Head and Neck 3D Bioprinting—A Review on Recent Advancements in Soft Tissue 3D Bioprinting and Medical Applications
Abstract
1. Introduction
2. Head and Neck Soft Tissue 3D (Bio)Printing
2.1. Corneal 3D (Bio)Printing
2.2. Retina 3D (Bio)Printing
2.2.1. Bioprinting Retinal Cells and ECM-Equivalent Conditions
2.2.2. Designing a Heterogeneously Multilayered Build
2.3. Exploring the Feasibility of Developing a Bionic Eye
2.4. Ear Auricle 3D Bioprinting
2.5. Tympanic Membrane 3D (Bio)Printing
2.6. Nose 3D (Bio)Printing
2.7. Periodontal Tissue 3D Bioprinting
2.8. Salivary Glands 3D Bioprinting
2.9. Skin and Hair 3D Bioprinting
2.10. Exploring the Feasibility of a Bionic Neck
2.11. Larynx 3D Bioprinting
2.12. Other Neck Elements and Future Possibilities
3. Vascularization Possibilities and Neural Control for 3D Models
4. Summary on 3D Bioprinting Technologies
5. Challenges and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, I.S. Functional Vascular Anatomy of the Head and Neck. Interv. Neuroradiol. 2003, 9, 29–30. [Google Scholar] [CrossRef] [PubMed]
- Wali, R.; Halai, T.; Koshal, S. A Review of Head and Neck Clinical Anatomy for the General Dental Practitioner. Dent. Update 2020, 47, 62–70. [Google Scholar] [CrossRef]
- Levin, M.; Baskin, S.M.; Bigal, M.E.; Lipton, R.B.; Markley, H.G.; McGeeney, B.E.; Newman, L.C.; Rapoport, A.M.; Rapoport, M.J.; Shapiro, R.E.; et al. Head Pain Anatomy and Physiology. In Comprehensive Review of Headache Medicine; Levin, M., Ed.; Oxford University Press: Oxford, UK, 2008. [Google Scholar] [CrossRef]
- Bose, P.; Brockton, N.T.; Dort, J.C. Head and neck cancer: From anatomy to biology. Int. J. Cancer 2013, 133, 2013–2023. [Google Scholar] [CrossRef] [PubMed]
- Kohan, E.J.; Wirth, G.A. Anatomy of the neck. Clin. Plast. Surg. 2014, 41, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kademani, D.; Mardini, S.; Moran, S.L. Reconstruction of head and neck defects: A systematic approach to treatment. Semin. Plast. Surg. 2008, 22, 141–155. [Google Scholar] [CrossRef]
- Eckardt, A.; Meyer, A.; Laas, U.; Hausamen, J.-E. Reconstruction of defects in the head and neck with free flaps: 20 years experience. Br. J. Oral. Maxillofac. Surg. 2007, 45, 11–15. [Google Scholar] [CrossRef]
- Hurvitz, K.A.; Kobayashi, M.; Evans, G.R. Current options in head and neck reconstruction. Plast. Reconstr. Surg. 2006, 118, 122e–133e. [Google Scholar] [CrossRef]
- Ceradini, D.J.; Tran, D.L.; Dedania, V.S.; Gelb, B.E.; Cohen, O.D.; Flores, R.L.; Levine, J.P.; Saadeh, P.B.; Staffenberg, D.A.; Ben Youss, Z.; et al. Combined Whole Eye and Face Transplant: Microsurgical Strategy and 1-Year Clinical Course. JAMA 2024, 332, 1551–1558. [Google Scholar] [CrossRef]
- Canavero, S.; Lebenstein-Gumovski, M.V.; Kim, C.Y. The rise of transplantation neurosurgery: Spinal cord, eye, brain. Surg. Neurol. Int. 2024, 15, 478. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Chen, G.; Wang, W.J.; Ma, H.; Wen, H.C.; Wang, W. Comparative Efficacy of Masseteric-to-Facial Nerve Transfer with and without Fascia Lata Grafts in Reanimating Facial Paralysis. Plast. Reconstr. Surg. 2025, 155, 1011–1022. [Google Scholar] [CrossRef]
- Tripathi, S.; Mandal, S.S.; Bauri, S.; Maiti, P. 3D bioprinting and its innovative approach for biomedical applications. MedComm 2023, 4, e194. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Yuan, C.; Liang, Q.; Ba, Y.; Xu, H.; Weng, S.; Zhang, Y.; Zuo, A.; Liu, S.; Luo, P.; et al. 3D Bioprinting for Engineering Organoids and Organ-on-a-Chip: Developments and Applications. Med. Res. Rev. 2025. [Google Scholar] [CrossRef]
- Periferakis, A.; Periferakis, A.-T.; Troumpata, L.; Dragosloveanu, S.; Timofticiuc, I.-A.; Georgatos-Garcia, S.; Scheau, A.-E.; Periferakis, K.; Caruntu, A.; Badarau, I.A.; et al. Use of Biomaterials in 3D Printing as a Solution to Microbial Infections in Arthroplasty and Osseous Reconstruction. Biomimetics 2024, 9, 154. [Google Scholar] [CrossRef]
- Dong, T.; Li, R.; Lu, Z.; Zhou, J.; Xu, M.T.; Feng, S.; Cui, T.; Gu, N. 3D-bioprinted multifunctional artificial skin patches with synergistic antimicrobial-mechanoadaptive functions for accelerating infected wound healing. Int. J. Biol. Macromol. 2025, 318, 144844. [Google Scholar] [CrossRef]
- Timofticiuc, I.-A.; Dragosloveanu, S.; Caruntu, A.; Scheau, A.-E.; Badarau, I.A.; Garofil, N.D.; Didilescu, A.C.; Caruntu, C.; Scheau, C. 3D Bioprinting in Limb Salvage Surgery. J. Funct. Biomater. 2024, 15, 383. [Google Scholar] [CrossRef] [PubMed]
- Algellay, M.; Sarker, S.D.; Roberts, M.; Bosworth, L.A.; Ehtezazi, T. The potential applications of nanocomposites in 3D-printed drug delivery systems. J. Pharm. Pharmacol. 2025, rgaf028. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, Y.; Yang, Q.; Xu, F. Engineering bio-inks for 3D bioprinting cell mechanical microenvironment. Int. J. Bioprinting 2022, 9, 632. [Google Scholar] [CrossRef]
- Gungor-Ozkerim, P.S.; Inci, I.; Zhang, Y.S.; Khademhosseini, A.; Dokmeci, M.R. Bioinks for 3D bioprinting: An overview. Biomater. Sci. 2018, 6, 915–946. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wehrle, E.; Rubert, M.; Müller, R. 3D bioprinting of human tissues: Biofabrication, bioinks, and bioreactors. Int. J. Mol. Sci. 2021, 22, 3971. [Google Scholar] [CrossRef]
- Hinton, T.J.; Lee, A.; Feinberg, A.W. 3D bioprinting from the micrometer to millimeter length scales: Size does matter. Curr. Opin. Biomed. Eng. 2017, 1, 31–37. [Google Scholar] [CrossRef]
- Taşoğlu, S.; Demirci, U. Bioprinting for Stem Cell Research. Trends Biotechnol. 2013, 31, 10–19. [Google Scholar] [CrossRef]
- Liu, W.; Heinrich, M.A.; Zhou, Y.; Akpek, A.; Hu, N.; Liu, X.; Guan, X.; Zhong, Z.; Jin, X.; Khademhosseini, A.; et al. Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks. Adv. Healthc. Mater. 2017, 6, 1601451. [Google Scholar] [CrossRef] [PubMed]
- Duan, B.; Hockaday, L.A.; Kang, K.H.; Butcher, J.T. 3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/Gelatin Hydrogels. J. Biomed. Mater. Res. Part A 2012, 101A, 1255–1264. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Arneri, A.; Bersini, S.; Shin, S.R.; Zhu, K.; Goli-Malekabadi, Z.; Aleman, J.; Colosi, C.; Busignani, F.; Dell’erba, V.; et al. Bioprinting 3D Microfibrous Scaffolds for Engineering Endothelialized Myocardium and Heart-on-a-Chip. Biomaterials 2016, 110, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Deng, W.; Lin, H. Sustainability through Biomimicry: A Comprehensive Review of Bionic Design Applications. Biomimetics 2024, 9, 507. [Google Scholar] [CrossRef]
- Ramirez-Garcia, M.A.; Sloan, S.R.; Nidenberg, B.; Khalifa, Y.M.; Buckley, M.R. Depth-dependent out-of-plane young’s modulus of the human cornea. Curr. Eye Res. 2018, 43, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Randleman, J.B.; Dawson, D.G.; Grossniklaus, H.E.; McCarey, B.E.; Edelhauser, H.F. Depth-dependent cohesive tensile strength in human donor corneas: Implications for refractive surgery. J. Refract. Surg. 2008, 24, S85–S89. [Google Scholar] [CrossRef]
- Qian, X.; Zhang, K.; Liu, Z. A method to determine the mechanical properties of the retina based on an experiment in vivo. Bio-Med. Mater. Eng. 2015, 26, S287–S297. [Google Scholar] [CrossRef]
- Worthington, K.S.; Wiley, L.A.; Bartlett, A.M.; Stone, E.M.; Mullins, R.F.; Salem, A.K.; Guymon, C.A.; Tucker, B.A. Mechanical properties of murine and porcine ocular tissues in compression. Exp. Eye Res. 2014, 121, 194–199. [Google Scholar] [CrossRef]
- Djigo, A.D.; Bérubé, J.; Landreville, S.; Proulx, S. Characterization of a tissue-engineered choroid. Acta Biomater. 2019, 84, 305–316. [Google Scholar] [CrossRef]
- Park, J.; Shin, A.; Jafari, S.; Demer, J.L. Material properties and effect of preconditioning of human sclera, optic nerve, and optic nerve sheath. Biomech. Model. Mechanobiol. 2021, 20, 1353–1363. [Google Scholar] [CrossRef]
- Bos, E.J.; Van Der Laan, K.; Helder, M.N.; Mullender, M.G.; Iannuzzi, D.; Van Zuijlen, P.P. Noninvasive measurement of ear cartilage elasticity on the cellular level: A new method to provide biomechanical information for tissue engineering. Plast. Reconstr. Surg.–Glob. Open 2017, 5, e1147. [Google Scholar] [CrossRef]
- Lem, M.; Pham, J.; Khan, N.; Zaki, D.; Brown, W.; Hu, J.; Ziegler, M.; Athanasiou, K.; Evans, G.R.; Widgerow, A. Biomechanical Characterization of Human Normal Auricular and Microtia Cartilage. Plast. Reconstr. Surg.–Glob. Open 2022, 10, 150–151. [Google Scholar] [CrossRef]
- Luo, H.; Wang, F.; Cheng, C.; Nakmali, D.U.; Gan, R.Z.; Lu, H. Mapping the Young’s modulus distribution of the human tympanic membrane by microindentation. Hear. Res. 2019, 378, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Ishii, T.; Machida, T. Measurement of the mechanical properties of the tympanic membrane with a microtension tester. Acta Oto-Laryngol. 1990, 110, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.; Premakumar, Y.; Seifalian, A.; Szarko, M.; Butler, P. Biomechanical characterisation of the human nasal cartilages; implications for tissue engineering. J. Mater. Sci. Mater. Med. 2016, 27, 11. [Google Scholar] [CrossRef] [PubMed]
- Richmon, J.D.; Sage, A.B.; Wong, V.W.; Chen, A.C.; Pan, C.; Sah, R.L.; Watson, D. Tensile biomechanical properties of human nasal septal cartilage. Am. J. Rhinol. 2005, 19, 617–622. [Google Scholar] [CrossRef]
- Pietrzak, G.; Curnier, A.; Botsis, J.; Scherrer, S.; Wiskott, A.; Belser, U. A nonlinear elastic model of the periodontal ligament and its numerical calibration for the study of tooth mobility. Comput. Methods Biomech. Biomed. Eng. 2002, 5, 91–100. [Google Scholar] [CrossRef]
- Keilig, L.; Drolshagen, M.; Tran, K.l.; Hasan, I.; Reimann, S.; Deschner, J.; Brinkmann, K.t.; Krause, R.; Favino, M.; Bourauel, C. In vivo measurements and numerical analysis of the biomechanical characteristics of the human periodontal ligament. Ann. Anat.-Anat. Anz. 2016, 206, 80–88. [Google Scholar] [CrossRef]
- Ma, H.; Liu, L.; Sun, X.; Liu, M.; Liu, Z. The diagnostic value of shear-wave elastography in the salivary glands of patients with primary Sjögren syndrome. Int. J. Rheum. Dis. 2023, 26, 1314–1320. [Google Scholar] [CrossRef]
- Beatty, M.W.; Wee, A.G.; Marx, D.B.; Ridgway, L.; Simetich, B.; De Sousa, T.C.; Vakilzadian, K.; Schulte, J. Viscoelastic Properties of Human Facial Skin and Comparisons with Facial Prosthetic Elastomers. Materials 2023, 16, 2023. [Google Scholar] [CrossRef]
- Titze, I.R. Mechanical stress in phonation. J. Voice 1994, 8, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Chhetri, D.K.; Zhang, Z.; Neubauer, J. Measurement of Young’s modulus of vocal folds by indentation. J. Voice 2011, 25, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-Y.; Mesquida, P.; Lee, T. Young’s modulus measurement on pig trachea and bronchial airways. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 2089–2092. [Google Scholar]
- Rains, J.; Bert, J.; Roberts, C.; Pare, P. Mechanical properties of human tracheal cartilage. J. Appl. Physiol. 1992, 72, 219–225. [Google Scholar] [CrossRef]
- Marcula, K. Determination of the elongation forces of oesophageal tissue in uniaxial tensile test. Acta Bioeng. Biomech. 2024, 26, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Matyash, M.; Despang, F.; Ikonomidou, C.; Gelinsky, M. Swelling and mechanical properties of alginate hydrogels with respect to promotion of neural growth. Tissue Eng. Part C Methods 2014, 20, 401–411. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Li, L. Enhanced stability and mechanical strength of sodium alginate composite films. Carbohydr. Polym. 2017, 160, 62–70. [Google Scholar] [CrossRef]
- Mostolizadeh, S. Alginate, Polymer Purified from Seaweed. In Alginate-Applications and Future Perspectives; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Zimmerling, A.; Zhou, Y.; Chen, D. Synthesis of Alginate/Collagen Bioink for Bioprinting Respiratory Tissue Models. J. Funct. Biomater. 2024, 15, 90. [Google Scholar] [CrossRef]
- Zafaryab, M.; Vig, K. Three-Dimensional Printing of Hydrogel as Skin Substitute and Comparative Evaluation of Melanin Production. Bioengineering 2025, 12, 270. [Google Scholar] [CrossRef]
- Chen, X.; Wu, T.; Bu, Y.; Yan, H.; Lin, Q. Fabrication and Biomedical Application of Alginate Composite Hydrogels in Bone Tissue Engineering: A Review. Int. J. Mol. Sci. 2024, 25, 7810. [Google Scholar] [CrossRef]
