Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,524)

Search Parameters:
Keywords = mass production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1113 KiB  
Article
Effects of Culture Period and Plant Growth Regulators on In Vitro Biomass Production and Phenolic Compounds in Seven Species of Hypericum
by Doina Clapa, Monica Hârţa, Ana Maria Radomir, Adrian George Peticilă, Loredana Leopold, Floricuţa Ranga and Dorin Ioan Sumedrea
Plants 2025, 14(15), 2437; https://doi.org/10.3390/plants14152437 - 6 Aug 2025
Abstract
This study evaluated biomass accumulation and phenolic compound production in seven Hypericum species (H. androsaemum, H. calycinum, H. hirsutum, H. kalmianum, H. olympicum, H. perforatum, and H. triquetrifolium) cultivated in vitro under varying growth regulator [...] Read more.
This study evaluated biomass accumulation and phenolic compound production in seven Hypericum species (H. androsaemum, H. calycinum, H. hirsutum, H. kalmianum, H. olympicum, H. perforatum, and H. triquetrifolium) cultivated in vitro under varying growth regulator treatments and culture periods. Shoots were grown on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) or meta-topoline (mT) and analyzed after 40 and 60 days. MS medium supplemented with 0.2 mg/L BA was the most effective condition for promoting biomass across all species, with shoot fresh weight increasing significantly at 60 days, particularly in H. olympicum, H. perforatum, and H. triquetrifolium. High-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) identified 13 phenolic compounds, including flavonols, hydroxycinnamic acids, anthocyanins, phloroglucinols, and naphthodianthrones. Phenolic profiles were species-specific and influenced by culture period. H. kalmianum accumulated the highest total phenolic content (37.6 mg/g DW), while H. olympicum was the top producer of hypericin and pseudohypericin. These results highlight the crucial role of culture conditions in regulating both biomass and phytochemical production and provide a promising approach for producing bioactive metabolites in Hypericum species through in vitro systems. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
22 pages, 2171 KiB  
Article
Upstream Microplastic Removal in Industrial Wastewater: A Pilot Study on Agglomeration-Fixation-Reaction Based Treatment for Water Reuse and Waste Recovery
by Anika Korzin, Michael Toni Sturm, Erika Myers, Dennis Schober, Pieter Ronsse and Katrin Schuhen
Clean Technol. 2025, 7(3), 67; https://doi.org/10.3390/cleantechnol7030067 - 6 Aug 2025
Abstract
This pilot study investigated an automated pilot plant for removing microplastics (MPs) from industrial wastewater that are generated during packaging production. MP removal is based on organosilane-induced agglomeration-fixation (clump & skim technology) followed by separation. The wastewater had high MP loads (1725 ± [...] Read more.
This pilot study investigated an automated pilot plant for removing microplastics (MPs) from industrial wastewater that are generated during packaging production. MP removal is based on organosilane-induced agglomeration-fixation (clump & skim technology) followed by separation. The wastewater had high MP loads (1725 ± 377 mg/L; 673 ± 183 million particles/L) and an average COD of 7570 ± 1339 mg/L. Over 25 continuous test runs, the system achieved consistent performance, removing an average of 97.4% of MPs by mass and 99.1% by particle count, while reducing the COD by 78.8%. Projected over a year, this equates to preventing 1.7 tons of MPs and 6 tons of COD from entering the sewage system. Turbidity and photometric TSS measurements proved useful for process control. The approach supports water reuse—with water savings up to 80%—and allows recovery of agglomerates for recycling and reuse. Targeting pollutant removal upstream at the source provides multiple financial and environmental benefits, including lower overall energy demands, higher removal efficiencies, and process water reuse. This provides financial and environmental incentives for industries to implement sustainable solutions for pollutants and microplastic removal. Full article
16 pages, 1119 KiB  
Article
The Impact of Storage Time and Reheating Method on the Quality of a Precooked Lamb-Based Dish
by Zhihao Yang, Chenlei Wang, Ye Jin, Wenjia Le, Liang Zhang, Lifei Wang, Bo Zhang, Yueying Guo, Min Zhang and Lin Su
Foods 2025, 14(15), 2748; https://doi.org/10.3390/foods14152748 - 6 Aug 2025
Abstract
Ready-to-eat meat products face quality challenges during storage and reheating. This study aimed to (i) characterize the physicochemical/microbiological changes in stewed mutton during storage (4 °C/−18 °C, 0–28 days) and (ii) evaluate reheating methods (boiling vs. microwaving) on day-7 samples. The nutritional analysis [...] Read more.
Ready-to-eat meat products face quality challenges during storage and reheating. This study aimed to (i) characterize the physicochemical/microbiological changes in stewed mutton during storage (4 °C/−18 °C, 0–28 days) and (ii) evaluate reheating methods (boiling vs. microwaving) on day-7 samples. The nutritional analysis confirmed moisture reduction (57.32 vs. 72.12 g/100 g)-concentrated protein/fat levels. Storage at −18 °C suppressed microbial growth (the total plate count (TPC), 3.73 vs. 4.80 log CFU/g at 28 days; p < 0.05) and lipid oxidation (thiobarbituric acid reactive substances (TBARS): 0.14 vs. 0.19 mg/kg) more effectively than storage at 4 °C. The total volatile basic nitrogen (TVB-N) kinetics projected a shelf life ≥90 days (4 °C) and ≥120 days (−18 °C). Microwave reheating after frozen storage (−18 °C) maximized the yield (86.21% vs. 75.90% boiling; p < 0.05) and preserved volatile profiles closest to those in the fresh samples (gas chromatography–mass spectrometry (GC-MS)/electronic nose). The combination of freezing storage and subsequent microwave reheating has been demonstrated to be an effective method for preserving the quality of a precooked lamb dish, thereby ensuring its nutritional value. Full article
Show Figures

