Mechanical Properties and Functional Assessment of PMMA Bone Cements Modified with Glassy Carbon
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Mechanical Testing
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
5. Limitations and Future Plans
- Evaluation of the fatigue properties and creep resistance of selected PMMA + GC composite formulations;
- Microstructure analysis using imaging methods (SEM and micro-CT);
- Thermal properties (DSC and TGA) and residual monomer release tests;
- Biocompatibility tests and evaluation of cytotoxicity and osteoblast activity in vitro;
- Optimisation of the admixture mixing and homogenisation process under operating theatre-like conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNTs | Carbon nanotubes |
DSC | Differential scanning calorimetry |
EDS | Energy-dispersive X-ray spectroscopy |
FEM | Finite element method |
GO | Graphene oxide |
HA | Hydroxyapatite |
HSD test | Honestly significant difference test |
ISO | International Organization for Standardization |
MPa | Megapascal |
MRT | Multiple range test |
PMMA | Poly(methyl methacrylate) |
SEM | Scanning electron microscopy |
TCP | Tricalcium phosphate |
TGA | Thermogravimetric analysis |
References
- Mounika, C.; Tadge, T.; Keerthana, M.; Velyutham, R.; Kapusetti, G. Advancements in poly(methyl Methacrylate) bone cement for enhanced osteoconductivity and mechanical properties in vertebroplasty: A comprehensive review. Med. Eng. Phys. 2023, 120, 104049. [Google Scholar] [CrossRef]
- Quan, Q.; Gongping, X.; Ruisi, N.; Shiwen, L. New Research Progress of Modified Bone Cement Applied to Vertebroplasty. World Neurosurg. 2023, 176, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, R.; Szabelski, J.; Maksymiuk, J. Seasoning Polymethyl Methacrylate (PMMA) Bone Cements with Incorrect Mix Ratio. Materials 2019, 12, 3073. [Google Scholar] [CrossRef] [PubMed]
- Choryłek, P. Vertebroplasty and kyphoplasty-advantages and disadvantages used bone cement of PMMA. J. Achiev. Mater. Manuf. Eng. 2019, 92, 36–49. [Google Scholar]
- Pandey, J.; Rajput, S. Orthopedic Implants: Necessity of Coating, Their Advantages, and Challenges. J. Bio-Tribo-Corros. 2025, 11, 64. [Google Scholar] [CrossRef]
- Ardelean, A.I.; Mârza, S.M.; Marica, R.; Dragomir, M.F.; Rusu-Moldovan, A.O.; Moldovan, M.; Pașca, P.M.; Oana, L. Evaluation of Biocomposite Cements for Bone Defect Repair in Rat Models. Life 2024, 14, 1097. [Google Scholar] [CrossRef]
- Karpinski, R.; Szabelski, J.; Maksymiuk, J. Analysis of the properties of bone cement with respect to its manufacturing and typical service lifetime conditions. MATEC Web Conf. 2018, 244, 01004. [Google Scholar] [CrossRef]
- Lee, C. The Mechanical Properties of PMMA Bone Cement. In The Well-Cemented Total Hip Arthroplasty; Springer: Berlin/Heidelberg, Germany, 2005; pp. 60–66. ISBN 978-3-540-24197-3. [Google Scholar]
- Dunne, N.J.; Orr, J.F.; Mushipe, M.T.; Eveleigh, R.J. The relationship between porosity and fatigue characteristics of bone cements. Biomaterials 2003, 24, 239–245. [Google Scholar] [CrossRef]
- Wang, J.-S.; Dunne, N. Bone cement fixation: Acrylic cements. In Joint Replacement Technology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 212–251. ISBN 978-1-84569-245-2. [Google Scholar]