- Avnet, S.; Pompo, G.D.; Borciani, G.; Fischetti, T.; Graziani, G.; Baldini, N. Advantages and Limitations of Using Cell Viability Assays for 3D Bioprinted Constructs. Biomed. Mater. 2024, 19, 025033. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Navidbakhsh, M. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications. Biomed. Eng./Biomed. Tech. 2014, 59, 479–486. [Google Scholar] [CrossRef]
- Pérez-Recalde, M.; Pacheco, E.; Aráoz, B.; Hermida, É.B. Effects of Polyhydroxybutyrate-Co-Hydroxyvalerate Microparticle Loading on Rheology, Microstructure, and Processability of Hydrogel-Based Inks for Bioprinted and Moulded Scaffolds. Gels 2025, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Lameirinhas, N.S.; Teixeira, M.C.; Carvalho, J.P.F.; Valente, B.F.A.; Luís, J.L.; Duarte, I.F.; Pinto, R.J.B.; Oliveira, H.; Oliveira, J.M.; Silvestre, A.J.D.; et al. Biofabrication of HepG2 Cells-Laden 3D Structures Using Nanocellulose-Reinforced Gelatin-Based Hydrogel Bioinks: Materials Characterization, Cell Viability Assessment, and Metabolomic Analysis. ACS Biomater. Sci. Eng. 2025, 11, 3043–3057. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, L.; Li, X.; Zhang, Q.; Mi, X.; Xu, B.; Xu, Y.; Liu, T.; Shen, Y.; Wang, Z.; et al. Improving Thermosensitive Bioink Scaffold Fabrication with a Temperature-Regulated Printhead in Robot-Assisted In Situ Bioprinting System. ACS Omega 2024, 9, 40618–40631. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Lee, B.H.; Tan, L.P. A Dual Crosslinking Strategy to Tailor Rheological Properties of Gelatin Methacryloyl. Int. J. Bioprinting 2024, 3, 130. [Google Scholar] [CrossRef]
- Montanari, M.; Korkeamäki, J.T.; Campodoni, E.; Mohamed-Ahmed, S.; Mustafa, K.; Sandri, M.; Rashad, A. Effects of Magnesium-Doped Hydroxyapatite Nanoparticles on Bioink Formulation for Bone Tissue Engineering. Acs Appl. Bio Mater. 2025, 8, 535–547. [Google Scholar] [CrossRef]
- Denton, O.; Wan, Y.; Beattie, L.; Jack, T.; McGoldrick, P.; McAllister, H.; Mullan, C.; Douglas, C.M.; Shu, W. Understanding the Role of Biofilms in Acute Recurrent Tonsillitis through 3D Bioprinting of a Novel Gelatin-Pegda Hydrogel. Bioengineering 2024, 11, 202. [Google Scholar] [CrossRef]
- Farasatkia, A.; Kharaziha, M.; Ashrafizadeh, F.; Salehi, S. Transparent silk/gelatin methacrylate (GelMA) fibrillar film for corneal regeneration. Mater. Sci. Eng. C 2021, 120, 111744. [Google Scholar] [CrossRef]
- Ferchichi, E.; Stealey, S.; Bogert, P.; Zustiak, S.P. Tunable Gelatin Methacrylate Polyethylene Glycol Diacrylate Hydrogels for Cell Mechanosensing Applications. Front. Biomater. Sci. 2024, 3, 1408748. [Google Scholar] [CrossRef]
- Schlauch, D.; Ebbecke, J.P.; Meyer, J.; Fleischhammer, T.; Pirmahboub, H.; Kloke, L.; Kara, S.; Lavrentieva, A.; Pepelanova, I. Development of a Human Recombinant Collagen for Vat Polymerization-Based Bioprinting. Biotechnol. J. 2024, 19, e202400393. [Google Scholar] [CrossRef]
- González-Martínez, D.; Carpio, M.B.; Tafoya, A.A.; González-Martínez, E.; Hirota, J.A.; Moran-Mirabal, J. GelMA-Carbopol Bioinks with Low Total Solids Content for High-Fidelity Extrusion 3D Bioprinting of Dynamic Tissue Biomimetics. ChemRxiv 2024. [Google Scholar] [CrossRef]
- Hwangbo, H.; Chae, S.; Ryu, D.; Kim, G. In Situ Magnetic-Field-Assisted Bioprinting Process Using Magnetorheological Bioink to Obtain Engineered Muscle Constructs. Bioact. Mater. 2025, 45, 417–433. [Google Scholar] [CrossRef]
- Deidda, V.; Ventisette, I.; Langione, M.; Giammarino, L.; Pioner, J.M.; Credi, C.; Carpi, F. 3d-Printable Gelatin Methacrylate-Xanthan Gum Hydrogel Bioink Enabling Human Induced Pluripotent Stem Cell Differentiation Into Cardiomyocytes. J. Funct. Biomater. 2024, 15, 297. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y. The Effect of Gelatin Methatcryloyl (GelMA) on Adipose-Derived Stem Cells Transplantation and Wound Healing. Archives 2025, 1. [Google Scholar] [CrossRef]
- Potes, M.D.A.; Tilton, M.; Mitra, I.; Liu, X.; Dashtdar, B.; Camilleri, E.T.; Elder, B.D.; Lu, L. 3D Bioprinted Chondrogenic Gelatin Methacrylate-Poly(ethylene Glycol) Diacrylate Composite Scaffolds for Intervertebral Disc Restoration. Int. J. Extrem. Manuf. 2024, 7, 015507. [Google Scholar] [CrossRef]
- Suresh, S.; Shenoy, S.J.; Sekar, J.A.; Harikrishnan, V.; Sabareeswaran, A.; Senthilkumar, M.; Kasoju, N.; Velayudhan, S.; Kumar, P.A. Integration of 3D Printed GelMA in Rat Liver: A Pilot Study. J. Bioact. Compat. Polym. 2025, 440, 267–281. [Google Scholar] [CrossRef]
- Mori, H.; Shimizu, K.; Hara, M. Dynamic viscoelastic properties of collagen gels with high mechanical strength. Mater. Sci. Eng. C 2013, 33, 3230–3236. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Z.; Wu, H.; Li, W.; Zheng, L.; Zhao, J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater. Sci. Eng. C 2018, 83, 195–201. [Google Scholar] [CrossRef]
- Jeon, O.; Park, H.; Lee, M.S.; Alsberg, E. In situ cell-only bioprinting of patterned prevascular tissue into bioprinted high-density stem cell-laden microgel bioinks for vascularized bone tissue regeneration. bioRxiv 2025. [Google Scholar] [CrossRef]
- Araújo, I.J.d.S.; Perkins, R.S.; Ibrahim, M.M.; Huang, G.T.-J.; Zhang, W. Bioprinting PDLSC-Laden Collagen Scaffolds for Periodontal Ligament Regeneration. ACS Appl. Mater. Interfaces 2024, 16, 59979–59990. [Google Scholar] [CrossRef]
- Chaurasia, P.; Singh, R.; Mahto, S.K. FRESH-based 3D Bioprinting of Complex Biological Geometries Using Chitosan Bioink. Biofabrication 2024, 16, 045007. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Blanco, J.C.; Pagador, J.B.; Galván-Chacón, V.P.; Sánchez-Peralta, L.F.; Matamoros, M.; Marcos, A.; Sánchez-Margallo, F.M. Computational Simulation-Based Comparative Analysis of Standard 3D Printing and Conical Nozzles for Pneumatic and Piston-Driven Bioprinting. Int. J. Bioprinting 2024, 9, 730. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Murillo, J.A.; Simental-Mendía, M.A.; Moncada-Saucedo, N.K.; Delgado-Gonzalez, P.; Islas, J.F.; Roacho-Pérez, J.A.; Garza-Treviño, E.N. Physical, mechanical, and biological properties of fibrin scaffolds for cartilage repair. Int. J. Mol. Sci. 2022, 23, 9879. [Google Scholar] [CrossRef] [PubMed]
- Hense, D.; Strube, O.I. Glutaraldehyde Cross-Linking of Salt-Induced Fibrinogen Hydrogels. ACS Biomater. Sci. Eng. 2024, 10, 6927–6937. [Google Scholar] [CrossRef]
- Haq, A.; Kumari, V.; Kashyap, V.H.; Goel, J. Comparison of Fibrin Glue with Conventional Suturing in Peripheral Nerve Repairs: A Study of Sensory and Motor Outcomes. Cureus 2024, 16, e63111. [Google Scholar] [CrossRef]
- Shpichka, A.; Osipova, D.; Efremov, Y.; Bikmulina, P.; Kosheleva, N.; Lipina, M.; Bezrukov, E.A.; Sukhanov, R.B.; Solovieva, A.B.; Vosough, M.; et al. Fibrin-Based Bioinks: New Tricks from an Old Dog. Int. J. Bioprinting 2024, 6, 269. [Google Scholar] [CrossRef]
- Bożek, J.; Kurchakova, O.; Michel, J.; Groß, I.; Gerhards, L.; Zhang, Y.; Brand, I.; Bräuer, A.U. Pneumatic Conveying Inkjet Bioprinting for the Processing of Living Cells. Biofabrication 2025, 17, 025003. [Google Scholar] [CrossRef]
- Stefano, A.B.D.; Urrata, V.; Schilders, K.; Franza, M.; Leo, S.; Moschella, F.; Cordova, A.; Toia, F. Three-Dimensional Bioprinting Techniques in Skin Regeneration: Current Insights and Future Perspectives. Life 2025, 15, 787. [Google Scholar] [CrossRef]
- Lipari, S.; Sacco, P.; Marsich, E.; Donati, I. Silk Fibroin-Enriched Bioink Promotes Cell Proliferation in 3d-Bioprinted Constructs. Gels 2024, 10, 469. [Google Scholar] [CrossRef]
- Levett, P.A.; Hutmacher, D.W.; Malda, J.; Klein, T.J.; Engler, A.J. Hyaluronic acid enhances the mechanical properties of tissue-engineered cartilage constructs. PLoS ONE 2014, 9, e113216. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.N.; Birkinshaw, C. Physical properties of crosslinked hyaluronic acid hydrogels. J. Mater. Sci. Mater. Med. 2008, 19, 3335–3343. [Google Scholar] [CrossRef]
- Salih, A.R.C.; Farooqi, H.M.U.; Amin, H.; Karn, P.R.; Meghani, N.; Nagendran, S. Hyaluronic Acid: Comprehensive Review of a Multifunctional Biopolymer. Future J. Pharm. Sci. 2024, 10, 63. [Google Scholar] [CrossRef]
- Tavakoli, S.; Kocatürkmen, A.; Oommen, O.P.; Varghese, O.P. Ultra-Fine 3D Bioprinting of Dynamic Hyaluronic Acid Hydrogel for in Vitro Modeling. Adv. Mater. 2025, e2500315. [Google Scholar] [CrossRef] [PubMed]
- Galocha-León, C.; Antich, C.; Clares-Naveros, B.; Voltes-Martínez, A.; Marchal, J.A.; Gálvez-Martín, P. Design and Characterization of Biomimetic Hybrid Construct Based on Hyaluronic Acid and Alginate Bioink for Regeneration of Articular Cartilage. Pharmaceutics 2024, 16, 1422. [Google Scholar] [CrossRef]
- Nagaraja, K.; Bhattacharyya, A.; Jung, M.; Kim, D.; Khatun, M.R.; Noh, I. 3D Bioprintable Self-Healing Hyaluronic Acid Hydrogel with Cysteamine Grafting for Tissue Engineering. Gels 2024, 10, 780. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, C.; Cheng, S.; Li, Y.; Huang, Y.; Cao, X.; Zhang, Z.; Huang, J. 3D Bioprinting of Double-Layer Conductive Skin for Wound Healing. Adv. Healthc. Mater. 2025, 14, e2404388. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Gao, H.; Song, J.; Li, Y.; Zhang, L.; Cao, X.; Xu, M.; Cai, J. Tough and cell-compatible chitosan physical hydrogels for mouse bone mesenchymal stem cells in vitro. ACS Appl. Mater. Interfaces 2016, 8, 19739–19746. [Google Scholar] [CrossRef]
- Senthil, A.; Sakthivel, V.; Jayanthi, P.; Rahmathullah, A.; Ramachandran, S. Valorization of Chitosan for Sustainable Soap Production: Development, Performance Evaluation, and Hygiene Applications. J. Bioact. Compat. Polym. 2024, 40, 68–83. [Google Scholar] [CrossRef]
- García-García, A.; Pérez-Álvarez, L.; Ruiz-Rubio, L.; Larrea-Sebal, A.; Martin, C.; Vilas-Vilela, J.L. Extrusion-Based 3D Printing of Photocrosslinkable Chitosan Inks. Gels 2024, 10, 126. [Google Scholar] [CrossRef]
- Madadian, E.; Ravanbakhsh, H.; Kameni, F.T.; Rahimnejad, M.; Lerouge, S.; Ahmadi, A. In-Foam Bioprinting: An Embedded Bioprinting Technique with Self-Removable Support Bath. Small Sci. 2024, 4, 2300280. [Google Scholar] [CrossRef]
- Khiari, Z. Recent Developments in Bio-Ink Formulations Using Marine-Derived Biomaterials for Three-Dimensional (3D) Bioprinting. Mar. Drugs 2024, 22, 134. [Google Scholar] [CrossRef]
- Smith, D.L.; Rodriguez-Melendez, D.; Montemayor, M.D.; Convento, M.O.; Grunlan, J.C. Fire Resistant Adhesive from Chitosan. Biomacromolecules 2025, 26, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Normand, V.; Lootens, D.L.; Amici, E.; Plucknett, K.P.; Aymard, P. New insight into agarose gel mechanical properties. Biomacromolecules 2000, 1, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Ahmad, A.; Akter, M.Z.; Choi, Y.J.; Yi, H.G. Bioinks for Bioprinting Using Plant-Derived Biomaterials. Biofabrication 2024, 16, 042004. [Google Scholar] [CrossRef] [PubMed]
- Mierke, C.T. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024, 13, 1638. [Google Scholar] [CrossRef] [PubMed]
- Neuhäusler, A.; Rogg, K.; Schröder, S.; Spiehl, D.; Zora, H.; Arefaine, E.; Schettler, J.; Hartmann, H.; Blaeser, A. Electrospun Microfibers to Enhance Nutrient Supply in Bioinks and 3d-Bioprinted Tissue Precursors. Biofabrication 2024, 17, 015038. [Google Scholar] [CrossRef]
- Zhu, Z.; Ling, S.; Yeo, J.; Zhao, S.; Tozzi, L.; Buehler, M.J.; Omenetto, F.; Li, C.; Kaplan, D.L. High-strength, durable all-silk fibroin hydrogels with versatile processability toward multifunctional applications. Adv. Funct. Mater. 2018, 28, 1704757. [Google Scholar] [CrossRef]
- Fuest, S.; Salviano-Silva, A.; Maire, C.L.; Xu, Y.; Apel, C.; Grust, A.L.C.; Coste, A.D.; Gosau, M.; Ricklefs, F.L.; Smeets, R. Doping of Casted Silk Fibroin Membranes with Extracellular Vesicles for Regenerative Therapy: A Proof of Concept. Sci. Rep. 2024, 14, 3553. [Google Scholar] [CrossRef]
- Lopes, L.M.; Ottaiano, G.Y.; Guedes, L.d.S.; de Moraes, M.A.; Beppu, M.M. Analyzing the Interactions and Miscibility of Silk Fibroin/Mucin Blends. J. Appl. Polym. Sci. 2024, 141, e55343. [Google Scholar] [CrossRef]
- Rouhani, D.S.B.; Singh, N.K.M.; Chao, J.J.M.; Almutairi, A.; Seradj, M.H.; Badowski-Platz, R.B.; Toranto, J.D.M.; Mofid, M.M.M. Superiority of a Silk Surgical Site Wound Closure Device Over Synthetic Dressings. Plast. Reconstr. Surg. 2024, 154, 1233–1244. [Google Scholar] [CrossRef] [PubMed]
- Di Buduo, C.A.; Lunghi, M.; Kuzmenko, V.; Laurent, P.; Della Rosa, G.; Del Fante, C.; Nogare, D.E.D.; Jug, F.; Perotti, C.; Eto, K.; et al. Bioprinting Soft 3D Models of Hematopoiesis Using Natural Silk Fibroin-Based Bioink Efficiently Supports Platelet Differentiation. Adv. Sci. 2024, 11, e2308276. [Google Scholar] [CrossRef] [PubMed]
