Y.; Chen, H. Experimental Study on Ibuprofen-Loaded PLGA/PLA Electrospun Nanofibrous GTR Membranes. Chin. J. Conserv. Dent. 2014, 24, 634–638+648. [Google Scholar]
- Immich, A.P.S.; Arias, M.L.; Carreras, N.; Rubira, A.F.; Muniz, E.C. Drug delivery systems using sandwich configurations of electrospun poly(lactic acid) nanofiber membranes and ibuprofen. Mater. Sci. Eng. C 2013, 33, 4002–4008. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.J.; Chen, G.; Tang, S.S.; Zhang, H.; Liu, J.; Zhao, X. Preparation and sustained-release properties of aspirin/starch/polyvinyl alcohol nanofiber membranes. J. Mol. Sci. 2015, 31, 197–203. [Google Scholar]
- Hao, X.; Hao, D.; Yang, Z.; Li, Y.; Wang, L.; Chen, J. Preparation of Cisplatin-Containing Nanofibrous Mats and It’s In Vitro Antitumor Activity Against Oral Squamous Cell Carcinoma. J. Nanosci. Nanotechnol. 2016, 16, 9482–9486. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, M.L.; Wu, B.Q.; Zhang, L.; Zhao, X.; Wang, Q. Inhibitory effect of combined paclitaxel-cisplatin drug delivery system on the growth of lung adenocarcinoma cell line A549. J. Cap. Med. Univ. 2014, 35, 694–697. [Google Scholar]
- Talimi, R.; Shahsavari, Z.; Dadashzadeh, S.; Mohammadi, M.; Akbari, J.; Mozafari, M. Sirolimus-Exuding Core-Shell Nanofibers as an Implantable Carrier for Breast Cancer Therapy: Preparation, Characterization, In Vitro Cell Studies, and In Vivo Anti-Tumor Activity. Drug Dev. Ind. Pharm. 2023, 48, 694–707. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Yu, J.; Zhao, Z.; Wang, L.; Li, J.; Chen, G. Fabrication and drug release properties of curcumin-loaded silk fibroin nanofibrous membranes. Adsorpt. Sci. Technol. 2019, 37, 412–424. [Google Scholar] [CrossRef]
- Liu, D.X.; Wang, M.Z.; Jing, X.B.; Zhang, Y.; Li, X.; Zhao, J. Sodium dichloroacetate electrospun fibrous mats improve the quality of life in mice with cervical cancer. Chin. J. Appl. Chem. 2014, 31, 769–774. [Google Scholar]
- Zhou, H.; Liu, X.; Wu, F.; Chen, Y.; Zhang, L.; Wang, X. Preparation, Characterization, and Antitumor Evaluation of Electrospun Resveratrol Loaded Nanofibers. J. Nanomater. 2016, 2016, 5918462. [Google Scholar] [CrossRef]
- Salehi, R.; Irani, M.; Eskandani, M.; Khorasani, M.; Akbari, J.; Mozafari, M. Interaction, Controlled Release, and Antitumor Activity of Doxorubicin Hydrochloride From pH-Sensitive P(NIPAAm-MAA-VP) Nanofibrous Scaffolds Prepared by Green Electrospinning. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 609–619. [Google Scholar] [CrossRef]
- Jiang, L.T. Construction and Performance Study of pH-Sensitive Virus-Mimetic Drug Delivery System; Qingdao University: Qingdao, China, 2018; pp. 1–68. [Google Scholar]
- Tran, T.; Hernandez, M.; Patel, D.; Nguyen, T.D.; Lee, S.W.; Kim, S.H. Controllable and switchable drug delivery of ibuprofen from temperature responsive composite nanofibers. Nano Converg. 2015, 2, 16. [Google Scholar] [CrossRef]
- Elashnikov, R.; Slepička, P.; Rimpelova, S.; Sedlarik, V.; Kizek, R. Temperature-responsive PLLA/PNIPAM nanofibers for switchable release. Mater. Sci. Eng. C 2017, 72, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.Y. Application of Polydopamine-Functionalized Nanofibers in Local Drug Delivery and Their Antitumor Performance; Central China Normal University: Shanghai, China, 2021; pp. 1–61. [Google Scholar]
- Guo, H.; Jeong, J.H.; Kim, J.C. Electrospun thermo-responsive nanofibers of poly(hydroxyethylacrylate-co-coumaryl acrylate-co-ethylmethacrylate). Colloids Surf. A 2016, 495, 1–10. [Google Scholar] [CrossRef]
- Zheng, X.; Zha, L.S. Preparation of ultrafast temperature-responsive nanofibrous hydrogels and their application in controlled drug release. Chin. J. Mater. Res. 2020, 34, 452–458. [Google Scholar]
- Zheng, G.J.; Zhang, S.P.; Zhang, Y.F. Preparation of styrene-maleic anhydride copolymer nanofibers via electrospinning and their application in β-D-galactosidase immobilization. Chin. J. Process Eng. 2010, 10, 721–726. [Google Scholar]