- Tzagiollari, A.; McCarthy, H.O.; Levingstone, T.J.; Dunne, N.J. Biodegradable and Biocompatible Adhesives for the Effective Stabilisation, Repair and Regeneration of Bone. Bioengineering 2022, 9, 250. [Google Scholar] [CrossRef]
- Soleymani Eil Bakhtiari, S.; Bakhsheshi-Rad, H.R.; Karbasi, S.; Tavakoli, M.; Razzaghi, M.; Ismail, A.F.; RamaKrishna, S.; Berto, F. Polymethyl Methacrylate-Based Bone Cements Containing Carbon Nanotubes and Graphene Oxide: An Overview of Physical, Mechanical, and Biological Properties. Polymers 2020, 12, 1469. [Google Scholar] [CrossRef]
- Moldovan, F. Role of Serum Biomarkers in Differentiating Periprosthetic Joint Infections from Aseptic Failures after Total Hip Arthroplasties. J. Clin. Med. 2024, 13, 5716. [Google Scholar] [CrossRef]
- Lin, H.; Gao, Z.; Shan, T.; Asilebieke, A.; Guo, R.; Kan, Y.; Li, C.; Xu, Y.; Chu, J. A review on the promising antibacterial agents in bone cement–From past to current insights. J. Orthop. Surg. Res. 2024, 19, 673. [Google Scholar] [CrossRef] [PubMed]
- Angelini, J.; Giuliano, S.; Russiani, F.; Lo Re, F.; Flammini, S.; Cadeo, B.; Martini, L.; Tascini, C.; Baraldo, M. PK/PD Analysis of High-Dose Daptomycin Use in the Treatment of Bone and Joint Infections: Data from a Real-World Setting. Microorganisms 2025, 13, 304. [Google Scholar] [CrossRef]
- Robo, C.; Wenner, D.; Ubhayasekera, S.J.K.A.; Hilborn, J.; Öhman-Mägi, C.; Persson, C. Functional Properties of Low-Modulus PMMA Bone Cements Containing Linoleic Acid. J. Funct. Biomater. 2021, 12, 5. [Google Scholar] [CrossRef]
- Enache, A.-V.; Toader, C.; Onciul, R.; Costin, H.P.; Glavan, L.-A.; Covache-Busuioc, R.-A.; Corlatescu, A.-D.; Ciurea, A.V. Surgical Stabilization of the Spine: A Clinical Review of Spinal Fractures, Spondylolisthesis, and Instrumentation Methods. J. Clin. Med. 2025, 14, 1124. [Google Scholar] [CrossRef]
- Wilczyński, M.; Bieniek, M.; Krakowski, P.; Karpiński, R. Cemented vs. Cementless Fixation in Primary Knee Replacement: A Narrative Review. Materials 2024, 17, 1136. [Google Scholar] [CrossRef]
- Phakatkar, A.H.; Shirdar, M.R.; Qi, M.; Taheri, M.M.; Narayanan, S.; Foroozan, T.; Sharifi-Asl, S.; Huang, Z.; Agrawal, M.; Lu, Y.; et al. Novel PMMA bone cement nanocomposites containing magnesium phosphate nanosheets and hydroxyapatite nanofibers. Mater. Sci. Eng. C 2020, 109, 110497. [Google Scholar] [CrossRef]
- Karpiński, R.; Szabelski, J.; Krakowski, P.; Jonak, J.; Falkowicz, K.; Jojczuk, M.; Nogalski, A.; Przekora, A. Effect of various admixtures on selected mechanical properties of medium viscosity bone cements: Part 2—Hydroxyapatite. Compos. Struct. 2024, 343, 118308. [Google Scholar] [CrossRef]
- Jalaludeen, A.M.; Ramakrishnan, R.; Gunasekaran, S.S.; Thajuddin, N.; Selvam, M.K.; Ali, B.M.S.; Dua, R.; Ramakrishnan, P.; Ramesh, M.D.; Vinayagam, S.; et al. Advancements in hydroxyapatite synthesis and surface modifications for emerging biomedical applications. Inorg. Chem. Commun. 2024, 170, 113414. [Google Scholar] [CrossRef]
- Karpiński, R.; Szabelski, J.; Krakowski, P.; Jonak, J.; Falkowicz, K.; Jojczuk, M.; Nogalski, A.; Przekora, A. Effect of various admixtures on selected mechanical properties of medium viscosity bone cements: Part 1—α/β tricalcium phosphate (TCP). Compos. Struct. 2024, 343, 118306. [Google Scholar] [CrossRef]