- Nettey-Oppong, E.E.; Muhammad, R.; Ali, A.; Jeong, H.-W.; Seok, Y.-S.; Kim, S.W.; Choi, S.H. The Impact of Temperature and Pressure on the Structural Stability of Solvated Solid-State Conformations of Bombyx Mori Silk Fibroins: Insights from Molecular Dynamics Simulations. Materials 2024, 17, 5686. [Google Scholar] [CrossRef] [PubMed]
- Temenoff, J.S.; Athanasiou, K.A.; Lebaron, R.G.; Mikos, A.G. Effect of poly (ethylene glycol) molecular weight on tensile and swelling properties of oligo (poly (ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J. Biomed. Mater. Res. An. off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2002, 59, 429–437. [Google Scholar] [CrossRef]
- Thaden, O.; Schneider, N.; Walther, T.; Spiller, E.; Taoum, A.; Göpfrich, K.; Campos, D.D. Bioprinting of Synthetic Cell-Like Lipid Vesicles to Augment the Functionality of Tissues after Manufacturing. Acs Synth. Biol. 2024, 13, 2436–2446. [Google Scholar] [CrossRef]
- Töpfer, V.; Melzer, M.; Snowdon, R.J.; Stahl, A.; Matros, A.; Wehner, G. PEG Treatment Is Unsuitable to Study Root Related Traits as It Alters Root Anatomy in Barley (Hordeum vulgare L.). BMC Plant Biol. 2024, 24, 856. [Google Scholar] [CrossRef]
- Fazel Anvari-Yazdi, A.; Badea, I.; Chen, X. Biomaterials in Postoperative Adhesion Barriers and Uterine Tissue Engineering. Gels 2025, 11, 441. [Google Scholar] [CrossRef]
- Djunaidi, M.C.; Ayuningrum, D.; Maharani, N.D.; Khabibi, K.; Pardoyo, P.; Raharjo, Y.; Susanto, H.; Filardli, A.M.I. Synthesis of Printed Hollow Fiber Membranes Urea as a Membrane Candidate Hemodialysis. Indones. J. Chem. 2024, 24, 1583. [Google Scholar] [CrossRef]
- Ekinci, A.; Gleadall, A.; Johnson, A.A.; Li, L.; Han, X. Mechanical and hydrolytic properties of thin polylactic acid films by fused filament fabrication. J. Mech. Behav. Biomed. Mater. 2021, 114, 104217. [Google Scholar] [CrossRef]
- Gill, A.; Garnier, S. Floreon Technology, Redefining Polylactic Acid. Open Access Gov. 2024, 44, 362–363. [Google Scholar] [CrossRef]
- Pvr, G.K.; Devi, K.D. Devaki. Influence of Manufacturing Parameters on the Properties of 3D Printed Polylactic Acid Carbon Fiber Components. Arch. Metall. Mater. 2025, 1, 97–104. [Google Scholar] [CrossRef]
- Chetan, C.; James, S. Preliminary Investigation on Biodegradable Ureteral Stents Using 3D Printing. J. Manuf. Mater. Process. 2025, 9, 52. [Google Scholar] [CrossRef]
- Peng, E.; Zou, J.T.; Liu, G.; Xu, J. Research Progress of Polylactic Acid and Its Composites for 3D Printing. In Proceedings of the Fifth International Conference on Mechanical Engineering and Materials (ICMEM 2024), Nanchang, China, 15–16 November 2024. [Google Scholar] [CrossRef]
- Palaniyappan, S.; Sivakumar, N.K.; Annamalai, G.; Bodaghi, M.; Saravanamuthukumar, P.; Alageel, O.; Basavarajappa, S.; Hashem, M. Mechanical and Tribological Behaviour of Three-Dimensional Printed Almond Shell Particles Reinforced Polylactic Acid Bio-Composites. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2024, 239, 111–126. [Google Scholar] [CrossRef]
- Costa, C.; Marcondes, T.L.; Calvo, W.A.P.; Kodama, Y. Impact of Electron Beam on PBAT/PLA (Ecovio) Bags by Raman Spectroscopy and Thermogravimetry. Braz. J. Radiat. Sci. 2025, 12, e2774. [Google Scholar] [CrossRef]
- Rejiniemon, T.S.; Raishy, H.R.; Bhamadevi, R.; Binobead, M.A.; Aljowaie, R.M.; Ahalliya, R.M. Banana Pseudo-Stem and Cattle Manure for Lactic Acid Production and the Application of Polylactic Acid-Cellulose Silver Nanoparticle-Based Nanocomposite Films in Food Storage. BioResources 2024, 19, 5654–5671. [Google Scholar] [CrossRef]
- Aniagyei, S.E.; Sims, L.B.; Malik, D.A.; Tyo, K.M.; Curry, K.C.; Kim, W.; Hodge, D.A.; Duan, J.; Steinbach-Rankins, J.M. Evaluation of poly (lactic-co-glycolic acid) and poly (dl-lactide-co-ε-caprolactone) electrospun fibers for the treatment of HSV-2 infection. Mater. Sci. Eng. C 2017, 72, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Ruiz, F.; Núñez-Tapia, I.; Piña-Barba, C.; Álvarez-Pérez, M.A.; Guarino, V.; Serrano-Bello, J. Polycaprolactone for Hard Tissue Regeneration: Scaffold Design and in Vivo Implications. Bioengineering 2025, 12, 46. [Google Scholar] [CrossRef]
- Lv, N.; Zhou, Z.; Hou, M.; Hong, L.; Li, H.; Qian, Z.; Gao, X.; Liu, M. Research Progress of Vascularization Strategies of Tissue-Engineered Bone. Front. Bioeng. Biotechnol. 2024, 11, 1291969. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, H.; Wan, R.; Cai, Y.; Liu, Y.; Wu, Y.; Yang, Y.; Chen, J.; Zhang, D.; Luo, Z.; et al. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv. Healthc. Mater. 2024, 13, e2304196. [Google Scholar] [CrossRef]
- Chen, W.; Chen, M.; Chen, S.; Wang, S.; Huang, Z.; Zhang, L.; Wu, J.; Peng, W.; Li, H.; Wen, F. Decellularization of Fish Tissues for Tissue Engineering and Regenerative Medicine Applications. Regen. Biomater. 2024, 12, rbae138. [Google Scholar] [CrossRef]
- Quan, S.; Yang, J.; Huang, S.; Shao, J.; Liu, Y.; Yang, H. Silk Fibroin as a Potential Candidate for Bone Tissue Engineering Applications. Biomater. Sci. 2025, 13, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Verma, M.; Lakhanpal, S.; Pandey, S.; Kumar, M.R.; Bhat, M.; Sharma, S.; Alam, M.W.; Khan, F. An Updated Review Summarizing the Anticancer Potential of Poly (Lactic-co-Glycolic Acid)(PLGA) Based Curcumin, Epigallocatechin Gallate, and Resveratrol Nanocarriers. Biopolymers 2025, 116, e23637. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.; Kim, J.J.; Jang, J.; Cho, D.W. 3D Bioprinted Unidirectional Neural Network and Its Application for Alcoholic Neurodegeneration. Int. J. Extrem. Manuf. 2025, 7, 055003. [Google Scholar] [CrossRef]
- Pham, T.N.H.; Dang-Luong, P.-T.; Nguyen, H.-P.; Le-Tuan, L.; Cao, X.T.; Nguyen, T.D.; Tran, V.A.; Quang, H.V. Therapeutic Effect of F127-Folate@PLGA/CHL/Ir780 Nanoparticles on Folate Receptor-Expressing Cancer Cells. Beilstein J. Nanotechnol. 2024, 15, 954–964. [Google Scholar] [CrossRef]
- Guerriero, I.; Pesce, C.; Spanò, R.; Sganga, S.; Tirelli, N.; Mascolo, D.D.; Palange, A.L.; Decuzzi, P. On the Biodegradation of Micropatterned Polymeric Films. bioRxiv 2025. [Google Scholar] [CrossRef]
- Lee, G.; Kim, S.J.; Chun, H.; Park, J.K. Multilayered and Heterogeneous Hydrogel Construct Printing System with Crosslinking Aerosol. Biofabrication 2021, 13, 045027. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, Q.; Huang, G.; Shen, M.; Jian, Z.; Thoraval, M.-J.; Lian, Q.; Zhang, X.; Xu, F. Improved Resolution and Fidelity of Droplet-Based Bioprinting by Upward Ejection. ACS Biomater. Sci. Eng. 2019, 5, 4112–4121. [Google Scholar] [CrossRef]
- Fu, Z.; Naghieh, S.; Xu, C.; Wang, C.; Sun, W.; Chen, D. Printability in Extrusion Bioprinting. Biofabrication 2021, 13, 033001. [Google Scholar] [CrossRef]
- LadeaLadea, L.; Zemba, M.; Calancea, M.I.; Călțaru, M.V.; Dragosloveanu, C.D.M.; Coroleucă, R.; Catrina, E.L.; Brezean, I.; Dinu, V. Corneal Epithelial Changes in Diabetic Patients: A Review. Int. J. Mol. Sci. 2024, 25, 3471. [Google Scholar] [CrossRef]
- Gain, P.; Jullienne, R.; He, Z.; Aldossary, M.; Acquart, S.; Cognasse, F.; Thuret, G. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016, 134, 167–173. [Google Scholar] [CrossRef]
- Wang, E.Y.; Kong, X.; Wolle, M.; Gasquet, N.; Ssekasanvu, J.; Mariotti, S.P.; Bourne, R.; Taylor, H.; Resnikoff, S.; West, S. Global trends in blindness and vision impairment resulting from corneal opacity 1984–2020: A meta-analysis. Ophthalmology 2023, 130, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Moshirfar, M.; Thomson, A.C.; Ronquillo, Y. Corneal endothelial transplantation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Isaacson, A.; Swioklo, S.; Connon, C.J. 3D bioprinting of a corneal stroma equivalent. Exp. Eye Res. 2018, 173, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-H.; Moon, S.-K.; Kim, Y.C. Effect of the corneal nano structure on light transmittance. Optik 2017, 144, 647–654. [Google Scholar] [CrossRef]
- Kutlehria, S.; Dinh, T.C.; Bagde, A.; Patel, N.; Gebeyehu, A.; Singh, M. High-throughput 3D bioprinting of corneal stromal equivalents. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 2981–2994. [Google Scholar] [CrossRef]
- Gingras, A.A.; Jansen, P.A.; Smith, C.; Zhang, X.; Niu, Y.; Zhao, Y.; Roberts, C.J.; Herderick, E.D.; Swindle-Reilly, K.E. 3D bioprinting of acellular corneal stromal scaffolds with a low cost modified 3D printer: A feasibility study. Curr. Eye Res. 2023, 48, 1112–1121. [Google Scholar] [CrossRef]
- Meek, K.M. Corneal collagen—Its role in maintaining corneal shape and transparency. Biophys. Rev. 2009, 1, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, S.; Islam, M.M.; Sharifi, H.; Islam, R.; Koza, D.; Reyes-Ortega, F.; Alba-Molina, D.; Nilsson, P.H.; Dohlman, C.H.; Mollnes, T.E.; et al. Tuning gelatin-based hydrogel towards bioadhesive ocular tissue engineering applications. Bioact. Mater. 2021, 6, 3947–3961. [Google Scholar] [CrossRef]
- Tarsitano, M.; Cristiano, M.C.; Fresta, M.; Paolino, D.; Rafaniello, C. Alginate-based composites for corneal regeneration: The optimization of a biomaterial to overcome its limits. Gels 2022, 8, 431. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, F.; Han, D.; Zhang, S.-Y.; Dong, Y.; Li, X.; Ling, L.; Deng, Z.; Cao, X.; Tian, J. 3D bioprinting of corneal decellularized extracellular matrix: GelMA composite hydrogel for corneal stroma engineering. Int. J. Bioprinting 2023, 9, 774. [Google Scholar] [CrossRef]
- Chien, Y.; Hsiao, Y.-J.; Chou, S.-J.; Lin, T.-Y.; Yarmishyn, A.A.; Lai, W.-Y.; Lee, M.-S.; Lin, Y.-Y.; Lin, T.-W.; Hwang, D.-K. Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: Applications, challenges, and emerging opportunities. J. Nanobiotechnology 2022, 20, 511. [Google Scholar] [CrossRef]
- Eiraku, M.; Takata, N.; Ishibashi, H.; Kawada, M.; Sakakura, E.; Okuda, S.; Sekiguchi, K.; Adachi, T.; Sasai, Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011, 472, 51–56. [Google Scholar] [CrossRef]
- Masland, R.H. Cell populations of the retina: The Proctor lecture. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4581–4591. [Google Scholar] [CrossRef]
- Wang, P.; Li, X.; Zhu, W.; Zhong, Z.; Moran, A.; Wang, W.; Zhang, K.; Chen, S. 3D bioprinting of hydrogels for retina cell culturing. Bioprinting 2018, 12, e00029. [Google Scholar] [CrossRef] [PubMed]
- Baranov, P.; Michaelson, A.; Kundu, J.; Carrier, R.L.; Young, M. Interphotoreceptor matrix-poly (ϵ-caprolactone) composite scaffolds for human photoreceptor differentiation. J. Tissue Eng. 2014, 5, 2041731414554139. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, R.; Zarembinski, T.I.; Doty, N.; Jiang, C.; Regatieri, C.; Zhang, X.; Young, M.J. The application of hyaluronic acid hydrogels to retinal progenitor cell transplantation. Tissue Eng. Part A 2013, 19, 135–142. [Google Scholar] [CrossRef]
- Ramsden, C.M.; Powner, M.B.; Carr, A.-J.F.; Smart, M.J.K.; da Cruz, L.; Coffey, P.J. Stem cells in retinal regeneration: Past, present and future. Development 2013, 140, 2576–2585. [Google Scholar] [CrossRef] [PubMed]
- Berman, E.R.; Schwell, H.; Feeney, L. The retinal pigment epithelium: Chemical composition and structure. Investig. Ophthalmol. Vis. Sci. 1974, 13, 675–687. [Google Scholar]
- Vithani, K.; Goyanes, A.; Jannin, V.; Basit, A.W.; Gaisford, S.; Boyd, B.J. An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems. Pharm. Res. 2019, 36, 4. [Google Scholar] [CrossRef]
- Shi, P.; Edgar, T.Y.S.; Yeong, W.Y.; Laude, A. Hybrid three-dimensional (3D) bioprinting of retina equivalent for ocular research. Int. J. Bioprinting 2017, 3, 008. [Google Scholar] [CrossRef]
- Vecchiotti, D.; Di Vito Nolfi, M.; Veglianti, F.; Dall’Aglio, F.; Khan, H.N.; Flati, I.; Verzella, D.; Capece, D.; Alesse, E.; Angelucci, A. A 3D Bioprinting Approach to Studying Retinal Müller Cells. Genes 2024, 15, 1414. [Google Scholar] [CrossRef]
- Masaeli, E.; Marquette, C. Direct-write bioprinting approach to construct multilayer cellular tissues. Front. Bioeng. Biotechnol. 2020, 7, 478. [Google Scholar] [CrossRef] [PubMed]
- Cholkar, K.; Dasari, S.R.; Pal, D.; Mitra, A.K. Eye: Anatomy, physiology and barriers to drug delivery. In Ocular Transporters and Receptors; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–36. [Google Scholar]
- Păsărică, M.A.; Curcă, P.F.; Dragosloveanu, C.D.M.; Grigorescu, A.C.; Nisipașu, C.I. Pathological and Molecular Diagnosis of Uveal Melanoma. Diagnostics 2024, 14, 958. [Google Scholar] [CrossRef] [PubMed]