Graphical abstract

10 pages, 2260 KiB  
Article
Multi-Elemental Analysis for the Determination of the Geographic Origin of Tropical Timber from the Brazilian Legal Amazon
by Marcos David Gusmao Gomes, Fábio José Viana Costa, Clesia Cristina Nascentes, Luiz Antonio Martinelli and Gabriela Bielefeld Nardoto
Forests 2025, 16(8), 1284; https://doi.org/10.3390/f16081284 - 6 Aug 2025
Abstract
Illegal logging is a major threat to tropical forests; however, control mechanisms and efforts to combat illegal logging have not effectively curbed fraud in the production chain, highlighting the need for effective methods to verify the geographic origin of timber. This study investigates [...] Read more.
Illegal logging is a major threat to tropical forests; however, control mechanisms and efforts to combat illegal logging have not effectively curbed fraud in the production chain, highlighting the need for effective methods to verify the geographic origin of timber. This study investigates the application of multi-elemental analysis combined with Principal Component Analysis (PCA) to discriminate the provenance of tropical timber in the Brazilian Legal Amazon. Wood samples of Hymenaea courbaril L. (Jatobá), Handroanthus sp. (Ipê), and Manilkara huberi (Ducke) A. Chevalier. (Maçaranduba) were taken from multiple sites. Elemental concentrations were determined via Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and CA was applied to evaluate geographic differentiation. Significant differences in elemental profiles were found among locations, particularly when using the intermediate disk portions (25% to 75%), and especially the average of all five sampled portions, which proved most effective in geographic discrimination of the trunk. Elements such as Ca, Sr, Cr, Cu, Zn, and B were especially important for spatial discrimination. These findings underscore the forensic potential of multi-elemental wood profiling as a tool to support law enforcement and environmental monitoring by providing scientifically grounded evidence of timber origin. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

23 pages, 3314 KiB  
Article
Functional Express Proteomics for Search and Identification of Differentially Regulated Proteins Involved in the Reaction of Wheat (Triticum aestivum L.) to Nanopriming by Gold Nanoparticles
by Natalia Naraikina, Tomiris Kussainova, Andrey Shelepchikov, Alexey Tretyakov, Alexander Deryabin, Kseniya Zhukova, Valery Popov, Irina Tarasova, Lev Dykman and Yuliya Venzhik
Int. J. Mol. Sci. 2025, 26(15), 7608; https://doi.org/10.3390/ijms26157608 - 6 Aug 2025
Abstract
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, [...] Read more.
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, the molecular mechanisms underlying nanoparticle-induced effects remain poorly understood. In this study, we investigated the impact of gold nanoparticle (Au-NP) seed priming on the proteome of wheat (Triticum aestivum L.) seedlings. Differentially regulated proteins (DRPs) were identified, revealing a pronounced reorganization of the photosynthetic apparatus (PSA). Both the light-dependent reactions and the Calvin cycle were affected, with significant upregulation of chloroplast-associated protein complexes, including PsbC (CP43), chlorophyll a/b-binding proteins, Photosystem I subunits (PsaA and PsaB), and the γ-subunit of ATP synthase. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) exhibited over a threefold increase in expression in Au-NP-treated seedlings. The proteomic changes in the large subunit RuBisCo L were corroborated by transcriptomic data. Importantly, the proteomic changes were supported by physiological and biochemical analyses, ultrastructural modifications in chloroplasts, and increased photosynthetic activity. Our findings suggest that Au-NP nanopriming triggers coordinated molecular responses, enhancing the functional activity of the PSA. Identified DRPs may serve as potential biomarkers for further elucidation of nanopriming mechanisms and for the development of precision strategies to improve crop productivity. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Figure 1