- Ghasemi, F.; Jahani, A.; Moradi, A.; Ebrahimzadeh, M.H.; Jirofti, N. Different Modification Methods of Poly Methyl Methacrylate (PMMA) Bone Cement for Orthopedic Surgery Applications. Arch. Bone Jt. Surg. 2023, 11, 485–492. [Google Scholar] [CrossRef]
- Wekwejt, M.; Chen, S.; Kaczmarek-Szczepańska, B.; Nadolska, M.; Łukowicz, K.; Pałubicka, A.; Michno, A.; Osyczka, A.M.; Michálek, M.; Zieliński, A. Nanosilver-loaded PMMA bone cement doped with different bioactive glasses—Evaluation of cytocompatibility, antibacterial activity, and mechanical properties. Biomater. Sci. 2021, 9, 3112–3126. [Google Scholar] [CrossRef]
- Mansoori-Kermani, A.; Mashayekhan, S.; Kermani, F.; Abdekhodaie, M.J. The effect of tricalcium silicate incorporation on bioactivity, injectability, and mechanical properties of calcium sulfate/bioactive glass bone cement. Ceram. Int. 2023, 49, 15003–15014. [Google Scholar] [CrossRef]
- Khandaker, M.; Riahinezhad, S.; Jamadagni, H.; Morris, T.; Coles, A.; Vaughan, M. Use of Polycaprolactone Electrospun Nanofibers as a Coating for Poly(methyl methacrylate) Bone Cement. Nanomaterials 2017, 7, 175. [Google Scholar] [CrossRef]
- Cai, P.; Lu, S.; Yu, J.; Xiao, L.; Wang, J.; Liang, H.; Huang, L.; Han, G.; Bian, M.; Zhang, S.; et al. Injectable nanofiber-reinforced bone cement with controlled biodegradability for minimally-invasive bone regeneration. Bioact. Mater. 2023, 21, 267–283. [Google Scholar] [CrossRef]
- Shirdar, M.; Taheri, M.; Qi, M.-L.; Gohery, S.; Farajpour, N.; Narayanan, S.; Foroozan, T.; Sharifi-Asl, S.; Shahbazian-Yassar, R.; Shokuhfar, T. Optimization of the Mechanical Properties and the Cytocompatibility for the PMMA Nanocomposites Reinforced with the Hydroxyapatite Nanofibers and the Magnesium Phosphate Nanosheets. Materials 2021, 14, 5893. [Google Scholar] [CrossRef]
- Paz, E.; Ballesteros, Y.; Abenojar, J.; Del Real, J.C.; Dunne, N.J. Graphene Oxide and Graphene Reinforced PMMA Bone Cements: Evaluation of Thermal Properties and Biocompatibility. Materials 2019, 12, 3146. [Google Scholar] [CrossRef]
- Karpiński, R.; Szabelski, J.; Krakowski, P.; Jonak, J.; Falkowicz, K.; Jojczuk, M.; Nogalski, A.; Przekora, A. Effect of various admixtures on selected mechanical properties of medium viscosity bone cements: Part 3—Glassy carbon. Compos. Struct. 2024, 343, 118307. [Google Scholar] [CrossRef]
- Ormsby, R.; McNally, T.; Mitchell, C.; Halley, P.; Martin, D.; Nicholson, T.; Dunne, N. Effect of MWCNT addition on the thermal and rheological properties of polymethyl methacrylate bone cement. Carbon 2011, 49, 2893–2904. [Google Scholar] [CrossRef]
- Ormsby, R.; McNally, T.; Mitchell, C.; Dunne, N. Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: Effects on mechanical and thermal properties. J. Mech. Behav. Biomed. Mater. 2010, 3, 136–145. [Google Scholar] [CrossRef]
- Gonçalves, G.; Cruz, S.M.; Grácio, J.; Marques, P.A.; Ramírez-Santillán, C.; Vallet-Regí, M.; Portolés, M.-T. New bioactive PMMA-hydroxyapatite based bone cement reinforced with graphene oxide. Graphene 2012, 2012, 10–13. [Google Scholar]