- Groot, A.L.; Remmers, J.S.; Hartong, D.T. Three-dimensional computer-aided design of a full-color ocular prosthesis with textured iris and sclera manufactured in one single print job. 3D Print. Addit. Manuf. 2021, 8, 343–348. [Google Scholar] [CrossRef]
- Reinhard, J.; Urban, P.; Bell, S.; Carpenter, D.; Sagoo, M.S. Automatic data-driven design and 3D printing of custom ocular prostheses. Nat. Commun. 2024, 15, 1360. [Google Scholar] [CrossRef]
- Boote, C.; Sigal, I.A.; Grytz, R.; Hua, Y.; Nguyen, T.D.; Girard, M.J. Scleral structure and biomechanics. Progress. Retin. Eye Res. 2020, 74, 100773. [Google Scholar] [CrossRef] [PubMed]
- Keeley, F.w.; Morin, J.d.; Vesely, S. Characterization of collagen from normal human sclera. Exp. Eye Res. 1984, 39, 533–542. [Google Scholar] [CrossRef]
- Sit, A.J.; Lin, S.-C.; Kazemi, A.; McLaren, J.W.; Pruet, C.M.; Zhang, X. In vivo noninvasive measurement of young’s modulus of elasticity in human eyes: A feasibility study. J. Glaucoma 2017, 26, 967–973. [Google Scholar] [CrossRef]
- Gibney, R.; Ferraris, E. Bioprinting of collagen type I and II via aerosol jet printing for the replication of dense collagenous tissues. Front. Bioeng. Biotechnol. 2021, 9, 786945. [Google Scholar] [CrossRef]
- Gibney, R.; Patterson, J.; Ferraris, E. High-resolution bioprinting of recombinant human collagen type, I.I.I. Polymers 2021, 13, 2973. [Google Scholar] [CrossRef]
- Lee, S.; Sani, E.S.; Spencer, A.R.; Guan, Y.; Weiss, A.S.; Annabi, N. Human-recombinant-Elastin-based bioinks for 3D bioprinting of vascularized soft tissues. Adv. Mater. 2020, 32, 2003915. [Google Scholar] [CrossRef]
- Mayer, C.; Khoramnia, R. Pupil reconstruction with an artificial iris. Ophthalmol. Z. Dtsch. Ophthalmol. Ges. 2021, 119, 3–12. [Google Scholar]
- Kohnen, T.; Baumeister, M.; Kook, D.; Klaproth, O.K.; Ohrloff, C. Cataract surgery with implantation of an artificial lens. Dtsch. Ärzteblatt Int. 2009, 106, 695. [Google Scholar] [CrossRef]
- Lapp, T.; Wacker, K.; Heinz, C.; Maier, P.; Eberwein, P.; Reinhard, T. Cataract surgery—Indications, techniques, and intraocular lens selection. Dtsch. Ärzteblatt Int. 2023, 120, 377. [Google Scholar] [CrossRef] [PubMed]
- Mishra, D.; Gade, S.; Glover, K.; Sheshala, R.; Singh, T.R.R. Vitreous humor: Composition, characteristics and implication on intravitreal drug delivery. Curr. Eye Res. 2023, 48, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Bishop, P.N.; Crossman, M.V.; Mcleod, D.; Ayad, S. Extraction and characterization of the tissue forms of collagen types II and IX from bovine vitreous. Biochem. J. 1994, 299, 497–505. [Google Scholar] [CrossRef]
- Silva, A.F.; Alves, M.A.; Oliveira, M.S. Rheological behaviour of vitreous humour. Rheol. Acta 2017, 56, 377–386. [Google Scholar] [CrossRef]
- Shafaie, S.; Hutter, V.; Brown, M.B.; Cook, M.T.; Chau, D.Y. Diffusion through the ex vivo vitreal body–bovine, porcine, and ovine models are poor surrogates for the human vitreous. Int. J. Pharm. 2018, 550, 207–215. [Google Scholar] [CrossRef]
- Timofticiuc, I.-A.; Călinescu, O.; Iftime, A.; Dragosloveanu, S.; Caruntu, A.; Scheau, A.-E.; Badarau, I.A.; Didilescu, A.C.; Caruntu, C.; Scheau, C. Biomaterials adapted to VAT photopolymerization in 3D printing: Characteristics and medical applications. J. Funct. Biomater. 2023, 15, 7. [Google Scholar] [CrossRef]
- Del Amo, E.M.; Rimpelä, A.-K.; Heikkinen, E.; Kari, O.K.; Ramsay, E.; Lajunen, T.; Schmitt, M.; Pelkonen, L.; Bhattacharya, M.; Richardson, D. Pharmacokinetic aspects of retinal drug delivery. Progress. Retin. Eye Res. 2017, 57, 134–185. [Google Scholar] [CrossRef]
- Brubaker, R.F. The flow of aqueous humor in the human eye. Trans. Am. Ophthalmol. Soc. 1982, 80, 391. [Google Scholar]
- Ansari, R.R.; Bockle, S.; Rovati, L. New optical scheme for a polarimetric-based glucose sensor. J. Biomed. Opt. 2004, 9, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Gao, Q.; del Prado, Z.N.; Venkateswaran, N.; Mousa, H.M.; Salero, E.; Ye, J.; De Juan-Pardo, E.M.; Sabater, A.L.; Perez, V.L. Establishment of a bi-layered tissue engineered conjunctiva using a 3D-printed melt electrowritten poly-(ε-caprolactone) scaffold. Int. Ophthalmol. 2023, 43, 215–232. [Google Scholar] [CrossRef] [PubMed]
- Maloca, P.M.; Tufail, A.; Hasler, P.W.; Rothenbuehler, S.; Egan, C.; de Carvalho, J.E.R.; Spaide, R.F. 3D printing of the choroidal vessels and tumours based on optical coherence tomography. Acta Ophthalmol. 2019, 97, e313–e316. [Google Scholar] [CrossRef] [PubMed]
- Zopf, D.A.; Flanagan, C.L.; Nasser, H.B.; Mitsak, A.G.; Huq, F.S.; Rajendran, V.; Green, G.E.; Hollister, S.J. Biomechanical evaluation of human and porcine auricular cartilage. Laryngoscope 2015, 125, E262–E268. [Google Scholar] [CrossRef]
- Algazi, V.R.; Duda, R.O.; Satarzadeh, P. Physical and filter pinna models based on anthropometry. In Proceedings of the 122nd Audio Engineering Society Convention, Vienna, Austria, 5–8 May 2007. [Google Scholar]
- Xie, X.; Wu, S.; Mou, S.; Guo, N.; Wang, Z.; Sun, J. Microtissue-based bioink as a chondrocyte microshelter for DLP bioprinting. Adv. Healthc. Mater. 2022, 11, 2201877. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Liu, X.; Wang, S.; Tao, J.; Huang, Y.; Wu, W.; Li, Y.; Zhou, K.; Wei, X. Noninvasive in vivo 3D bioprinting. Sci. Adv. 2020, 6, eaba7406. [Google Scholar] [CrossRef]
- Jackson, A.R.; Gu, W.Y. Transport properties of cartilaginous tissues. Curr. Rheumatol. Rev. 2009, 5, 40–50. [Google Scholar] [CrossRef]
- Tashman, J.W.; Shiwarski, D.J.; Feinberg, A.W. Development of a high-performance open-source 3D bioprinter. Sci. Rep. 2022, 12, 22652. [Google Scholar] [CrossRef]
- Posniak, S.; Chung, J.H.Y.; Liu, X.; Mukherjee, P.; Gambhir, S.; Khansari, A.; Wallace, G.G. Bioprinting of chondrocyte stem cell co-cultures for auricular cartilage regeneration. ACS Omega 2022, 7, 5908–5920. [Google Scholar] [CrossRef]
- Jiang, Y.; Cai, Y.; Zhang, W.; Yin, Z.; Hu, C.; Tong, T.; Lu, P.; Zhang, S.; Neculai, D.; Tuan, R.S.; et al. Human cartilage-derived progenitor cells from committed chondrocytes for efficient cartilage repair and regeneration. Stem Cells Transl. Med. 2016, 5, 733–744. [Google Scholar] [CrossRef]
- Cruz, I.B.M.d.; Severo, A.L.; Azzolin, V.F.; Garcia, L.F.M.; Kuhn, A.; Lech, O. Regenerative potential of the cartilaginous tissue in mesenchymal stem cells: Update, limitations, and challenges☆. Rev. Bras. De Ortop. 2017, 52, 2–10. [Google Scholar] [CrossRef]
- Richter, W. Mesenchymal stem cells and cartilage in situ regeneration. J. Intern. Med. 2009, 266, 390–405. [Google Scholar] [CrossRef]
- Skardal, A.; Mack, D.; Kapetanovic, E.; Atala, A.; Jackson, J.D.; Yoo, J.; Soker, S. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med. 2012, 1, 792–802. [Google Scholar] [CrossRef]
- Tricomi, B.J.; Dias, A.D.; Corr, D.T. Stem cell bioprinting for applications in regenerative medicine. Ann. N. Y. Acad. Sci. 2016, 1383, 115–124. [Google Scholar] [CrossRef]
- Castelhano, L.; Correia, F.; Colaço, T.; Reis, L.; Escada, P. Tympanic membrane perforations: The importance of etiology, size and location. Eur. Arch. Oto-Rhino-Laryngol. 2022, 279, 4325–4333. [Google Scholar] [CrossRef]
- Sarkar, S. A review on the history of tympanoplasty. Indian J. Otolaryngol. Head. Neck Surg. 2013, 65, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-Y.; Wilson, E.; Fuson, A.; Gandhi, N.; Monfaredi, R.; Jenkins, A.; Romero, M.; Santoro, M.; Fisher, J.P.; Cleary, K. Repair of tympanic membrane perforations with customized bioprinted ear grafts using chinchilla models. Tissue Eng. Part A 2018, 24, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Bayram, A.; Muluk, N.B.; Cingi, C.; Bafaqeeh, S.A. Success rates for various graft materials in tympanoplasty–a review. J. Otol. 2020, 15, 107–111. [Google Scholar] [CrossRef]
- Liang, J.; Engles, W.G.; Smith, K.D.; Dai, C.; Gan, R.Z. Mechanical properties of baboon tympanic membrane from young to adult. J. Assoc. Res. Otolaryngol. 2020, 21, 395–407. [Google Scholar] [CrossRef]
- Zhou, L.; Feng, M.; Huang, X.; Duan, M. Fatigue analysis of tympanic membrane after ossiculoplasty. Acta Oto-Laryngol. 2017, 137, 679–685. [Google Scholar] [CrossRef]
- Williams, D.; Thayer, P.; Martinez, H.; Gatenholm, E.; Khademhosseini, A. A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting. Bioprinting 2018, 9, 19–36. [Google Scholar] [CrossRef]
- von Witzleben, M.; Stoppe, T.; Zeinalova, A.; Chen, Z.; Ahlfeld, T.; Bornitz, M.; Bernhardt, A.; Neudert, M.; Gelinsky, M. Multimodal additive manufacturing of biomimetic tympanic membrane replacements with near tissue-like acousto-mechanical and biological properties. Acta Biomater. 2023, 170, 124–141. [Google Scholar] [CrossRef] [PubMed]
- Kozin, E.D.; Black, N.L.; Cheng, J.T.; Cotler, M.J.; McKenna, M.J.; Lee, D.J.; Lewis, J.A.; Rosowski, J.J.; Remenschneider, A.K. Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts. Hear. Res. 2016, 340, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Bedir, T.; Baykara, D.; Yildirim, R.; Calikoglu Koyuncu, A.C.; Sahin, A.; Kaya, E.; Tinaz, G.B.; Insel, M.A.; Topuzogulları, M.; Gunduz, O. Three-dimensional-printed GelMA-KerMA composite patches as an innovative platform for potential tissue engineering of tympanic membrane perforations. Nanomaterials 2024, 14, 563. [Google Scholar] [CrossRef]
- Volandri, G.; Di Puccio, F.; Forte, P.; Carmignani, C. Biomechanics of the tympanic membrane. J. Biomech. 2011, 44, 1219–1236. [Google Scholar] [CrossRef]
- Kern, E.B. The nose structure and function. Postgrad. Med. 1975, 57, 101–103. [Google Scholar] [CrossRef]
- Vertu-Ciolino, D.; Brunard, F.; Courtial, E.-J.; Pasdeloup, M.; Marquette, C.A.; Perrier-Groult, E.; Mallein-Gerin, F.; Malcor, J.-D. Challenges in nasal cartilage tissue engineering to restore the shape and function of the nose. Tissue Eng. Part B Rev. 2024, 30, 581–595. [Google Scholar] [CrossRef]
- Gantumur, E.; Nakahata, M.; Kojima, M.; Sakai, S. Extrusion-based bioprinting through glucose-mediated enzymatic hydrogelation. Int. J. Bioprinting 2020, 6, 250. [Google Scholar] [CrossRef]
- Pitton, M.; Fiorati, A.; Buscemi, S.; Melone, L.; Farè, S.; Contessi Negrini, N. 3D bioprinting of pectin-cellulose nanofibers multicomponent bioinks. Front. Bioeng. Biotechnol. 2021, 9, 732689. [Google Scholar] [CrossRef]
- Shin, S.; Park, S.; Park, M.; Jeong, E.; Na, K.; Youn, H.J.; Hyun, J. Cellulose nanofibers for the enhancement of printability of low viscosity gelatin derivatives. BioResources 2017, 12, 2941–2954. [Google Scholar] [CrossRef]
- Jodat, Y.A.; Kiaee, K.; Jarquin, D.V.; Hernández, R.L.D.l.G.; Wang, T.; Joshi, S.; Rezaei, Z.; de Melo, B.A.G.; Ge, D.; Mannoor, M.S.; et al. A 3D-printed hybrid nasal cartilage with functional electronic olfaction. Adv. Sci. 2020, 7, 1901878. [Google Scholar] [CrossRef]
- Tamura, N.; Hasunuma, K.; Saito, T.; Fujisawa, S. Mechanical and Thermal Properties of Porous Nanocellulose/Polymer Composites: Influence of the Polymer Chemical Structure and Porosity. ACS Omega 2024, 9, 19560–19565. [Google Scholar] [CrossRef] [PubMed]
- Tie, B.S.H.; Manaf, E.; Halligan, E.; Zhuo, S.; Keane, G.; Geever, J.; Geever, L. The Effects of Incorporating Nanoclay in NVCL-NIPAm Hydrogels on Swelling Behaviours and Mechanical Properties. Nanomaterials 2024, 14, 597. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Liang, Y.; Vyhlidal, M.; Erkut, E.J.; Kunze, M.; Mulet-Sierra, A.; Osswald, M.; Ansari, K.; Seikaly, H.; Boluk, Y. In vitro maturation and in vivo stability of bioprinted human nasal cartilage. J. Tissue Eng. 2022, 13, 20417314221086368. [Google Scholar] [CrossRef] [PubMed]
- Roseti, L.; Cavallo, C.; Desando, G.; Parisi, V.; Petretta, M.; Bartolotti, I.; Grigolo, B. Three-dimensional bioprinting of cartilage by the use of stem cells: A strategy to improve regeneration. Materials 2018, 11, 1749. [Google Scholar] [CrossRef]
- Petretta, M.; Desando, G.; Grigolo, B.; Roseti, L. Cartilage tissue engineering by extrusion bioprinting: Process analysis, risk evaluation, and mitigation strategies. Materials 2021, 14, 3528. [Google Scholar] [CrossRef]
- Li, M.; Sun, D.; Zhang, J.; Wang, Y.; Wei, Q.; Wang, Y. Application and development of 3D bioprinting in cartilage tissue engineering. Biomater. Sci. 2022, 10, 5430–5458. [Google Scholar] [CrossRef]
- Derman, I.D.; Yeo, M.; Castaneda, D.C.; Callender, M.; Horvath, M.; Mo, Z.; Xiong, R.; Fleming, E.; Chen, P.; EPeeples, M.; et al. High-throughput bioprinting of the nasal epithelium using patient-derived nasal epithelial cells. Biofabrication 2023, 15, 044103. [Google Scholar]