23 pages, 2081 KiB  
Article
Rapid Soil Tests for Assessing Soil Health
by Jan Adriaan Reijneveld and Oene Oenema
Appl. Sci. 2025, 15(15), 8669; https://doi.org/10.3390/app15158669 (registering DOI) - 5 Aug 2025
Abstract
Soil testing has long been used to optimize fertilization and crop production. More recently, soil health testing has emerged to reflect the growing interest in soil multifunctionality and ecosystem services. Soil health encompasses physical, chemical, and biological properties that support ecosystem functions and [...] Read more.
Soil testing has long been used to optimize fertilization and crop production. More recently, soil health testing has emerged to reflect the growing interest in soil multifunctionality and ecosystem services. Soil health encompasses physical, chemical, and biological properties that support ecosystem functions and sustainable agriculture. Despite its relevance to several United Nations Sustainable Development Goals (SDGs 1, 2, 3, 6, 12, 13, and 15), comprehensive soil health testing is not widely practiced due to complexity and cost. The aim of the study presented here was to contribute to the further development, implementation, and testing of an integrated procedure for soil health assessment in practice. We developed and tested a rapid, standardized soil health assessment tool that combines near-infrared spectroscopy (NIRS) and multi-nutrient 0.01 M CaCl2 extraction with Inductive Coupled Plasma Mass Spectroscopy analysis. The tool evaluates a wide range of soil characteristics with high accuracy (R2 ≥ 0.88 for most parameters) and has been evaluated across more than 15 countries, including those in Europe, China, New Zealand, and Vietnam. The results are compiled into a soil health indicator report with tailored management advice and a five-level ABCDE score. In a Dutch test set, 6% of soils scored A (optimal), while 2% scored E (degraded). This scalable tool supports land users, agrifood industries, and policymakers in advancing sustainable soil management and evidence-based environmental policy. Full article
(This article belongs to the Special Issue Soil Analysis in Different Ecosystems)
Show Figures

Figure 1

88 pages, 9998 KiB  
Review
Research and Developments of Heterogeneous Catalytic Technologies
by Milan Králik, Peter Koóš, Martin Markovič and Pavol Lopatka
Molecules 2025, 30(15), 3279; https://doi.org/10.3390/molecules30153279 - 5 Aug 2025
Abstract
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation [...] Read more.
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation energies and stabilizing catalytic functionality. Particular attention is given to catalyst deactivation mechanisms and potential regeneration strategies. The application of molecular modeling and chemical engineering analyses, including reaction kinetics, thermal effects, and mass and heat transport phenomena, is identified as essential for R&D_HeCaTe. Reactor configuration is discussed in relation to key physicochemical parameters such as molecular diffusivity, reaction exothermicity, operating temperature and pressure, and the phase and “aggressiveness” of the reaction system. Suitable reactor types—such as suspension reactors, fixed-bed reactors, and flow microreactors—are evaluated accordingly. Economic and environmental considerations are also addressed, with a focus on the complexity of reactions, selectivity versus conversion trade-offs, catalyst disposal, and separation challenges. To illustrate the breadth and applicability of the proposed framework, representative industrial processes are discussed, including ammonia synthesis, fluid catalytic cracking, methanol production, alkyl tert-butyl ethers, and aniline. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts: From Synthesis to Application)
51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