- Sui, C.H.; Wang, Z.Y.; Wei, Y.Q.; Li, M.; Zhang, J.; Zhao, Y. Immobilization of glucoamylase on PAA/PVA fibrous membrane by activated ester method. J. Process Eng. 2016, 16, 494–499. [Google Scholar]
- Xu, X.H.; Ren, G.L.; Liu, Q.; Zhang, L.; Wang, X.; Chen, J. Immobilization of glucose oxidase by polyvinyl alcohol electrospinning. J. Tianjin Univ. 2006, 7, 857–860. [Google Scholar]
- Silva, T.R.; Rodrigues, D.P.; Rocha, J.M.; Malcata, F.X.; Pinto, M.E. Immobilization of trypsin onto poly(ethylene terephthalate)/poly(lactic acid) nonwoven nanofiber mats. Biochem. Eng. J. 2015, 104, 48–56. [Google Scholar] [CrossRef]
- Ji, G.; Chen, Z.; Li, H.; Wang, Y.; Zhang, L.; Liu, J. Electrospinning-Based Biosensors for Health Monitoring. Biosensors 2022, 12, 876. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, L.X.; Sun, J.H.; Zhao, Y.; Chen, L.; Wang, Q. Preparation of ZnO by electrospinning for the construction of a tyrosinase biosensor to detect catechol. Chem. Ind. Eng. Prog. 2020, 39, 2795–2801. [Google Scholar]
- Xu, G.F. Construction and Application of Electrospun Biosensors; Fujian Normal University: Fuzhou, China, 2016; pp. 1–80. [Google Scholar]
- Zhou, C.Y. Research on Nanomaterial-Based Biosensors and Biomolecular Logic Devices; Jilin University: Changchun, China, 2017; pp. 1–155. [Google Scholar]
- Wu, J.P.; Yin, F. Sensitive enzymatic glucose biosensor fabricated by electrospinning composite nanofibers and electrodepositing Prussian blue film. J. Electroanal. Chem. 2013, 694, 86–94. [Google Scholar] [CrossRef]
- Wu, J.P.; Yin, F. Novel Hydrogen Peroxide Biosensor Based on Hemoglobin Combined with Electrospinning Composite Nanofibers. Anal. Lett. 2013, 46, 818–830. [Google Scholar] [CrossRef]
- He, P.W. Preparation of Bio-Phenol-Based Antibacterial Nanofiber Membranes and Their Application in Protective Masks; Donghua University: Shanghai, China, 2021; pp. 1–85. [Google Scholar]
- Kang, L. Preparation and Filtration Performance of Electrospun Nanofiber Membranes for Protective Applications; Inner Mongolia University of Technology: Hohhot, China, 2022; pp. 1–80. [Google Scholar]
- Baselga-Lahoz, M.; Yus, C.; Arruebo, M.; Santamaria, M.P.; Ibarra, M.R.; Marco, J.F. Submicronic Filtering Media Based on Electrospun Recycled PET Nanofibers: Development, Characterization and Method to Manufacture Surgical Masks. Nanomaterials 2022, 12, 925. [Google Scholar] [CrossRef] [PubMed]
- Elamri, A.; Zdiri, K.; Hamdaoui, M.; Baklouti, S.; Jridi, M.; Nasri, M. Chitosan: A biopolymer for textile processes and products. Text. Res. J. 2023, 93, 1456–1484. [Google Scholar] [CrossRef]
Types of Biomaterials | Examples | References |
---|---|---|
Biomedical Metals | Stainless Steel (316L); Titanium(Ti-6Al-4V) | [39,40,41] |
Bioceramics | Hydroxyapatite (HA); Zirconia (ZrO2) | [42,43,44] |
Biopolymer Materials | Poly(lactic-co-glycolic acid) (PLGA); CTS | [45,46,47] |
Biocomposite Materials | HA/Chitosan Composites; PEEK/Carbon Fiber Composites | [48,49,50] |
Bio-derived Materials | Decellularized Extracellular Matrix (dECM); Silk Fibroin | [51,52,53] |
Antibacterial Active Ingredients | Carrier of Active Ingredients | Product Form | Performance | References |
---|---|---|---|---|
Nano silver | PET nanofiber | membrane | Good antibacterial and anti-biofilm activity against Gram positive bacteria, Gram negative bacteria, and fungi, with reduced cytotoxicity and weakened inflammatory effects. | [87] |
Metronidazole (MNA) | PCL nanofiber | membrane | The loaded MNA can be released in a controlled manner, and the sustained release time can exceed two weeks. | [88] |
Nano-silver, Vancomycin | Collagen nanofiber | membrane | The bactericidal effect on Escherichia coli and Staphylococcus aureus was better than the samples loaded with a single antimicrobial drug component. | [89] |
2% Chlorhexidine | PVA nanofiber | membrane | It has a significant antibacterial effect on Candida albicans and E. faecalis in the oral cavity. | [90] |
Ciprofloxacin Hydrochloride and Gentamicin Sulfate | Gelatin nanofiber | scaffold | Improved antimicrobial properties of gelatin scaffolds against Pseudomonas aeruginosa and Staphylococcus aureus. | [91] |