- Gudapati, H.; Dey, M.; Ozbolat, I. A comprehensive review on droplet-based bioprinting: Past, present and future. Biomaterials 2016, 102, 20–42. [Google Scholar] [CrossRef]
- Park, I.H.; Um, J.Y.; Hong, S.M.; Cho, J.S.; Lee, S.H.; Lee, S.H.; Lee, H.M. Metformin reduces TGF-β1–induced extracellular matrix production in nasal polyp–derived fibroblasts. Otolaryngol.—Head. Neck Surg. 2014, 150, 148–153. [Google Scholar] [CrossRef]
- DeMaria, S.; Ngai, J. The cell biology of smell. J. Cell Biol. 2010, 191, 443–452. [Google Scholar] [CrossRef]
- Fiorellini, J.P.; Stathopoulou, P.G. Anatomy of the periodontium. In Carranza’s Clinical Periodontology, 12th ed.; Elsevier Saunders: St. Louis, MO, USA, 2015; pp. 9–10. [Google Scholar]
- Hughes, F.J. Chapter 34-Periodontium and Periodontal Disease. In Stem Cell Biology and Tissue Engineering in Dental Sciences; Vishwakarma, A., Sharpe, P., Shi, S., Ramalingam, M., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 433–444. [Google Scholar]
- Eke, P.I.; Borgnakke, W.S.; Genco, R.J. Recent epidemiologic trends in periodontitis in the USA. Periodontology 2000 2020, 82, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Ong, G. Periodontal disease and tooth loss. Int. Dent. J. 1998, 48, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Liu, R.; Li, G.; Deng, M.; Liu, L.; Zeng, X.-T.; Nie, X. History of periodontitis as a risk factor for long-term survival of dental implants: A meta-analysis. Int. J. Oral. Maxillofac. Implant. 2014, 29, 1271–1280. [Google Scholar] [CrossRef] [PubMed]
- Sanz, I.; Alonso, B.; Carasol, M.; Herrera, D.; Sanz, M. Nonsurgical treatment of periodontitis. J. Evid. Based Dent. Pract. 2012, 12, 76–86. [Google Scholar] [CrossRef]
- Cobb, C.M.; Low, S.B.; Coluzzi, D.J. Lasers and the treatment of chronic periodontitis. Dent. Clin. 2010, 54, 35–53. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.; Wang, J.; Jin, F. Periodontitis promotes the proliferation and suppresses the differentiation potential of human periodontal ligament stem cells. Int. J. Mol. Med. 2015, 36, 915–922. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Y.; Ding, G.; Fang, D.; Zhang, C.; Bartold, P.M.; Gronthos, S.; Shi, S.; Wang, S. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells 2008, 26, 1065–1073. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, M.; Hao, M.; Tang, J. Periodontal ligament stem cells in the periodontitis niche: Inseparable interactions and mechanisms. J. Leukoc. Biol. 2021, 110, 565–576. [Google Scholar] [CrossRef]
- Miao, G.; Liang, L.; Li, W.; Ma, C.; Pan, Y.; Zhao, H.; Zhang, Q.; Xiao, Y.; Yang, X. 3D bioprinting of a bioactive composite scaffold for cell delivery in periodontal tissue regeneration. Biomolecules 2023, 13, 1062. [Google Scholar] [CrossRef]
- Chen, Z.; Lv, Y. Gelatin/sodium alginate composite hydrogel with dynamic matrix stiffening ability for bone regeneration. Compos. Part B Eng. 2022, 243, 110162. [Google Scholar] [CrossRef]
- Ansari, S.; Pouraghaei Sevari, S.; Chen, C.; Sarrion, P.; Moshaverinia, A. RGD-modified alginate–GelMA hydrogel sheet containing gingival mesenchymal stem cells: A unique platform for wound healing and soft tissue regeneration. ACS Biomater. Sci. Eng. 2021, 7, 3774–3782. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Sarrion, P.; Hasani-Sadrabadi, M.M.; Aghaloo, T.; Wu, B.M.; Moshaverinia, A. Regulation of the fate of dental-derived mesenchymal stem cells using engineered alginate-GelMA hydrogels. J. Biomed. Mater. Res. Part A 2017, 105, 2957–2967. [Google Scholar] [CrossRef] [PubMed]
- Francis, L.; Meng, D.; Knowles, J.C.; Roy, I.; Boccaccini, A.R. Multi-functional P (3HB) microsphere/45S5 Bioglass®-based composite scaffolds for bone tissue engineering. Acta Biomater. 2010, 6, 2773–2786. [Google Scholar] [CrossRef]
- Hossain, K.M.Z.; Patel, U.; Ahmed, I. Development of microspheres for biomedical applications: A review. Progress. Biomater. 2015, 4, 1–19. [Google Scholar] [CrossRef]
- Bendtsen, S.T.; Quinnell, S.P.; Wei, M. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J. Biomed. Mater. Res. Part A 2017, 105, 1457–1468. [Google Scholar] [CrossRef]
- Wenz, A.; Borchers, K.; Tovar, G.E.; Kluger, P.J. Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting. Biofabrication 2017, 9, 044103. [Google Scholar] [CrossRef]
- Koch, F.; Thaden, O.; Conrad, S.; Tröndle, K.; Finkenzeller, G.; Zengerle, R.; Kartmann, S.; Zimmermann, S.; Koltay, P. Mechanical properties of polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting with alginate-gelatin hydrogel. J. Mech. Behav. Biomed. Mater. 2022, 130, 105219. [Google Scholar] [CrossRef]
- Mousavi Nejad, Z.; Zamanian, A.; Saeidifar, M.; Vanaei, H.R.; Salar Amoli, M. 3D bioprinting of polycaprolactone-based scaffolds for pulp-dentin regeneration: Investigation of physicochemical and biological behavior. Polymers 2021, 13, 4442. [Google Scholar] [CrossRef]
- Cunniffe, G.M.; Gonzalez-Fernandez, T.; Daly, A.; Sathy, B.N.; Jeon, O.; Alsberg, E.; Kelly, D.J. Three-dimensional bioprinting of polycaprolactone reinforced gene activated bioinks for bone tissue engineering. Tissue Eng. Part A 2017, 23, 891–900. [Google Scholar] [CrossRef]
- Singh, S.; Prakash, C.; Singh, M.; Mann, G.S.; Gupta, M.K.; Singh, R.; Ramakrishna, S. Poly-lactic-Acid: Potential Material for Bio-printing Applications. In Biomanufacturing; Prakash, C., Singh, S., Singh, R., Ramakrishna, S., Pabla, B.S., Puri, S., Uddin, M.S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 69–87. [Google Scholar]
- Narayanan, L.K.; Huebner, P.; Fisher, M.B.; Spang, J.T.; Starly, B.; Shirwaiker, R.A. 3D-bioprinting of polylactic acid (PLA) nanofiber–alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater. Sci. Eng. 2016, 2, 1732–1742. [Google Scholar] [CrossRef] [PubMed]
- Stepanovska, J.; Supova, M.; Hanzalek, K.; Broz, A.; Matejka, R. Collagen bioinks for bioprinting: A systematic review of hydrogel properties, bioprinting parameters, protocols, and bioprinted structure characteristics. Biomedicines 2021, 9, 1137. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Suen, S.K.Q.; Ng, W.L.; Ma, W.C.; Yeong, W.Y. Bioprinting of collagen: Considerations, potentials, and applications. Macromol. Biosci. 2021, 21, 2000280. [Google Scholar] [CrossRef]
- Osidak, E.O.; Kozhukhov, V.I.; Osidak, M.S.; Domogatsky, S.P. Collagen as bioink for bioprinting: A comprehensive review. Int. J. Bioprinting 2020, 6, 270. [Google Scholar] [CrossRef] [PubMed]
- Emmermacher, J.; Spura, D.; Cziommer, J.; Kilian, D.; Wollborn, T.; Fritsching, U.; Steingroewer, J.; Walther, T.; Gelinsky, M.; Lode, A. Engineering considerations on extrusion-based bioprinting: Interactions of material behavior, mechanical forces and cells in the printing needle. Biofabrication 2020, 12, 025022. [Google Scholar] [CrossRef]
- Lee, U.-L.; Yun, S.; Cao, H.-L.; Ahn, G.; Shim, J.-H.; Woo, S.-H.; Choung, P.-H. Bioprinting on 3D printed titanium scaffolds for periodontal ligament regeneration. Cells 2021, 10, 1337. [Google Scholar] [CrossRef]
- Vurat, M.T.; Şeker, Ş.; Lalegül-Ülker, Ö.; Parmaksiz, M.; Elçin, A.E.; Elçin, Y.M. Development of a multicellular 3D-bioprinted microtissue model of human periodontal ligament-alveolar bone biointerface: Towards a pre-clinical model of periodontal diseases and personalized periodontal tissue engineering. Genes Dis. 2022, 9, 1008–1023. [Google Scholar] [CrossRef]
- Jiao, K.; Liu, C.; Basu, S.; Raveendran, N.; Nakano, T.; Ivanovski, S.; Han, P. Bioprinting extracellular vesicles as a” cell-free” regenerative medicine approach. Extracell. Vesicles Circ. Nucleic Acids 2023, 4, 218. [Google Scholar] [CrossRef]
- Yerneni, S.S.; Whiteside, T.L.; Weiss, L.E.; Campbell, P.G. Bioprinting exosome-like extracellular vesicle microenvironments. Bioprinting 2019, 13, e00041. [Google Scholar] [CrossRef]
- Han, P.; Raveendran, N.; Liu, C.; Basu, S.; Jiao, K.; Johnson, N.; Moran, C.S.; Ivanovski, S. 3D bioprinted small extracellular vesicles from periodontal cells enhance mesenchymal stromal cell function. Biomater. Adv. 2024, 158, 213770. [Google Scholar] [CrossRef]
- Chibly, A.M.; Aure, M.H.; Patel, V.N.; Hoffman, M.P. Salivary gland function, development, and regeneration. Physiol. Rev. 2022, 102, 1495–1552. [Google Scholar] [CrossRef] [PubMed]
- Miletich, I. Introduction to salivary glands: Structure, function and embryonic development. Front. Oral. Biol. 2010, 14, 1–20. [Google Scholar]
- Villa, A.; Wolff, A.; Aframian, D.; Vissink, A.; Ekström, J.; Proctor, G.; McGowan, R.; Narayana, N.; Aliko, A.; Sia, Y.W. World Workshop on Oral Medicine VI: A systematic review of medication-induced salivary gland dysfunction: Prevalence, diagnosis, and treatment. Clin. Oral. Investig. 2015, 19, 1563–1580. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.F.; Meier, J.D.; Ward, P.D. Salivary gland disorders. Am. Fam. Physician 2014, 89, 882–888. [Google Scholar] [PubMed]
- Atkinson, J.C.; Wu, A.J. Salivary gland dysfunction: Causes, symptoms, treatment. J. Am. Dent. Assoc. 1994, 125, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Beahm, D.D.; Peleaz, L.; Nuss, D.W.; Schaitkin, B.; Sedlmayr, J.C.; Rivera-Serrano, C.M.; Zanation, A.M.; Walvekar, R.R. Surgical approaches to the submandibular gland: A review of literature. Int. J. Surg. 2009, 7, 503–509. [Google Scholar] [CrossRef]
- Nahlieli, O. Complications of traditional and modern therapeutic salivary approaches. Acta Otorhinolaryngol. Ital. 2017, 37, 142. [Google Scholar] [CrossRef]
- Phan, T.V.; Oo, Y.; Ahmed, K.; Rodboon, T.; Rosa, V.; Yodmuang, S.; Ferreira, J.N. Salivary gland regeneration: From salivary gland stem cells to three-dimensional bioprinting. SLAS Technol. 2023, 28, 199–209. [Google Scholar] [CrossRef]
- Muntean, D.D.; Lenghel, M.L.; Petea-Balea, D.-R.; Ciurea, A.I.; Solomon, C.; Dudea, S.M. Functional evaluation of major salivary glands using viscosity PLUS and 2D shear-wave PLUS elastography techniques in healthy subjects—A pilot study. Diagnostics 2022, 12, 1963. [Google Scholar] [CrossRef]
- Bedewi, M.A.; Elsifey, A.A.; Nassir, E.M.; Elgazzar, H.M.; Alfawaz, A.F.; Hussein, R.S.; Moawad, K.; Bediwy, A.M.; Swify, S.M. Shear wave elastography of the submandibular gland in healthy individuals. J. Int. Med. Res. 2020, 48, 0300060520979445. [Google Scholar] [CrossRef]
- Arda, K.; Ciledag, N.; Aktas, E.; Arıbas, B.K.; Köse, K. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. Am. J. Roentgenol. 2011, 197, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Vázquez-Rosado, E.J.; Wu, D.; Viswananthan, V.; Farach, A.; Farach-Carson, M.C.; Harrington, D.A. Microfluidic coaxial 3D bioprinting of cell-laden microfibers and microtubes for salivary gland tissue engineering. Biomater. Adv. 2023, 154, 213588. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.; Munguia-Lopez, J.G.; Tran, S.D. Hydrogels for salivary gland tissue engineering. Gels 2022, 8, 730. [Google Scholar] [CrossRef]
- Shubin, A.D.; Felong, T.J.; Graunke, D.; Ovitt, C.E.; Benoit, D.S. Development of poly (ethylene glycol) hydrogels for salivary gland tissue engineering applications. Tissue Eng. Part A 2015, 21, 1733–1751. [Google Scholar] [CrossRef]
- Rose, S.C.; Larsen, M.; Xie, Y.; Sharfstein, S.T. Salivary Gland Bioengineering. Bioengineering 2023, 11, 28. [Google Scholar] [CrossRef]
- Charbonneau, A.M.; Kinsella, J.M.; Tran, S.D. 3D cultures of salivary gland cells in native or gelled egg yolk plasma, combined with egg white and 3D-printing of gelled egg yolk plasma. Materials 2019, 12, 3480. [Google Scholar] [CrossRef] [PubMed]
- Telis-Romero, J.; Thomaz, C.; Bernardi, M.; Telis, V.R.N.; Gabas, A.L. Rheological properties and fluid dynamics of egg yolk. J. Food Eng. 2006, 74, 191–197. [Google Scholar] [CrossRef]
- Anton, M. Egg yolk: Structures, functionalities and processes. J. Sci. Food Agric. 2013, 93, 2871–2880. [Google Scholar] [CrossRef]
- Muallah, D.; Matschke, J.; Kappler, M.; Kroschwald, L.M.; Lauer, G.; Eckert, A.W. Dental Pulp Stem Cells for Salivary Gland Regeneration—Where Are We Today? Int. J. Mol. Sci. 2023, 24, 8664. [Google Scholar] [CrossRef]
- Jeschke, M.G.; van Baar, M.E.; Choudhry, M.A.; Chung, K.K.; Gibran, N.S.; Logsetty, S. Burn injury. Nat. Rev. Dis. Primers 2020, 6, 11. [Google Scholar] [CrossRef]
- Zeiderman, M.R.; Pu, L.L. Contemporary reconstruction after complex facial trauma. Burn. Trauma. 2020, 8, tkaa003. [Google Scholar] [CrossRef] [PubMed]
- Schlottmann, F.; Bucan, V.; Vogt, P.M.; Krezdorn, N. A short history of skin grafting in burns: From the gold standard of autologous skin grafting to the possibilities of allogeneic skin grafting with immunomodulatory approaches. Medicina 2021, 57, 225. [Google Scholar] [CrossRef] [PubMed]