- Ormsby, R.W.; Modreanu, M.; Mitchell, C.A.; Dunne, N.J. Carboxyl functionalised MWCNT/polymethyl methacrylate bone cement for orthopaedic applications. J. Biomater. Appl. 2014, 29, 209–221. [Google Scholar] [CrossRef]
- Ormsby, R.; McNally, T.; Mitchell, C.; Dunne, N. Influence of multiwall carbon nanotube functionality and loading on mechanical properties of PMMA/MWCNT bone cements. J. Mater. Sci. Mater. Med. 2010, 21, 2287–2292. [Google Scholar] [CrossRef]
- Wang, C.; Yu, B.; Fan, Y.; Ormsby, R.W.; McCarthy, H.O.; Dunne, N.; Li, X. Incorporation of multi-walled carbon nanotubes to PMMA bone cement improves cytocompatibility and osseointegration. Mater. Sci. Eng. C 2019, 103, 109823. [Google Scholar] [CrossRef]
- Gonçalves, G.; Marques, P.A.A.P.; Barros-Timmons, A.; Bdkin, I.; Singh, M.K.; Emami, N.; Grácio, J. Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J. Mater. Chem. 2010, 20, 9927–9934. [Google Scholar] [CrossRef]
- Pahlevanzadeh, F.; Bakhsheshi-Rad, H.R.; Ismail, A.F.; Aziz, M.; Chen, X.B. Development of PMMA-Mon-CNT bone cement with superior mechanical properties and favorable biological properties for use in bone-defect treatment. Mater. Lett. 2019, 240, 9–12. [Google Scholar] [CrossRef]
- Uskoković, V. A historical review of glassy carbon: Synthesis, structure, properties and applications. Carbon Trends 2021, 5, 100116. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, X.; Zhang, P.; Yu, H.; Wang, L.; Li, J.; Jiang, W.; Liu, X. Bio-glassy carbon bulks via powder metallurgy enabled by phase evolution of nanodiamond. Ceram. Int. 2025, 51, 24014–24022. [Google Scholar] [CrossRef]
- Hucke, E.E.; Fuys, R.A.; Craig, R.G. Glassy carbon: A potential dental implant material. J. Biomed. Mater. Res. 1973, 7, 263–274. [Google Scholar] [CrossRef]
- Choryłek, P.; Postawa, P. The effect of glassy carbon and cancellous bone admixture on performance and thermal properties of acrylic bone cements. Arch. Mater. Sci. Eng. 2020, 104, 30–40. [Google Scholar]
- Choryłek, P. Comparison of selected properties of cements modified with glassy carbon and cancellous bone. Arch. Mater. Sci. Eng. 2020, 1, 31–41. [Google Scholar] [CrossRef]
- Glassy Carbon Powder, Type 1, 20–50 µm, Alfa AesarTM. Available online: https://www.thermofisher.com/order/catalog/product/041258.30?SID=srch-srp-041258.30 (accessed on 1 May 2025).
- SPI Supplies (Structure Probe, Inc.). Sigradur K Brand Glassy (Vitreous) Carbon Powder Spherical. Available online: https://www.2spi.com/item/z4204gcps/ (accessed on 1 May 2025).
- Kurzweil, P. Supercapacitors|Carbon Technologies. In Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, The Netherlands, 2025; pp. 402–425. ISBN 978-0-323-95822-6. [Google Scholar]
- Tanzi, M.C.; Farè, S.; Candiani, G. Organization, Structure, and Properties of Materials. In Foundations of Biomaterials Engineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–103. ISBN 978-0-08-101034-1. [Google Scholar]
- HTW Hochtemperatur-Werkstoffe GmbH. Technical Data Sheet: Glassy Carbon Powders (GCmb Series); HTW Hochtemperatur-Werkstoffe GmbH: Thierhaupten, Germany, 2023. [Google Scholar]
- ISO 5833:2002; Implants for Surgery—Acrylic Resin Cements. ISO: Geneva, Switzerland, 2002.