9 pages, 781 KiB  
Article
Absence of Sulfur Fertilization at Establishment in Urochloa brizantha Cultivars
by Carlos Eduardo Avelino Cabral, Luis Carlos Oliveira Borges, Anna Cláudia Cardoso Paimel, Eildson Souza de Oliveira Silva, Izabela Aline Gomes da Silva, Camila Fernandes Domingues Duarte, Lucas Gimenes Mota, Anne Caroline Dallabrida Avelino and Carla Heloisa Avelino Cabral
Grasses 2025, 4(3), 31; https://doi.org/10.3390/grasses4030031 - 5 Aug 2025
Abstract
Sulfur-containing fertilizers increase production costs, which leads to low utilization of this nutrient. Thus, evaluating how the absence of sulfur influences the early development of Urochloa brizantha is essential. Study was conducted in a greenhouse at the Federal University of Rondonópolis in a [...] Read more.
Sulfur-containing fertilizers increase production costs, which leads to low utilization of this nutrient. Thus, evaluating how the absence of sulfur influences the early development of Urochloa brizantha is essential. Study was conducted in a greenhouse at the Federal University of Rondonópolis in a completely randomized design, with six treatments in a 3 × 2 factorial scheme, and eight replications. Three cultivars of U. brizantha (Marandu, Xaraés and Piatã) were evaluated under two fertilization strategies: with or without sulfur fertilization. Sufur presence increased the number of leaves and forage mass, in which cultivar Xaraés presented the greatest means. Piatã was the cultivar most sensitive to sulfur deficiency at establishment, which reduced forage mass, number of leaves and number of tillers by 42%, 32%, and 45%, respectively. Despite these differences between cultivars, sulfur efficiently increased the forage yield. Sulfur fertilization increased the concentrations of nutrients in the plants without significantly affecting the uptake of nitrogen, phosphorus, potassium, calcium and magnesium. Sulfur omission resulted in increased phosphorus uptake in all grass. In contrast, Marandu grass exhibited the greatest reduction in sulfur uptake. Therefore, the use of sulfur in the fertilization of grasses is recommended, it is important to evaluate the responses of each cultivar to better adjust the fertilization management. Full article
Show Figures

Figure 1

13 pages, 1841 KiB  
Article
Valorizing Biomass Waste: Hydrothermal Carbonization and Chemical Activation for Activated Carbon Production
by Fidel Vallejo, Diana Yánez, Luis Díaz-Robles, Marcelo Oyaneder, Serguei Alejandro-Martín, Rasa Zalakeviciute and Tamara Romero
Biomass 2025, 5(3), 45; https://doi.org/10.3390/biomass5030045 - 5 Aug 2025
Abstract
This study optimizes the production of activated carbons from hydrothermally carbonized (HTC) biomass using potassium hydroxide (KOH) and phosphoric acid (H3PO4) as activating agents. A 23 factorial experimental design evaluated the effects of agent-to-precursor ratio, dry impregnation time, [...] Read more.
This study optimizes the production of activated carbons from hydrothermally carbonized (HTC) biomass using potassium hydroxide (KOH) and phosphoric acid (H3PO4) as activating agents. A 23 factorial experimental design evaluated the effects of agent-to-precursor ratio, dry impregnation time, and activation duration on mass yield and iodine adsorption capacity. KOH-activated carbons achieved superior iodine numbers (up to 1289 mg/g) but lower mass yields (18–35%), reflecting enhanced porosity at the cost of material loss. Conversely, H3PO4 activation yielded higher mass retention (up to 54.86%) with moderate iodine numbers (up to 1117.3 mg/g), balancing porosity and yield. HTC pretreatment at 190 °C reduced the ash content, thereby enhancing the stability of hydrochar. These findings highlight the trade-offs between adsorption performance and process efficiency, with KOH suited for high-porosity applications (e.g., water purification) and H3PO4 for industrial scalability. The study advances biomass waste valorization, aligning with circular economy principles and offering sustainable solutions for environmental and industrial applications, such as water purification and energy storage. Full article
Show Figures