- Böttcher-Haberzeth, S.; Biedermann, T.; Reichmann, E. Tissue engineering of skin. Burns 2010, 36, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.; Singh, G.; Trasatti, J.P.; Bjornsson, C.; Xu, X.; Tran, T.N.; Yoo, S.-S.; Dai, G.; Karande, P. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. Part C Methods 2014, 20, 473–484. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, X.; Lv, S.; Yang, C.; Wang, Z.; Liao, M.; Zhou, B.; Zhang, Y.; Sun, S.; Chen, P. 3D bioprinting of prefabricated artificial skin with multicomponent hydrogel for skin and hair follicle regeneration. Theranostics 2025, 15, 2933. [Google Scholar] [CrossRef]
- Tanadchangsaeng, N.; Pasanaphong, K.; Tawonsawatruk, T.; Rattanapinyopituk, K.; Tangketsarawan, B.; Rawiwet, V.; Kongchanagul, A.; Srikaew, N.; Yoyruerop, T.; Panupinthu, N.; et al. 3D bioprinting of fish skin-based gelatin methacryloyl (GelMA) bio-ink for use as a potential skin substitute. Sci. Rep. 2024, 14, 23240. [Google Scholar] [CrossRef]
- Kang, M.S.; Kwon, M.; Lee, S.H.; Kim, W.H.; Lee, G.W.; Jo, H.J.; Kim, B.; Yang, S.Y.; Kim, K.S.; Han, D.W. 3D Printing of Skin Equivalents with Hair Follicle Structures and Epidermal-Papillary-Dermal Layers Using Gelatin/Hyaluronic Acid Hydrogels. Chem. Asian J. 2022, 17, e202200620. [Google Scholar] [CrossRef]
- Boyer, G.; Zahouani, H.; Le Bot, A.; Laquieze, L. In vivo characterization of viscoelastic properties of human skin using dynamic micro-indentation. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 4584–4587. [Google Scholar]
- Feng, X.; Li, G.-Y.; Ramier, A.; Eltony, A.M.; Yun, S.-H. In vivo stiffness measurement of epidermis, dermis, and hypodermis using broadband Rayleigh-wave optical coherence elastography. Acta Biomater. 2022, 146, 295–305. [Google Scholar] [CrossRef]
- Otberg, N.; Richter, H.; Schaefer, H.; Blume-Peytavi, U.; Sterry, W.; Lademann, J. Variations of hair follicle size and distribution in different body sites. J. Investig. Dermatol. 2004, 122, 14–19. [Google Scholar] [CrossRef]
- Nanmo, A.; Yan, L.; Asaba, T.; Wan, L.; Kageyama, T.; Fukuda, J. Bioprinting of hair follicle germs for hair regenerative medicine. Acta Biomater. 2023, 165, 50–59. [Google Scholar] [CrossRef]
- Motter Catarino, C.; Cigaran Schuck, D.; Dechiario, L.; Karande, P. Incorporation of hair follicles in 3D bioprinted models of human skin. Sci. Adv. 2023, 9, eadg0297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Enhejirigala, n.; Yao, B.; Li, Z.; Song, W.; Li, J.; Zhu, D.; Wang, Y.; Duan, X.; Yuan, X. Using bioprinting and spheroid culture to create a skin model with sweat glands and hair follicles. Burn. Trauma. 2021, 9, tkab013. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Chen, H.; Zhang, Y.; Zhou, D.; Liang, L.; Liu, B.; Xu, T. Adaptive multi-degree-of-freedom in situ bioprinting robot for hair-follicle-inclusive skin repair: A preliminary study conducted in mice. Bioeng. Transl. Med. 2022, 7, e10303. [Google Scholar] [CrossRef]
- Chen, H.; Ma, X.; Gao, T.; Zhao, W.; Xu, T.; Liu, Z. Robot-assisted in situ bioprinting of gelatin methacrylate hydrogels with stem cells induces hair follicle-inclusive skin regeneration. Biomed. Pharmacother. 2023, 158, 114140. [Google Scholar] [CrossRef]
- Kang, Y.; Yeo, M.; Derman, I.D.; Ravnic, D.J.; Singh, Y.P.; Alioglu, M.A.; Wu, Y.; Makkar, J.; Driskell, R.R.; Ozbolat, I.T. Intraoperative bioprinting of human adipose-derived stem cells and extra-cellular matrix induces hair follicle-like downgrowths and adipose tissue formation during full-thickness craniomaxillofacial skin reconstruction. Bioact. Mater. 2024, 33, 114–128. [Google Scholar] [CrossRef]
- Gökmen, M.F.; Büyükatalay, Z.Ç.; Beton, S.; Gökcan, M.K.; Dursun, G.; Meço, C.; Küçük, T.B. Functional and Oncological Outcomes of Open Partial Laryngectomy vs. Transoral Laser Surgery in Supraglottic Larynx Cancer. Turk. Arch. Otorhinolaryngol. 2021, 58, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Candelo, E.; Belafsky, P.C.; Corrales, M.; Farwell, D.G.; Gonzales, L.F.; Grajek, M.; Walczak, D.; Strome, M.; Lorenz, R.R.; Tintinago, L.F.; et al. The Global Experience of Laryngeal Transplantation: Series of Eleven Patients in Three Continents. Laryngoscope 2024, 134, 4313–4320. [Google Scholar] [CrossRef]
- Granell, J.; Garrido, L.; Millas, T.; Gutiérrez-Fonseca, R. Management of Oropharyngeal Dysphagia in Laryngeal and Hypopharyngeal Cancer. Int. J. Otolaryngol. 2012, 2012, 1–9. [Google Scholar] [CrossRef]
- Aibara, S.; Okada, M.; Tanaka-Nishikubo, K.; Asayama, R.; Sato, E.; Sei, H.; Aoishi, K.; Takagi, T.; Teraoka, M.; Mukai, N.; et al. Laryngeal Complications after Endotracheal Intubation and Prone Positioning in Patients with Coronavirus Disease 2019. Laryngoscope Investig. Otolaryngol. 2022, 7, 1909–1914. [Google Scholar] [CrossRef]
- Roybal, J.L.; Liechty, K.W.; Hedrick, H.L.; Bebbington, M.; Johnson, M.P.; Coleman, B.G.; Adzick, N.S.; Flake, A.W. Predicting the Severity of Congenital High Airway Obstruction Syndrome. J. Pediatr. Surg. 2010, 45, 1633–1639. [Google Scholar] [CrossRef]
- Leboulanger, N.; Garabédian, É.-N. Laryngo-Tracheo-Oesophageal Clefts. Orphanet J. Rare Dis. 2011, 6, 81. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chang, G.H.; Yang, Y.H.; Liu, C.Y.; Tsai, Y.T.; Hsu, C.M.; Lee, Y.C.; Lee, L.A.; Yang, P.R.; Tsai, M.S.; et al. Allergic Rhinitis and Laryngeal Pathology: Real-World Evidence. Healthcare 2021, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Holzer, S.E.S.; Ludlow, C.L. The Swallowing Side Effects of Botulinum Toxin Type a Injection in Spasmodic Dysphonia. Laryngoscope 1996, 106, 86–92. [Google Scholar] [CrossRef]
- Casserly, P.; Timon, C. Botulinum Toxin a Injection Under Electromyographic Guidance for Treatment of Spasmodic Dysphonia. J. Laryngol. Otol. 2007, 122, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lv, D.; Deng, D.; Wang, J.; Li, L.; Chen, F. Free Bipaddled Anterolateral Thigh Flap for Simultaneous Reconstruction of Large Larynx and Prelaryngeal Skin Defects after Resection of the Local Recurrent Laryngeal Cancer Invading the Cricoid Cartilage and Prelaryngeal Skin. Medicine 2019, 98, e14199. [Google Scholar] [CrossRef] [PubMed]
- Werner, J.; Scaglioni, M.F.; Ko, S.S.; Rajan, G.P. Preservation of Laryngeal Function through Reconstruction of the Supraglottis and Thyrohyoid Membrane with a Chimeric Anterolateral Thigh Flap after Supraglottic Laryngectomy: A Case Report and Literature Review. Microsurgery 2021, 41, 462–467. [Google Scholar] [CrossRef]
- Smith, M.E.; Roy, N.; Houtz, D. Laryngeal Reinnervation for Paralytic Dysphonia in Children Younger Than 10 Years. Arch. Otolaryngol.—Head. Neck Surg. 2012, 138, 1161. [Google Scholar] [CrossRef]
- Krasnodębska, P.; Szkiełkowska, A. Course of Laryngeal Function Recovery after Reconstruction of the laryngeal Nerves. J. Hear. Sci. 2020, 10, 51–56. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; Li, M.; Shang, Q.; Xie, R.; Yu, J.; Shen, K.; Zhang, Y.; Cheng, Y. Toughening Double-Network Hydrogels by Polyelectrolytes. Adv. Mater. 2023, 35, e2301551. [Google Scholar] [CrossRef]
- Galliger, Z.; Vogt, C.D.; Helms, H.R.; Panoskaltsis-Mortari, A. Extracellular matrix microparticles improve GelMA bioink resolution for 3D bioprinting at ambient temperature. Macromol. Mater. Eng. 2022, 307, 2200196. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, J.S.; Kim, C.B.; Lee, K.H.; Hong, I.S.; Jung, H.; Lee, H.; Lee, Y.J.; Ajiteru, O.; Sultan, M.T. Fluidic integrated 3D bioprinting system to sustain cell viability towards larynx fabrication. Bioeng. Transl. Med. 2023, 8, e10423. [Google Scholar] [CrossRef] [PubMed]
- McMillan, A.; Hoffman, M.R.; Xu, Y.; Wu, Z.; Thayer, E.; Peel, A.; Guymon, A.; Kanotra, S.; Salem, A.K. 3D bioprinted ferret mesenchymal stem cell-laden cartilage grafts for laryngotracheal reconstruction in a ferret surgical model. Biomater. Sci. 2025, 13, 1304–1322. [Google Scholar] [CrossRef]
- Iqbal, F.; Cornett, E.M. Larynx. In Basic Anesthesia Review; Oxford Academic: New York, NY, USA, 2024; pp. 585–587. [Google Scholar] [CrossRef]
- Mete, A.; Akbudak, İ.l.H. Functional Anatomy and Physiology of Airway; InTech: London, UK, 2018. [Google Scholar] [CrossRef]
- Chiesa, I.; Esposito, A.; Vozzi, G.; Gottardi, R.; Maria, C.D. 4D Bioprinted Self-Folding Scaffolds Enhance Cartilage Formation in the Engineering of Trachea. Adv. Mater. Technol. 2025, 10, 2401210. [Google Scholar] [CrossRef]
- Yu, Y.S.; Ahn, C.B.; Son, K.H.; Lee, J.W. Motility Improvement of Biomimetic Trachea Scaffold via Hybrid 3d-Bioprinting Technology. Polymers 2021, 13, 971. [Google Scholar] [CrossRef]
- Ke, D.; Yi, H.; Est-Witte, S.; George, S.; Kengla, C.; Lee, S.J.; Atala, A.; Murphy, S.V. Bioprinted Trachea Constructs with Patient-Matched Design, Mechanical and Biological Properties. Biofabrication 2019, 12, 015022. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Xu, Y.; Wu, X.; Gao, E.; Zhan, A.; Chen, Y.; Zhang, Y.; Hua, Y.; Święszkowski, W.; Zhang, Y.S.; et al. Functional Trachea Reconstruction Using 3D-Bioprinted Native-Like Tissue Architecture Based on Designable Tissue-Specific Bioinks. Adv. Sci. 2022, 9, e2202181. [Google Scholar] [CrossRef]
- Low, V.; Rubesin, S. Contrast evaluation of the pharynx and esophagus. Radiol. Clin. N. A. 1993, 31, 1265–1291. [Google Scholar] [CrossRef]
- Goyal, R.K.; Mashimo, H. Physiology of oral, pharyngeal, and esophageal motility. GI Motil. Online 2006. [Google Scholar] [CrossRef]
- Dickman, C.T.; Russo, V.; Thain, K.R.; Pan, S.; Beyer, S.; Walus, K.; Getsios, S.; Mohamed, T.; Wadsworth, S.J. Functional Characterization of 3D Contractile Smooth Muscle Tissues Generated Using a Unique Microfluidic 3D Bioprinting Technology. Faseb J. 2019, 34, 1652–1664. [Google Scholar] [CrossRef]
- Yeleswarapu, S.; Chameettachal, S.; Bera, A.K.; Pati, F. Smooth Muscle Matrix Bioink Promotes Myogenic Differentiation of Encapsulated Adipose-derived Stem Cells. J. Biomed. Mater. Res. Part A 2022, 110, 1761–1773. [Google Scholar] [CrossRef]
- Reyes-Furrer, A.A.; Andrade, S.D.; Bachmann, D.; Jeker, H.; Steinmann, M.W.; Accart, N.; Dunbar, A.; Rausch, M.; Bono, E.; Rimann, M.; et al. 3D Bioprinting of Contractile Human Skeletal Muscle Models Recapitulating Exercise and Pharmacological Responses. Commun. Biol. 2021, 4, 1183. [Google Scholar] [CrossRef] [PubMed]
- Fornetti, E.; Paolis, F.D.; Fuoco, C.; Bernardini, S.; Giannitelli, S.M.; Rainer, A.; Seliktar, D.; Magdinier, F.; Baldi, J.; Biagini, R.; et al. A Novel Extrusion-Based 3D Bioprinting System for Skeletal Muscle Tissue Engineering. Biofabrication 2023, 15, 025009. [Google Scholar] [CrossRef] [PubMed]
- Rouwkema, J.; Khademhosseini, A. Vascularization and angiogenesis in tissue engineering: Beyond creating static networks. Trends Biotechnol. 2016, 34, 733–745. [Google Scholar] [CrossRef]
- Richards, D.; Jia, J.; Yost, M.J.; Markwald, R.R.; Mei, Y. 3D Bioprinting for Vascularized Tissue Fabrication. Ann. Biomed. Eng. 2016, 45, 132–147. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, C.; Xu, L.; Wan, J.; Cao, G.; Liu, Z.; Ji, P.; Jin, Q.; Fu, Y.; Le, Y.; et al. Bioprinted Dermis with Human Adipose Tissue-derived Microvascular Fragments Promotes Wound Healing. Biotechnol. Bioeng. 2023, 121, 1406–1420. [Google Scholar] [CrossRef]
- Zhu, W.; Qu, X.; Zhu, J.; Ma, X.; Patel, S.; Liu, J.; Wang, P.; Lai, C.S.E.; Gou, M.; Xu, Y.; et al. Direct 3D Bioprinting of Prevascularized Tissue Constructs with Complex Microarchitecture. Biomaterials 2017, 124, 106–115. [Google Scholar] [CrossRef]
- Buranawat, B.; Shaalan, A.; Garna, D.F.; Di Silvio, L. Development of Prevascularized Synthetic Block Graft for Maxillofacial Reconstruction. J. Funct. Biomater. 2025, 16, 18. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Armstrong, J.P.K.; Chen, Q.; Lin, Y.; Stevens, M.M. Void-Free 3D Bioprinting for in Situ Endothelialization and Microfluidic Perfusion. Adv. Funct. Mater. 2019, 30, 1908349. [Google Scholar] [CrossRef]
- Yeo, M.; Sarkar, A.; Singh, Y.P.; Derman, İ.D.; Datta, P.; Özbolat, İ.T. Synergistic Coupling Between 3D Bioprinting and Vascularization Strategies. Biofabrication 2023, 16, 012003. [Google Scholar] [CrossRef]
- Daia, C.; Scheau, C.; Neagu, G.; Andone, I.; Spanu, A.; Popescu, C.; Stoica, S.I.; Verenca, M.C.; Onose, G. Nerve conduction study and electromyography findings in patients recovering from Covid-19—Case report. Int. J. Infect. Dis. 2021, 103, 420–422. [Google Scholar] [CrossRef]