- Szabelski, J.; Karpiński, R.; Krakowski, P.; Jojczuk, M.; Jonak, J.; Nogalski, A. Analysis of the Effect of Component Ratio Imbalances on Selected Mechanical Properties of Seasoned, Medium Viscosity Bone Cements. Materials 2022, 15, 5577. [Google Scholar] [CrossRef]
- Szabelski, J.; Karpiński, R.; Krakowski, P.; Jonak, J. The Impact of Contaminating Poly (Methyl Methacrylate) (PMMA) Bone Cements on Their Compressive Strength. Materials 2021, 14, 2555. [Google Scholar] [CrossRef]
- Karpiński, R.; Szabelski, J.; Krakowski, P.; Jonak, J. Effect of Physiological Saline Solution Contamination on Selected Mechanical Properties of Seasoned Acrylic Bone Cements of Medium and High Viscosity. Materials 2020, 14, 110. [Google Scholar] [CrossRef]
- Liawrungrueang, W.; Ungphaiboon, S.; Jitsurong, A.; Ingviya, N.; Tangtrakulwanich, B.; Yuenyongviwat, V. In vitro elution characteristics of gentamicin-impregnated Polymethylmethacrylate: Premixed with a second powder vs. liquid Lyophilization. BMC Musculoskelet. Disord. 2021, 22, 5. [Google Scholar] [CrossRef]
- Aydınoğlu, A. Enhancing orthopedic outcomes: A comparative analysis of gentamicin sulphate and nanosilver in bone cement. Heliyon 2024, 10, e35189. [Google Scholar] [CrossRef]
- Robu, A.; Antoniac, A.; Grosu, E.; Vasile, E.; Raiciu, A.D.; Iordache, F.; Antoniac, V.I.; Rau, J.V.; Yankova, V.G.; Ditu, L.M.; et al. Additives Imparting Antimicrobial Properties to Acrylic Bone Cements. Materials 2021, 14, 7031. [Google Scholar] [CrossRef]
- Lou, C.; Xu, J.; Wang, T.; Ren, W. Microstructure and pore structure of polymer-cement composite joint sealants. Sci. Rep. 2021, 11, 1427. [Google Scholar] [CrossRef]
- Świeczko-Żurek, B.; Zieliński, A.; Bociąga, D.; Rosińska, K.; Gajowiec, G. Influence of Different Nanometals Implemented in PMMA Bone Cement on Biological and Mechanical Properties. Nanomaterials 2022, 12, 732. [Google Scholar] [CrossRef]
- Khandaker, M.; Vaughan, M.; Morris, T.; White, J.; Meng, Z. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement. Int. J. Nanomed. 2014, 9, 2699–2712. [Google Scholar] [CrossRef]
- Bain, E.D.; Mrozek, R.A.; Lenhart, J.L. Role of weak particle-matrix interfacial adhesion in deformation and fracture mechanisms of rigid particulate-filled poly(methyl methacrylate). Mech. Mater. 2017, 104, 1–12. [Google Scholar] [CrossRef]
- Meng, Q.; Kuan, H.-C.; Araby, S.; Kawashima, N.; Saber, N.; Wang, C.H.; Ma, J. Effect of interface modification on PMMA/graphene nanocomposites. J. Mater. Sci. 2014, 49, 5838–5849. [Google Scholar] [CrossRef]
- Kim, G.H.; Hwang, S.W.; Jung, B.N.; Kang, D.; Shim, J.K.; Seo, K.H. Effect of PMMA/Silica Hybrid Particles on Interfacial Adhesion and Crystallization Properties of Poly(lactic acid)/Block Acrylic Elastomer Composites. Polymers 2020, 12, 2231. [Google Scholar] [CrossRef]