Figure 1

27 pages, 1491 KiB  
Article
Spent Nuclear Fuel—Waste to Resource, Part 1: Effects of Post-Reactor Cooling Time and Novel Partitioning Strategies in Advanced Reprocessing on Highly Active Waste Volumes in Gen III(+) UOx Fuel Systems
by Alistair F. Holdsworth, Edmund Ireland and Harry Eccles
J. Nucl. Eng. 2025, 6(3), 29; https://doi.org/10.3390/jne6030029 - 5 Aug 2025
Abstract
Some of nuclear power’s primary detractors are the unique environmental challenges and impacts of radioactive wastes generated during fuel cycle operations. Key benefits of spent fuel reprocessing (SFR) are reductions in primary high active waste (HAW) masses, volumes, and lengths of radiotoxicity at [...] Read more.
Some of nuclear power’s primary detractors are the unique environmental challenges and impacts of radioactive wastes generated during fuel cycle operations. Key benefits of spent fuel reprocessing (SFR) are reductions in primary high active waste (HAW) masses, volumes, and lengths of radiotoxicity at the expense of secondary waste generation and high capital and operational costs. By employing advanced waste management and resource recovery concepts in SFR beyond the existing standard PUREX process, such as minor actinide and fission product partitioning, these challenges could be mitigated, alongside further reductions in HAW volumes, masses, and duration of radiotoxicity. This work assesses various current and proposed SFR and fuel cycle options as base cases, with further options for fission product partitioning of the high heat radionuclides (HHRs), rare earths, and platinum group metals investigated. A focus on primary waste outputs and the additional energy that could be generated by the reprocessing of high-burnup PWR fuel from Gen III(+) reactors using a simple fuel cycle model is used; the effects of 5- and 10-year spent fuel cooling times before reprocessing are explored. We demonstrate that longer cooling times are preferable in all cases except where short-lived isotope recovery may be desired, and that the partitioning of high-heat fission products (Cs and Sr) could allow for the reclassification of traditional raffinates to intermediate level waste. Highly active waste volume reductions approaching 50% vs. PUREX raffinate could be achieved in single-target partitioning of the inactive and low-activity rare earth elements, and the need for geological disposal could potentially be mitigated completely if HHRs are separated and utilised. Full article
Show Figures

Figure 1

20 pages, 2267 KiB  
Article
Mechanical Properties of Collagen Implant Used in Neurosurgery Towards Industry 4.0/5.0 Reflected in ML Model
by Marek Andryszczyk, Izabela Rojek and Dariusz Mikołajewski
Appl. Sci. 2025, 15(15), 8630; https://doi.org/10.3390/app15158630 (registering DOI) - 4 Aug 2025
Abstract
Collagen implants in neurosurgery are widely used due to their biocompatibility, biodegradability, and ability to support tissue regeneration, but their mechanical properties, such as low tensile strength and susceptibility to enzymatic degradation, remain challenging. Current technologies are improving these implants through cross-linking, synthetic [...] Read more.
Collagen implants in neurosurgery are widely used due to their biocompatibility, biodegradability, and ability to support tissue regeneration, but their mechanical properties, such as low tensile strength and susceptibility to enzymatic degradation, remain challenging. Current technologies are improving these implants through cross-linking, synthetic reinforcements, and advanced manufacturing techniques such as 3D bioprinting to improve durability and predictability. Industry 4.0 is contributing to this by automating production, using data analytics and machine learning to optimize implant properties and ensure quality control. In Industry 5.0, the focus is shifting to personalization, enabling the creation of patient-specific implants through human–machine collaboration and advanced biofabrication. eHealth integrates digital monitoring systems, enabling real-time tracking of implant healing and performance to inform personalized care. Despite progress, challenges such as cost, material property variability, and scalability for mass production remain. The future lies in smart biomaterials, AI-driven design, and precision biofabrication, which could mean the possibility of creating more effective, accessible, and patient-specific collagen implants. The aim of this article is to examine the current state and determine the prospects for the development of mechanical properties of collagen implant used in neurosurgery towards Industry 4.0/5.0, including ML model. Full article
Show Figures

Figure 1

24 pages, 4384 KiB  
Article
Untargeted Metabolomic Identifies Potential Seasonal Biomarkers of Semen Quality in Duroc Boars
by Notsile H. Dlamini, Serge L. Kameni and Jean M. Feugang
Biology 2025, 14(8), 995; https://doi.org/10.3390/biology14080995 (registering DOI) - 4 Aug 2025
Abstract
High semen quality is vital for reproductive success in the swine industry; however, seasonal fluctuations often compromise this quality. The molecular mechanism underlying these seasonal effects on semen quality remains largely unclear. This study employed untargeted metabolomic profiling of boar seminal plasma (SP) [...] Read more.
High semen quality is vital for reproductive success in the swine industry; however, seasonal fluctuations often compromise this quality. The molecular mechanism underlying these seasonal effects on semen quality remains largely unclear. This study employed untargeted metabolomic profiling of boar seminal plasma (SP) to identify metabolites and metabolic pathways associated with semen quality during the summer and winter months. Semen samples were collected from mature Duroc boars at a commercial boar stud and classified as Passed or Failed based on motility and morphology. SP from five samples per group was analyzed using ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS). In total, 373 metabolites were detected in positive ion mode and 478 in negative ion mode. Several differentially expressed metabolites (DEMs) were identified, including ergothioneine, indole-3-methyl acetate, and avocadyne in the summer, as well as LysoPC, dopamine, and betaine in the winter. These metabolites are associated with key sperm functions, including energy metabolism, antioxidant defense, and capacitation. KEGG pathway analysis indicated enrichment in starch and sucrose metabolism, pyrimidine metabolism, and amino acid metabolism across the seasons. Overall, the results reveal that SP metabolomic profiles vary with the season, thereby influencing semen quality. The identified metabolites may serve as potential biomarkers for assessing semen quality and enhancing reproductive efficiency in swine production. Full article
(This article belongs to the Special Issue Reproductive Physiology and Pathology in Livestock)
Show Figures