Rifampicin, Vancomycin, Linezolid, Daptomycin | PCL, PLGA nanofiber composite | coating | Effective in preventing bone/joint tissue infections and biofilm formation on implants. | [92] |
Naringenin | PCL, PEG nanofiber | mat | Sustained release of Naringenin at high concentrations of Nrg; comparable re-epithelialization and wound closure effects to commercially available phenytoin sodium ointment. | [93] |
Ciprofloxacin | PVA, CTS, SF nanofiber | mat | The prepared PChS mats showed bactericidal activity against Escherichia coli and Staphylococcus aureus. | [94] |
Tannic acid | CTS, PVA nanofiber | sponge | High porosity, high water absorption and retention capacity, high hemostatic capacity, high antimicrobial and antioxidant capacity, showing high biocompatibility to L929 cells and ability to accelerate wound healing. | [95] |
Syzygium cumini leaf extract (SCLE) | PLGA, PMMA nanofiber | mat | Nanofiber mats containing concentrations of 0.5% and 1% (w/v) of SCLE showed better antimicrobial effects than pure extracts of the same concentration. | [96] |
Natural propolis | Microcrystalline Cellulose, CTS nanofiber | wound dressing | Good cytocompatibility, showing significant bactericidal effects against both Gram positive and negative bacteria. | [97] |
Antimicrobial peptide CM11 | SF nanofiber | SF fiber/amniotic membrane bilayer composite | The drug-loaded complexes inhibited bacterial growth, the wound closure rate was significantly higher in wounds covered by bilayer complexes loaded with 32 μg/mL of CM11, and the relative expression levels of collagen type I, collagen type III, TGF-β1, and TGF-β3 were higher than those in other groups. | [98] |
Anticancer Active Ingredients | Carrier of Active Ingredients | Product Form | Performance | References |
---|---|---|---|---|
Cisplatin | PLA nanofibers | nanofibrous mats | In contrast to the pristine PLA nanofibers, those incorporated with 0.2 wt.% cisplatin exhibited significant inhibitory effects on oral squamous cell carcinoma cell (CAL-27) proliferation in vitro. | [103] |
Paclitaxel and Cisplatin | Polypropylene carbonate fiber | fibrous membrane | Significant inhibition of A549 lung adenocarcinoma cell proliferation was observed in vitro. | [104] |
Sirolimus | Core-shell structured nanofibers composed of a PCL core and a CTS/PCL composite shell | nanofibrous mats | Core-shell nanofibers showed sustained release (>480 h), outperforming uniaxial fibers. They suppressed MKI67, MMP-2/9 in glioma cells in vitro, and exhibited superior antitumor efficacy in vivo (smaller tumors, increased necrosis, no toxicity) versus drug suspensions. | [105] |
Curcumin and 5-fluorouracil | Regenerated SF/PEG composite nanofibers | fibrous membrane | The electrospinning process preserved the secondary structure of silk fibroin, while the co-encapsulated dual ingredients exhibited sustained release profiles (400 h) from the nanofibrous membranes. | [106] |
Sodium dichloroacetate | PLA nanofibers | nanofibrous mats | Significant antitumor efficacy was observed, achieving a 94% tumor inhibition rate (p < 0.05) and a 38% complete remission rate in tumor-bearing mice. | [107] |
Resveratrol | mPEG-PCL block copolymer nanofibers | nanofibrous mats | In vitro XTT assays demonstrated significantly enhanced cytotoxicity of resveratrol-loaded nanofibrous scaffolds (RSV NFS) against U87 glioma cells. Compared to equivalent doses of free resveratrol, RSV NFS treatment resulted in markedly reduced clonogenic capacity, impaired cell migration, and suppressed invasive potential. | [108] |
Active Ingredients | Carrier of Active Ingredients | Response Type | Performance | References |
---|---|---|---|---|
DOX | P(NIPAAm-MAA-VP) nanofiber | pH | Achieved a drug loading capacity exceeding 90%, allowing for the controlled release of DOX at physiological pH levels ranging from 5.4 to 7.4. | [109] |
Adriamycin hydrochloride | hydrazone bonded HA nanofiber | The hydrazone bond was cleaved at approximately pH = 5, facilitating the release of adriamycin hydrochloride and thereby achieving targeted therapeutic effects. | [110] | |