- Shi, S.-C.; Zeng, X.-X. Silica silanization graft-strengthening bone cement poly(methyl methacrylate): Process and dynamic mechanical properties. Mater. Res. Express 2024, 11, 025005. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, T.; Luo, J.; Liu, R.; Ngai, T.; Sun, G. Unraveling the Complexities of Silica Nanoparticle Adsorption onto Polymer Latexes in Pickering Emulsion Polymerization. Langmuir 2024, 40, 18652–18660. [Google Scholar] [CrossRef]
- Colver, P.J.; Colard, C.A.L.; Bon, S.A.F. Multilayered Nanocomposite Polymer Colloids Using Emulsion Polymerization Stabilized by Solid Particles. J. Am. Chem. Soc. 2008, 130, 16850–16851. [Google Scholar] [CrossRef]
- Tham, D.Q.; Huynh, M.D.; Linh, N.T.D.; Van, D.T.C.; Cong, D.V.; Dung, N.T.K.; Trang, N.T.T.; Lam, P.V.; Hoang, T.; Lam, T.D. PMMA Bone Cements Modified with Silane-Treated and PMMA-Grafted Hydroxyapatite Nanocrystals: Preparation and Characterization. Polymers 2021, 13, 3860. [Google Scholar] [CrossRef]
- Kausch, H.H.; Michler, G.H. Effect of nanoparticle size and size-distribution on mechanical behavior of filled amorphous thermoplastic polymers. J. Appl. Polym. Sci. 2007, 105, 2577–2587. [Google Scholar] [CrossRef]
- Miola, M.; Lucchetta, G.; Verné, E. Physical, Mechanical, and Biological Properties of PMMA-Based Composite Bone Cement Containing Silver-Doped Bioactive and Antibacterial Glass Particles with Different Particles Sizes. Materials 2023, 16, 4499. [Google Scholar] [CrossRef]
- Ferrer-Argemi, L.; Cisquella-Serra, A.; Madou, M.; Lee, J. Temperature-Dependent Electrical and Thermal Conductivity of Glassy Carbon Wires. In Proceedings of the 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, USA, 29 May–1 June 2018; pp. 1280–1288. [Google Scholar]
- Vieira, L.D.S. A review on the use of glassy carbon in advanced technological applications. Carbon 2022, 186, 282–302. [Google Scholar] [CrossRef]
- Fada, R.; Shahgholi, M.; Azimi, R.; Babadi, N.F. Estimation of Porosity Effect on Mechanical Properties in Calcium Phosphate Cement Reinforced by Strontium Nitrate Nanoparticles: Fabrication and FEM Analysis. Arab. J. Sci. Eng. 2024, 49, 1815–1825. [Google Scholar] [CrossRef]
- Machrowska, A.; Szabelski, J.; Karpiński, R.; Krakowski, P.; Jonak, J.; Jonak, K. Use of Deep Learning Networks and Statistical Modeling to Predict Changes in Mechanical Parameters of Contaminated Bone Cements. Materials 2020, 13, 5419. [Google Scholar] [CrossRef] [PubMed]
- Machrowska, A.; Karpiński, R.; Jonak, J.; Szabelski, J.; Krakowski, P. Numerical prediction of the component-ratio-dependent compressive strength of bone cement. Appl. Comput. Sci. 2020, 16, 88–101. [Google Scholar] [CrossRef]
Cement | GC Ratio GC Type | 0% | 1% | 2% | 3% | 5% |