Figure 1

37 pages, 3005 KiB  
Review
Printed Sensors for Environmental Monitoring: Advancements, Challenges, and Future Directions
by Amal M. Al-Amri
Chemosensors 2025, 13(8), 285; https://doi.org/10.3390/chemosensors13080285 - 4 Aug 2025
Viewed by 28
Abstract
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors [...] Read more.
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors enable the real-time monitoring of air, water, soil, and climate, providing significant data for data-driven decision-making technologies and policy development to improve the quality of the environment. The development of new materials, such as graphene, conductive polymers, and biodegradable substrates, has significantly enhanced the environmental applications of printed sensors by improving sensitivity, enabling flexible designs, and supporting eco-friendly and disposable solutions. The development of inkjet, screen, and roll-to-roll printing technologies has also contributed to the achievement of mass production without sacrificing quality or performance. This review presents the current progress in printed sensors for environmental applications, with a focus on technological advances, challenges, applications, and future directions. Moreover, the paper also discusses the challenges that still exist due to several issues, e.g., sensitivity, stability, power supply, and environmental sustainability. Printed sensors have the potential to revolutionize ecological monitoring, as evidenced by recent innovations such as Internet of Things (IoT) integration, self-powered designs, and AI-enhanced data analytics. By addressing these issues, printed sensors can develop a better understanding of environmental systems and help promote the UN sustainable development goals. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

19 pages, 3213 KiB  
Article
Comparison and Study on Flavor and Quality Characteristics of Different Grades of Tianshanhong (TSH)
by Shu-Ting Xiao, Xian-Zhou Huang, Jian-Feng Huang, Qing-Yang Wu, Yang Wu, Ting-Ting Deng, Xian-Xian Xu, Hao-Xiang Liu, Xiao-Hui Chen, Shi-Zhong Zheng and Zi-Wei Zhou
Beverages 2025, 11(4), 111; https://doi.org/10.3390/beverages11040111 - 4 Aug 2025
Viewed by 63
Abstract
Tianshanhong (TSH), black tea products originating from the Ningde Tianshan Mountain, has gained significant recognition in the market. However, the chemical characteristics contributing to the flavor of TSH have not yet been reported. To systematically investigate the non-volatile and volatile compounds in TSH, [...] Read more.
Tianshanhong (TSH), black tea products originating from the Ningde Tianshan Mountain, has gained significant recognition in the market. However, the chemical characteristics contributing to the flavor of TSH have not yet been reported. To systematically investigate the non-volatile and volatile compounds in TSH, four grades of TSH were evaluated using national standard sensory methods, revealing that overall quality improved with higher grades. Based on the detection of ultra-performance liquid chromatography–mass spectrometry (UPLC-MS), the content of ester-type catechins was relatively high and decreased with lower grades. A total of 19 amino acids (AAs) were clustered, among them, three amino acids, L-Theanine (L-Thea), Arg, and GABA, showed highly significant correlations with the refreshing taste of TSH. Notably, the content of Arg had the highest correlation with TSH grade, with a coefficient of 0.976 (p < 0.01). According to gas chromatography mass spectrometry (GC-MS) analysis, a total of 861 kinds of volatile compounds were detected, with 282 identified and aroma-active compounds across grades selected using the PLS model. Methyl salicylate and geraniol were particularly notable, showing strong correlations with TSH grades at 0.975 and 0.987 (p < 0.01), respectively. Our findings show that non-volatile and volatile compounds can rationally grade TSH and help understand its flavor quality. Full article
(This article belongs to the Section Tea, Coffee, Water, and Other Non-Alcoholic Beverages)
Show Figures

Figure 1

Back to TopTop