- Brizzi, K.T.; Lyons, J.L. Peripheral nervous system manifestations of infectious diseases. Neurohospitalist 2014, 4, 230–240. [Google Scholar] [CrossRef]
- De León, A.M.; Garcia-Santibanez, R.; Harrison, T.B. Article Topic: Neuropathies Due to Infections and Antimicrobial Treatments. Curr. Treat. Options Neurol. 2023, 25, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Joung, D.; Truong, V.; Neitzke, C.C.; Guo, S.Z.; Walsh, P.J.; Monat, J.R.; Meng, F.; Park, S.H.; Dutton, J.R.; Parr, A.M.; et al. 3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds. Adv. Funct. Mater. 2018, 28, 1801850. [Google Scholar] [CrossRef] [PubMed]
- Salaris, F.; Colosi, C.; Brighi, C.; Soloperto, A.; Turris, V.d.; Benedetti, M.C.; Ghirga, S.; Rosito, M.; Angelantonio, S.D.; Rosa, A. 3D Bioprinted Human Cortical Neural Constructs Derived from Induced Pluripotent Stem Cells. J. Clin. Med. 2019, 8, 1595. [Google Scholar] [CrossRef] [PubMed]
- Clair-Glover, M.S.; Finol-Urdaneta, R.K.; Maddock, M.; Wallace, E.; Miellet, S.; Wallace, G.G.; Yue, Z.; Dottori, M. Efficient Fabrication of 3D Bioprinted Functional Sensory Neurons Using an Inducible Neurogenin-2 Human Pluripotent Stem Cell Line. Biofabrication 2024, 16, 045022. [Google Scholar] [CrossRef]
- Gu, Q.; Tomaskovic-Crook, E.; Lozano, R.; Chen, Y.; Kapsa, R.M.I.; Zhou, Q.; Wallace, G.G.; Crook, J.M. Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells. Adv. Healthc. Mater. 2016, 5, 1429–1438. [Google Scholar] [CrossRef]
- Klar, R.M.; Cox, J.C.; Raja, N.; Lohfeld, S. The 3D-McMap Guidelines: Three-Dimensional Multicomposite Microsphere Adaptive Printing. Biomimetics 2024, 9, 94. [Google Scholar] [CrossRef]
- Kotani, T.; Hananouchi, T.; Sakai, S. Enhancing Visible Light-Induced 3D Bioprinting: Alternating Extruded Support Materials for Bioink Gelation. Biomed. Mater. 2025, 20, 035005. [Google Scholar] [CrossRef]
- Lee, J.M.; Sing, S.L.; Zhou, M.; Yeong, W.Y. 3D Bioprinting Processes: A Perspective on Classification and Terminology. Int. J. Bioprinting 2024, 4, 151. [Google Scholar] [CrossRef]
- Lukyanov, D.A.; Levin, O.V. Inkjet Printing with (Semi)conductive Conjugated Polymers: A Review. Chemengineering 2024, 8, 53. [Google Scholar] [CrossRef]
- Mariani, M.; Cervellera, F.; Migliori, E.; Maspero, F.; Bernasconi, R.; Galassi, C.; Magagnin, L.; Lecis, N. Inkjet Printing of Cobalt Ferrite for Hard Ferromagnetic Thick Films Manufacturing. Adv. Eng. Mater. 2024, 26, 2400371. [Google Scholar] [CrossRef]
- Rau, D.A.; Kim, M.; Xu, B.; Cai, L.H. Vat Photopolymerization Printing of Modular Soft Stretchable Low-Cost Elastomers. Acs Appl. Polym. Mater. 2025, 7, 7566–7574. [Google Scholar] [CrossRef]
- Cai, J.; Ma, S.; Yi, W.; Wang, J. Fabrication of High-Density Microarchitected Tungsten via DLP 3D Printing. Adv. Sci. 2024, 11, e2405487. [Google Scholar] [CrossRef]
- Ma, Y.; Shih, C.J.; Bao, Y. Advances in 4D Printing of Biodegradable Photopolymers. Responsive Mater. 2024, 2, e20240008. [Google Scholar] [CrossRef]
- Hisham, M.; Butt, H. Vat Photopolymerization Printing of Functionalized Hydrogels on Commercial Contact Lenses. Sci. Rep. 2024, 14, 13860. [Google Scholar] [CrossRef]
- Gómez-Lizárraga, K.; Ruiz-García, L.; Garduño-Wilches, I.; Aguilar-Frutis, M.; Piña-Barba, C.; Alarcón-Flores, G. Photoluminescence Studies of DoF Effect on the Photopolymerization Reaction of a GelMA-Based Monomers for Tissue Engineering. Macromol. Chem. Phys. 2024, 225, 2300085. [Google Scholar] [CrossRef]
- Piao, C.H.; Du, X.; Xu, Y.; To, S.; Zhu, L.; Zhu, Z. Time-Dependent Volumetric Printing of Precision Lenses through Dynamic Laser Writing. Int. J. Extrem. Manuf. 2025, 7, 045007. [Google Scholar] [CrossRef]
- Daoset, N.; Inglam, S.; Wanchat, S.; Chantarapanich, N. Effects of Post-Processing Curing Parameters and Gamma Irradiation on the Mechanical Properties of Medical Graded Vat Photopolymerization Parts. Rapid Prototyp. J. 2024, 30, 475–489. [Google Scholar] [CrossRef]
- Alam, F.; Alsharif, A.A.; Al-Modaf, F.; El-Atab, N. 3D-Printed Smartwatch Fabricated via Vat Photopolymerization for UV and Temperature Sensing Applications. ACS Omega 2024, 9, 14830–14839. [Google Scholar] [CrossRef]
- Jain, P.; Kathuria, H.; Ramakrishna, S.; Parab, S.; Pandey, M.M.; Dubey, N. In Situ Bioprinting: Process, Bioinks, and Applications. Acs Appl. Bio Mater. 2024, 7, 7987–8007. [Google Scholar] [CrossRef]
- Mirsky, N.A.; Ehlen, Q.T.; Greenfield, J.; Antonietti, M.; Slavin, B.V.; Nayak, V.V.; Pelaez, D.; Tse, D.T.; Witek, L.; Daunert, S.; et al. Three-Dimensional Bioprinting: A Comprehensive Review for Applications in Tissue Engineering and Regenerative Medicine. Bioengineering 2024, 11, 777. [Google Scholar] [CrossRef] [PubMed]
- Ravanbakhsh, H.; Karamzadeh, V.; Bao, G.; Mongeau, L.; Juncker, D.; Zhang, Y.S. Emerging technologies in multi-material bioprinting. Adv. Mater. 2021, 33, 2104730. [Google Scholar] [CrossRef] [PubMed]
- Alhetheel, A.; Alrfaei, B.M.; Mujamammi, A.H.; Hakami, J.; Alshuhri, A. REGECEL (An Oxidized Regenerated Cellulose) Provides Superior Bioactivity Effect on Microorganisms. Infect. Drug Resist. 2024, 17, 3353–3365. [Google Scholar] [CrossRef]
- Yang, C.; Wu, W.; Lao, S.; Zhang, S.; Tang, J.; Pu, X.; Lu, X.; Ye, F.; Zhao, P.; Chen, D.; et al. Controlled preparation of droplets for cell encapsulation by air-focused microfluidic bioprinting. Int. J. Bioprinting 2024, 10, 1102. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, J.; Bao, X.; Guo, Y.; Jin, Y.; Yang, C.; Zhang, H.; Liu, L.; Gao, Y.; Ye, C.; et al. Induction of Tumor Ferroptosis-Dependent Immunity via an Injectable Attractive Pickering Emulsion Gel. Adv. Mater. 2023, 35, e2303542. [Google Scholar] [CrossRef]
- Habibi, M.; Foroughi, S.; Karamzadeh, V.; Packirisamy, M. Direct sound printing. Nat. Commun. 2022, 13, 1800. [Google Scholar] [CrossRef]
- Davoodi, E.; Li, J.; Ma, X.; Najafabadi, A.H.; Yoo, J.; Lu, G.; Sani, E.S.; Lee, S.; Montazerian, H.; Kim, G.; et al. Imaging-guided deep tissue in vivo sound printing. Science 2025, 388, 616–623. [Google Scholar] [CrossRef]
- Velazquez, E.R.; Parmar, C.; Jermoumi, M.; Mak, R.H.; van Baardwijk, A.; Fennessy, F.M.; Lewis, J.H.; De Ruysscher, D.; Kikinis, R.; Lambin, P.; et al. Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Sci. Rep. 2013, 3, 3529. [Google Scholar] [CrossRef]
- Watson, R.A. A low-cost surgical application of additive fabrication. J. Surg. Educ. 2014, 71, 14–17. [Google Scholar] [CrossRef]
- Lipshutz, S.; Kim, Y.; Curtis, M.; Friedrich, L.; Alimperti, S. Development of Multiparametric Bioprinting Method for Generation of 3D Printed Cell-laden Structures. Biotechnol. Progress. 2025, e70016. [Google Scholar] [CrossRef]
- Mohammadrezaei, D.; Podina, L.; Silva, J.D.; Kohandel, M. Cell Viability Prediction and Optimization in Extrusion-Based Bioprinting via Neural Network-Based Bayesian Optimization Models. Biofabrication 2024, 16, 025016. [Google Scholar] [CrossRef]
- Ferreras, A.; Matesanz, A.; Mendizabal, J.; Artola, K.; Nishina, Y.; Acedo, P.; Jorcano, J.L.; Ruiz, A.; Reina, G.; Martín, C. Light-Responsive and Antibacterial Graphenic Materials as a Holistic Approach to Tissue Engineering. Acs Nanosci. Au 2024, 4, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Pourchet, L.; Casado-Medina, L.; Richaud-Patín, Y.; Tadevosyan, K.; Morillas-García, A.; Lorenzo, E.; Lazis, I.; Ventura, A.; Litowczenko, J.; Guiu, J.; et al. 3D Bioprinting of Human iPSC-derived Cardiac Constructs with Microvascular Network Support for Improved Graft Survival in Vivo. Biofabrication 2025, 17, 035010. [Google Scholar] [CrossRef] [PubMed]
- Greco, I.; Machrafi, H.; Iorio, C.S. Double-Network Hydrogel 3D BioPrinting Biocompatible with Fibroblast Cells for Tissue Engineering Applications. Gels 2024, 10, 684. [Google Scholar] [CrossRef]
- Andrade, T.A.; da Silva, V.A.; Scheck, K.; Garay, T.; Sharma, R.; Willerth, S.M. 3D Bioprinting a Novel Skin Co-Culture Model Using Human Keratinocytes and Fibroblasts. J. Biomed. Mater. Res. Part A 2025, 113, e37831. [Google Scholar] [CrossRef]
- Soman, S.S.; Vijayavenkataraman, S. Applications of 3D Bioprinted-Induced Pluripotent Stem Cells in Healthcare. Int. J. Bioprinting 2024, 6, 280. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Feng, Y.; Yao, B.; Li, Z.; Kong, Y.; Zhang, C.; Tan, Y.; Song, W.; Jirigala, E.; Li, X.; et al. Effect of Tunable Stiffness on Immune Responses in 3d-Bioprinted Alginate–gelatin Scaffolds. Int. J. Bioprinting 2024, 10, 2874. [Google Scholar] [CrossRef]
- Goldfracht, I.; Machour, M.; Michael, I.; Bulatova, M.; Zavin, J.; Levenberg, S. 3D Bioprinting of Thick Adipose Tissues with Integrated Vascular Hierarchies. Adv. Funct. Mater. 2024, 35, 2410311. [Google Scholar] [CrossRef]
- Witowski, J.; Sitkowski, M.; Zuzak, T.; Coles-Black, J.; Chuen, J.; Major, P.; Pdziwiatr, M. From ideas to long-term studies: 3D printing clinical trials review. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 1473–1478. [Google Scholar] [CrossRef]
- Parramon-Teixido, C.J.; Rodríguez-Pombo, L.; Basit, A.W.; Worsley, A.; Cañete-Ramírez, C.; Alvarez-Lorenzo, C.; Cabañas-Poy, M.J.; Goyanes, A. A framework for conducting clinical trials involving 3D printing of medicines at the point-of-care. Drug Deliv. Transl. Res. 2025, 1–20. [Google Scholar] [CrossRef]
- Periferakis, A.; Bolocan, A.; Ion, D. A review of innovation in medicine. Technol. Innov. Life Sci. 2022, 1, 42–48. [Google Scholar] [CrossRef]
- Bhatt, A. Evolution of clinical research: A history before and beyond james lind. Perspect. Clin. Res. 2010, 1, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Kandi, V.; Vadakedath, S. Clinical Trials and Clinical Research: A Comprehensive Review. Cureus 2023, 15, e35077. [Google Scholar] [CrossRef]
- Li, P.; Faulkner, A.; Medcalf, N. 3D bioprinting in a 2D regulatory landscape: Gaps, uncertainties, and problems. Law Innov. Technol. 2020, 12, 1–29. [Google Scholar] [CrossRef]
- Mladenovska, T.; Choong, P.F.; Wallace, G.G.; O’Connell, C.D. The Regulatory Challenge of 3D Bioprinting. Regen. Med. 2023, 18, 659–674. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Seol, Y.J.; Ko, I.K.; Kang, H.W.; Lee, Y.K.; Yoo, J.J.; Atala, A.; Lee, S.J. 3D Bioprinted Human Skeletal Muscle Constructs for Muscle Function Restoration. Sci. Rep. 2018, 8, 12307. [Google Scholar] [CrossRef]
- Maiullari, F.; Costantini, M.; Milan, M.; Pace, V.; Chirivì, M.; Maiullari, S.; Rainer, A.; Baci, D.; Marei, H.E.; Seliktar, D.; et al. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci. Rep. 2018, 8, 13532. [Google Scholar] [CrossRef]
- Apelgren, P.; Amoroso, M.; Säljö, K.; Lindahl, A.; Brantsing, C.; Stridh Orrhult, L.; Gatenholm, P.; Kölby, L. Skin Grafting on 3D Bioprinted Cartilage Constructs in vivo. Plast. Reconstr. Surg. Glob. Open 2018, 6, e1930. [Google Scholar] [CrossRef]
- Bregenzer, M.E.; Horst, E.N.; Mehta, P.; Novak, C.M.; Raghavan, S.; Snyder, C.S.; Mehta, G. Integrated cancer tissue engineering models for precision medicine. PLoS ONE 2019, 14, e0216564. [Google Scholar] [CrossRef]
- Nguyen, D.G.; Funk, J.; Robbins, J.B.; Crogan-Grundy, C.; Presnell, S.C.; Singer, T.; Roth, A.B. Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity in vitro. PLoS ONE 2016, 11, e0158674. [Google Scholar] [CrossRef]
- Skardal, A.; Murphy, S.V.; Devarasetty, M.; Mead, I.; Kang, H.W.; Seol, Y.J.; Shrike Zhang, Y.; Shin, S.R.; Zhao, L.; Aleman, J.; et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep. 2017, 7, 8837. [Google Scholar] [CrossRef]
- European Union Regulation. Regulation (EU) No 536/2014 of the European Parliament and of the Council of 16 April 2014 on Clinical Trials on Medicinal Products for Human Use, and Repealing Directive 2001/20/EC Text with EEA Relevance; European Union Regulation: Brussels, Belgium, 2014; pp. 1–76. [Google Scholar]
- European Union Regulation. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on Medical Devices, Amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and Repealing Council Directives 90/385/EEC and 93/42/EEC (Text with EEA Relevance); European Union Regulation: Brussels, Belgium, 2017; pp. 1–175. [Google Scholar]
- Tappa, K.; Jammalamadaka, U. Novel biomaterials used in medical 3D printing techniques. J. Funct. Biomater. 2018, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Guo, S.; Ravichandran, D.; Ramanathan, A.; Sobczak, M.T.; Sacco, A.F.; Patil, D.; Thummalapalli, S.V.; Pulido, T.V.; Lancaster, J.N. 3D-Printed Polymeric Biomaterials for Health Applications. Adv. Healthc. Mater. 2025, 14, 2402571. [Google Scholar] [CrossRef]