---|---|---|---|---|---|---|
Palamed G | GC 0.4–12 µm | 4.7% | 3.2% | 1.3% | 6.1% | 4.9% |
GC 20–50 µm | 6.8% | 5.9% | 6.8% | 4.1% | ||
Refobacin Plus | GC 0.4–12 µm | 6.1% | 9.6% | 6.5% | 6.7% | * 25.2% |
GC 20–50 µm | 7.8% | * 17.5% | * 14.3% | * 9.9% |
GC Ratio GC Type | 0% | 1% | 2% | 3% | 5% |
---|---|---|---|---|---|
GC 0.4–12 µm | 70.4 ± 3.3 MPa | 69.3 ± 2.2 MPa | 70.7 ± 0.9 MPa | 63.9 ± 3.9 MPa | 67.2 ± 3.3 MPa |
GC 20–50 µm | 70.4 ± 3.3 MPa | 65.2 ± 4.4 MPa | 66.7 ± 3.9 MPa | 65.5 ± 4.4 MPa | 58.6 ± 2.4 MPa |
GC Ratio GC Type | 0% | 1% | 2% | 3% | 5% |
---|---|---|---|---|---|
GC 0.4–12 µm | 69.3 ± 4.3 MPa | 52.9 ± 5.1 MPa | 54.3 ± 3.5 MPa | 49.8 ± 3.3 MPa | 20.2 ± 5.1 MPa |
GC 20–50 µm | 69.3 ± 4.3 MPa | 62.8 ± 4.9 MPa | 4.7 ± 0.8 MPa | 1.8 ± 0.3 MPa | 2.4 ± 0.2 MPa |
Palamed + GC 0.4–12 μm | Palamed + GC 20–50 μm | ||||||
---|---|---|---|---|---|---|---|
GC Ratio | Compressive Strength [MPa] | 1 | 2 | Compressive Strength [MPa] | 1 | 2 | 3 |
0% | 70.45 | X | 70.45 | X | |||
1% | 68.52 | X | X | 65.22 | X | ||
2% | 70.71 | X | 67.83 | X | X | ||
3% | 65.19 | X | 66.45 | X | X | ||
5% | 67.56 | X | X | 58.55 | X |
Refobacin + GC 0.4–12 μm | Refobacin + GC 20–50 μm | |||||||
---|---|---|---|---|---|---|---|---|
GC Ratio | Compressive Strength [MPa] | 1 | 2 | 3 | Compressive Strength [MPa] | 1 | 2 | 3 |
0% | 69.30 | X | 69.30 | X | ||||
1% | 62.84 | X | 52.90 | X | ||||
2% | 4.68 * | X | 54.26 | X | ||||
3% | 1.78 * | X | 49.81 | X | ||||
5% | 2.40 * | X | 20.18 * | X |
Mechanical Parameter | Bone Cement | Amount of GC Admixture [w/w] | |||
---|---|---|---|---|---|
1% | 2% | 3% | 5% | ||
Compressive Strength | Palamed® (Heraeus) | 0.118 | 0.036 | 0.508 | 0.000 |
Refobacin Plus G | 0.014 | 0.000 | 0.000 | 0.000 | |
Young’s modulus | Palamed® (Heraeus) | 0.801 | 0.748 | 0.258 | 0.267 |
Refobacin Plus G | 0.062 | 0.000 | 0.000 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpiński, R.; Szabelski, J. Mechanical Properties and Functional Assessment of PMMA Bone Cements Modified with Glassy Carbon. J. Funct. Biomater. 2025, 16, 254. https://doi.org/10.3390/jfb16070254
Karpiński R, Szabelski J. Mechanical Properties and Functional Assessment of PMMA Bone Cements Modified with Glassy Carbon. Journal of Functional Biomaterials. 2025; 16(7):254. https://doi.org/10.3390/jfb16070254
Chicago/Turabian StyleKarpiński, Robert, and Jakub Szabelski. 2025. "Mechanical Properties and Functional Assessment of PMMA Bone Cements Modified with Glassy Carbon" Journal of Functional Biomaterials 16, no. 7: 254. https://doi.org/10.3390/jfb16070254
APA StyleKarpiński, R., & Szabelski, J. (2025). Mechanical Properties and Functional Assessment of PMMA Bone Cements Modified with Glassy Carbon. Journal of Functional Biomaterials, 16(7), 254. https://doi.org/10.3390/jfb16070254