Ibuprofen | PNIPAM/PCL blend | Temperature | The drug-loaded nanofibers derived from the PNIPAM/PCL combination exhibited the controlled release of ibuprofen at temperatures of 25 °C and 34 °C. | [111] |
Crystalline violet | poly-L-propylene carbonate/PNIPAM nanofiber | Modulating the ambient temperature above the lower critical solution temperature (32 °C) of PNIPAM effectively facilitated control over crystalline violet release. | [112] | |
Curcumin and PDANPs | PCL nanofiber | PDANPs possess photothermal conversion properties; when the temperature reaches a specific threshold, they can induce tumor cell death and facilitate the release of curcumin. This process not only inhibits tumor cell growth but also promotes the clearance of these cells. | [113] | |
5(6)-carboxyfluorescein | P(HEA-CA-EMA) nanofiber | This study demonstrated the controlled release of the encapsulated 5(6)-carboxyfluorescein at temperatures exceeding the lowest critical solubilization temperature, thereby achieving a regulated drug release profile. | [114] | |
Dextran | copolymer of (NIPAM) and N-hydroxymethacrylamide nanofiber | This type of nanofiber hydrogel exhibited a rapid temperature response when the water temperature alternated between 20 °C and 55 °C. Additionally, its loading capacity was enhanced during temperature fluctuations from 15 °C to 47 °C. Notably, it was observed that the drug-loaded dextran was released in an “on/off” manner as the temperature varied between 15 °C and 47 °C. | [115] |
Fields | Research Progress |
---|---|
Tissue Engineering | Bone tissue: enhances cellular activity and promotes both cell proliferation and differentiation. Blood vessels: improve blood compatibility and facilitate endothelialization. Skin: accelerates healing processes and combats infections. |
Drug Delivery | The nano scaffold materials generated through electrospinning technology can be incorporated with a variety of drugs. By modulating the fiber composition and structure, it is possible to achieve controlled drug release, thereby enhancing the therapeutic efficacy. |
Enzyme Immobilization | The elevated specific surface area and the modifiable nature of electrospun nanofibers offer stable platforms for enzyme immobilization, thereby significantly enhancing both the reusability and stability of enzymes. |
Biosensor | The nanofiber structure can be functionalized with basic affinity agents, such as enzymes and proteins, for use in biosensors. This configuration enables the detection of target substances, including glucose and hydrogen peroxide, with high sensitivity. Consequently, it facilitates the advancement of real-time diagnostic technologies. |
Face Mask | Electrospun fiber masks exhibit high filtration efficiency while maintaining the smoothness of human respiration, thereby enhancing user comfort. Additionally, these masks possess antibacterial properties. It is anticipated that they will replace traditional melt-blown fabrics and facilitate the advancement of protective equipment towards greater efficiency and intelligence. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Ji, P.; Bu, T.; Mao, Y.; He, H.; Ge, N. Recent Progress in the Application of Electrospinning Technology in the Biomedical Field. J. Funct. Biomater. 2025, 16, 266. https://doi.org/10.3390/jfb16070266
Wang Q, Ji P, Bu T, Mao Y, He H, Ge N. Recent Progress in the Application of Electrospinning Technology in the Biomedical Field. Journal of Functional Biomaterials. 2025; 16(7):266. https://doi.org/10.3390/jfb16070266
Chicago/Turabian StyleWang, Qun, Peng Ji, Tian Bu, Yating Mao, Hailun He, and Naijing Ge. 2025. "Recent Progress in the Application of Electrospinning Technology in the Biomedical Field" Journal of Functional Biomaterials 16, no. 7: 266. https://doi.org/10.3390/jfb16070266
APA StyleWang, Q., Ji, P., Bu, T., Mao, Y., He, H., & Ge, N. (2025). Recent Progress in the Application of Electrospinning Technology in the Biomedical Field. Journal of Functional Biomaterials, 16(7), 266. https://doi.org/10.3390/jfb16070266