- Madan, A.; Saini, R.; Satapathy, M.K.; Arora, D. Biomaterials in Clinical Trials and Clinical Applications. In Biomaterials and Neurodegenerative Disorders; Kumar, G., Mukherjee, S., Kumar, S., Eds.; Springer Nature Singapore: Singapore, 2025; pp. 205–250. [Google Scholar]
- Tsantes, A.G.; Altsitzioglou, P.; Papadopoulos, D.V.; Lorenzo, D.; Romanò, C.L.; Benzakour, T.; Tsukamoto, S.; Errani, C.; Angelini, A.; Mavrogenis, A.F. Infections of Tumor Prostheses: An Updated Review on Risk Factors, Microbiology, Diagnosis, and Treatment Strategies. Biology 2023, 12, 314. [Google Scholar] [CrossRef] [PubMed]
- Hitchman, L.H.; Smith, G.E.; Chetter, I.C. Prosthetic infections and high-risk surgical populations. Surgery 2019, 37, 38–44. [Google Scholar] [CrossRef]
- Le Vavasseur, B.; Zeller, V. Antibiotic Therapy for Prosthetic Joint Infections: An Overview. Antibiotics 2022, 11, 486. [Google Scholar] [CrossRef]
- Harrabi, H.; Meyer, E.; Dournon, N.; Bouchand, F.; Kilu, C.M.; Perronne, V.; Jaffal, K.; d’Anglejan, E.; Duran, C.; Dinh, A. Suppressive Antibiotic Therapy in Prosthetic Joint Infections: A Contemporary Overview. Antibiotics 2025, 14, 277. [Google Scholar] [CrossRef]
- Periferakis, A.; Periferakis, A.T.; Troumpata, L.; Periferakis, K.; Scheau, A.E.; Savulescu-Fiedler, I.; Caruntu, A.; Badarau, I.A.; Caruntu, C.; Scheau, C. Kaempferol: A Review of Current Evidence of Its Antiviral Potential. Int. J. Mol. Sci. 2023, 24, 16299. [Google Scholar] [CrossRef]
- Herrera, T.E.S.; Tello, I.P.S.; Mustafa, M.A.; Jamil, N.Y.; Alaraj, M.; Atiyah Altameem, K.K.; Alasheqi, M.Q.; Hamoody, A.M.; Alkhafaji, A.T.; Shakir, M.N.; et al. Kaempferol: Unveiling its anti-inflammatory properties for therapeutic innovation. Cytokine 2025, 186, 156846. [Google Scholar] [CrossRef]
- Periferakis, A.T.; Periferakis, A.; Periferakis, K.; Caruntu, A.; Badarau, I.A.; Savulescu-Fiedler, I.; Scheau, C.; Caruntu, C. Antimicrobial Properties of Capsaicin: Available Data and Future Research Perspectives. Nutrients 2023, 15, 4097. [Google Scholar] [CrossRef]
- Petran, E.M.; Periferakis, A.; Troumpata, L.; Periferakis, A.-T.; Scheau, A.-E.; Badarau, I.A.; Periferakis, K.; Caruntu, A.; Savulescu-Fiedler, I.; Sima, R.-M.; et al. Capsaicin: Emerging Pharmacological and Therapeutic Insights. Curr. Issues Mol. Biol. 2024, 46, 7895–7943. [Google Scholar] [CrossRef] [PubMed]
- El-Kattan, N.; Ibrahim, M.A.; Emam, A.N.; Metwally, K.; Youssef, F.S.; Nassar, N.A.; Mansour, A.S. Evaluation of the antimicrobial activity of chitosan-and curcumin-capped copper oxide nanostructures against multi-drug-resistant microorganisms. Nanoscale Adv. 2025, 7, 2988–3007. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.; Oliveira, D.; Cabral-Marques, H. Curcumin in Ophthalmology: Mechanisms, Challenges, and Emerging Opportunities. Molecules 2025, 30, 457. [Google Scholar] [CrossRef] [PubMed]
- Periferakis, A.; Periferakis, A.-T.; Troumpata, L.; Periferakis, K.; Georgatos-Garcia, S.; Touriki, G.; Dragosloveanu, C.D.M.; Caruntu, A.; Savulescu-Fiedler, I.; Dragosloveanu, S.; et al. Pinosylvin: A Multifunctional Stilbenoid with Antimicrobial, Antioxidant, and Anti-Inflammatory Potential. Curr. Issues Mol. Biol. 2025, 47, 204. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, X.; Li, W.; Zhang, H.; Wang, Y.; Xu, J.; Li, W.; Qin, Y.; Wu, Z.; Ge, G.; et al. Pinosylvin Inhibits Inflammatory and Osteoclastogenesis via NLRP3 Inflammasome. Adv. Sci. 2025, e01532. [Google Scholar] [CrossRef]
- Sharma, M.R.; Sharma, P.K.; Mohan, B.; Bhatti, S.P.; Bendi, A.; Raghav, N. Piperine as Potential Anti-Inflammatory Agent: In-Silico Studies Along with In-Vitro Anti-Cathepsin B Activity, and Serum Protein Protection Validation. Chem. Biodivers. 2025, e202500144. [Google Scholar] [CrossRef]
- Periferakis, A.; Troumpata, L.; Periferakis, K.; Adalis, G.; Periferakis, A.; Georgatos-Garcia, S.; Maier, C.; Costache, A.; Garofil, D.; Costache, D. Traditional Ethnomedical and Ethnobotanical Applications and Uses of Piper Nigrum. RJ Mil. Med. 2025, 128, 286–303. [Google Scholar] [CrossRef]
- Gago, C.; Serralheiro, A.; Miguel, M.d.G. Anti-Inflammatory Activity of Thymol and Thymol-Rich Essential Oils: Mechanisms, Applications, and Recent Findings. Molecules 2025, 30, 2450. [Google Scholar] [CrossRef]
- Stojanović, N.M.; Ranđelović, P.J.; Simonović, M.; Radić, M.; Todorović, S.; Corrigan, M.; Harkin, A.; Boylan, F. Essential Oil Constituents as Anti-Inflammatory and Neuroprotective Agents: An Insight through Microglia Modulation. Int. J. Mol. Sci. 2024, 25, 5168. [Google Scholar] [CrossRef]
- Cesaro, A.; Hoffman, S.C.; Das, P.; de la Fuente-Nunez, C. Challenges and applications of artificial intelligence in infectious diseases and antimicrobial resistance. npj Antimicrob. Resist. 2025, 3, 2. [Google Scholar] [CrossRef]
- Gorecki, G.P.; Tomescu, D.R.; Pleș, L.; Panaitescu, A.M.; Dragosloveanu, Ș.; Scheau, C.; Sima, R.M.; Coman, I.S.; Grigorean, V.T.; Cochior, D. Implications of using artificial intelligence in the diagnosis of sepsis/sepsis shock. Germs 2024, 14, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Sarantopoulos, A.; Mastori Kourmpani, C.; Yokarasa, A.L.; Makamanzi, C.; Antoniou, P.; Spernovasilis, N.; Tsioutis, C. Artificial Intelligence in Infectious Disease Clinical Practice: An Overview of Gaps, Opportunities, and Limitations. Trop. Med. Infect. Dis. 2024, 9, 228. [Google Scholar] [CrossRef] [PubMed]
- Periferakis, A.; Busnatu, S.; Nastasa, I.; Stanescu, A.M.A.; Andronic, O. Current bioethical concerns associated with the use of big data in medicine. In Proceedings of the XVII National Conference of Bioethics, Bucharest, Romania, 8–10 December 2022; pp. 65–66. [Google Scholar]
- Lokesh, S.; Chakraborty, S.; Pulugu, R.; Mittal, S.; Pulugu, D.; Muruganantham, R. AI-based big data analytics model for medical applications. Meas. Sens. 2022, 24, 100534. [Google Scholar] [CrossRef]
Physiological Tissue/Organ | Young’s Modulus (Stiffness) | Tensile Strength | Reference |
---|---|---|---|
Cornea | Central Cornea: 70–100 kPa Peripheral Cornea: 30–60 kPa | 380–650 kPa | [27,28] |
Retina | 431 kPa | 100 kPa (porcine models) | [29,30] |
Choroid | 4620 kPa (4.62 MPa) | 300 kPa | [29,31] |
Sclera | Anterior Sclera: 17,000–43,000 kPa (17–43 MPa) Equatorial Sclera: 9000–25,000 kPa (9–25 MPa) Posterior Sclera: 7000–18,000 kPa (7–18 MPa) | Not mentioned | [32] |
Ear Auricle | 4500–5900 kPa (4.5–5.9 MPa) | 3460 kPa (3.46 MPa) | [33,34] |
Tympanic Membrane | 20,000–40,000 kPa (20–40 MPa) | 25,000–32,200 kPa (25–32.2 MPa) | [35,36] |
Nose | 2100–3300 kPa (2.1–3.3 MPa) | 1640–2140 kPa (1.64–2.14 MPa) | [37,38] |
Periodontal Tissue | 10–31 kPa/900–1200 kPa | Not mentioned | [39,40] |
Salivary Glands | Parotid glands: 18.4 kPa Submandibular glands: 15.9 kPa | Not mentioned | [41] |
Skin | Back of the ear: 40 kPa Chin: 20 kPa | Not mentioned | [42] |
Larynx | 8.6 kPa | 1000 kPa (1 MPa) | [43,44] |
Trachea | 1000–15,000 kPa (1–15 MPa) | 1200–2500 kPa (1.2–2.5 MPa) | [45,46] |
Esophagus | Not mentioned | 1200–2800 kPa (1.2–2.8 MPa) | [47] |
Material | Young’s Modulus (Stiffness) | Tensile Strength | Advantages | Disadvantages | Refs |
---|---|---|---|---|---|
Hydrogels | |||||
Alginate | <1.5 kPa | Up to 1830 kPa (1.83 MPa) | -Ease of gelation; -Low shear stress; -Compatible in mixes with other materials; | -Low mechanical strength; -Cytotoxicity; -Low cell adhesion; | [48,49,50,51,52,53,54] |
Gelatin | 81 kPa | 24 kPa | -Bioactive; -Thermosensitive; -Low shear stress; | -Low mechanical strength; -Thermal instability; | [55,56,57,58,59,60,61] |
GelMA (Gelatin Methacryloyl) | 29.2–43.2 kPa/Up to 200–1000 kPa (Influenced by the % of methacrylation) | 2800–3800 kPa (2.8–3.8 MPa) | -Photopolymerization (suitable for DLP- or SLA); -Adjustable mechanical properties (different concentrations of methacrylate can be added); -Great support for cells; | -Low viscosity; -Sensible to the microenvironmental conditions; -Cytotoxicity; -Limited mechanical stability; | [62,63,64,65,66,67,68,69,70] |
Collagen | 120–250 kPa | 40 kPa | -Good cell adhesion; -Good mechanical properties, which can be adjusted with various methods of crosslinking; | -Low mechanical strength; -Fast degradation rate (this could also represent an advantage if used in fast-degradable scaffolds); -Thermal instability; | [60,64,71,72,73,74,75,76] |
Fibrin | 15–150 kPa | 1.6–10 kPa | -Cell migration and adhesion; -Adjustable mechanical properties; -Mimics the natural extracellular matrix; | -Fast degradation rate (this could also represent an advantage if used in fast-degradable scaffolds); -Costly; -Sensible to the microenvironmental conditions; | [77,78,79,80,81,82,83] |
Hyaluronic Acid | 24 kPa | 63 kPa | -Wettability; -Dynamic cross-linking; -Promotes cell adhesion, cell viability, and cell mobility; | -Costly; -Limited mechanical properties; -Sensible to the microenvironmental conditions; | [84,85,86,87,88,89,90] |
Chitosan | 7900–92,000 kPa (7.9–92 MPa) | 3600–12,100 kPa (3.6–12.1 MPa) | -Easy gelation; -Bioactive; Adjustable mechanical properties; | -Limited printability; -Hard to obtain from natural sources; -Limited printability; -Limited mechanical stability; | [91,92,93,94,95,96] |
Agarose | 100–300 kPa | Not mentioned | -Exhibits rheological properties; -Thermosensitive; -Promotes cell viability; | -Limited mechanical stability; -Sensible to the microenvironmental conditions; -Costly; | [97,98,99,100] |
Silk Fibroin | Up to 6300–6700 kPa (6.3–6.7 MPa) | 80–700 kPa | -Good mechanical properties; -Promotes cell adhesion, mobility, and viability; | -Different properties if extracted from different sources; -Sensible to the microenvironmental conditions; -Low wettability; | [101,102,103,104,105,106] |
Other Biomaterials | |||||
Polyethylene Glycol (PEG) | 16.5–89.5 kPa | Not mentioned | -Adjustable mechanical properties; -High wettability; | -Limited cell adhesion; -Potential toxicity; -Costly; -Limited mechanical strength; | [107,108,109,110,111] |
Polylactic Acid (PLA) | 3.5 GPa (3500 MPa/3,500,000 kPa) | 60,000 kPa (60 MPa) | -Thermal and mechanical stability; -Wettability (this could be so intense that it could represent a disadvantage) | -Costly; -Limited cell adhesion; -Fast degradation rate (this could also represent an advantage if used in fast-degradable scaffolds); | [112,113,114,115,116,117,118,119] |
Polycaprolactone (PCL) | 25,000–120,000 kPa (25–120 MPa) | Not mentioned | -Good mechanical properties; -Adjustable degradation rate; -Promotes cell adhesion and viability; | -Limited wettability; -Thermal instability; -Costly; | [120,121,122,123,124,125] |
Poly (lactic-co-glycolic acid) (PLGA) | 32,100–36,100 kPa (32.1–36.1 MPa) | 1600–2000 kPa (1.6–2 MPa) | -Adjustable mechanical properties; -Adjustable release of various drugs; | -Hydrophobic; -Fast degradation rate (this could also represent an advantage if used in fast-degradable scaffolds); -It can generate inflammatory response; | [83,120,126,127,128,129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timofticiuc, I.-A.; Caruntu, A.; Dragosloveanu, C.D.M.; Scheau, A.-E.; Badarau, I.A.; Periferakis, A.; Dragosloveanu, S.; Didilescu, A.C.; Caruntu, C.; Scheau, C. Head and Neck 3D Bioprinting—A Review on Recent Advancements in Soft Tissue 3D Bioprinting and Medical Applications. J. Funct. Biomater. 2025, 16, 240. https://doi.org/10.3390/jfb16070240
Timofticiuc I-A, Caruntu A, Dragosloveanu CDM, Scheau A-E, Badarau IA, Periferakis A, Dragosloveanu S, Didilescu AC, Caruntu C, Scheau C. Head and Neck 3D Bioprinting—A Review on Recent Advancements in Soft Tissue 3D Bioprinting and Medical Applications. Journal of Functional Biomaterials. 2025; 16(7):240. https://doi.org/10.3390/jfb16070240
Chicago/Turabian StyleTimofticiuc, Iosif-Aliodor, Ana Caruntu, Christiana Diana Maria Dragosloveanu, Andreea-Elena Scheau, Ioana Anca Badarau, Argyrios Periferakis, Serban Dragosloveanu, Andreea Cristiana Didilescu, Constantin Caruntu, and Cristian Scheau. 2025. "Head and Neck 3D Bioprinting—A Review on Recent Advancements in Soft Tissue 3D Bioprinting and Medical Applications" Journal of Functional Biomaterials 16, no. 7: 240. https://doi.org/10.3390/jfb16070240
APA StyleTimofticiuc, I.-A., Caruntu, A., Dragosloveanu, C. D. M., Scheau, A.-E., Badarau, I. A., Periferakis, A., Dragosloveanu, S., Didilescu, A. C., Caruntu, C., & Scheau, C. (2025). Head and Neck 3D Bioprinting—A Review on Recent Advancements in Soft Tissue 3D Bioprinting and Medical Applications. Journal of Functional Biomaterials, 16(7), 240. https://doi.org/10.3390/jfb16070240