Effect of Thermal Aging on Color Stability and Mechanical Properties of High-Density CAD/CAM Polymers Utilized for Provisional Restorations
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen’s Preparation and Color Measurement
2.2. Mechanical Properties: Flexural Properties and Weibull Analysis
2.3. Scanning Electron Microscopy Analysis
2.4. Statistical Analysis
3. Results
3.1. Color Measurements
3.2. Flexural Strength (FS) and Probability of Survival Prediction
Scanning Electron Microscopy Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burns, D.R.; Beck, D.A.; Nelson, S.K. Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: Report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J. Prosthet. Dent. 2003, 90, 474–497. [Google Scholar] [PubMed]
- Patras, M.; Naka, O.; Doukoudakis, S.; Pissiotis, A. Management of provisional restorations’ deficiencies: A literature review. J. Esthet. Restor. Dent. 2012, 24, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Lodding, D.W. Long-term esthetic provisional restorations in dentistry. Curr. Opin. Cosmet. Dent. 1997, 4, 16–21. [Google Scholar]
- Yenidunya, O.G.; Gonulol, N.; Misilli, T.; Bal, L.; Inanc, I. Effects of staining and bleaching procedures on the optical and surface properties of CAD-CAM materials. Am. J. Dent. 2023, 36, 310–316. [Google Scholar] [PubMed]
- Choi, W.I.; Yoo, L.G.; Kim, Y.R.; Jung, B.Y. Mechanical properties of CAD/CAM polylactic acid as a material for interim restoration. Heliyon 2023, 9, e15314. [Google Scholar] [CrossRef]
- Al-Humood, H.; Alfaraj, A.; Yang, C.C.; Levon, J.; Chu, T.G.; Lin, W.S. Marginal Fit, Mechanical Properties, and Esthetic Outcomes of CAD/CAM Interim Fixed Dental Prostheses (FDPs): A Systematic Review. Materials 2023, 16, 1996. [Google Scholar] [CrossRef]
- Dold, F.; Mueller, K.; Butz, M.; Hahnel, S. Clinical performance of long-term temporary fixed dental prostheses fabricated from CAD/CAM resin-based composite. Clin. Oral Investig. 2025, 29, 179. [Google Scholar] [CrossRef]
- Soliman, T.A.; Raffat, E.M.; Farahat, D.S. Evaluation of Mechanical Behavior of CAD/CAM Polymers for Long-term Interim Restoration Following Artificial Aging. Eur. J. Prosthodont. Restor. Dent. 2023, 31, 22–30. [Google Scholar]
- Papathanasiou, I.; Zinelis, S.; Papavasiliou, G.; Kamposiora, P. Effect of aging on color, gloss and surface roughness of CAD/CAM composite materials. J. Dent. 2023, 130, 104423. [Google Scholar] [CrossRef]
- Song, S.Y.; Shin, Y.H.; Lee, J.Y.; Shin, S.W. Color stability of provisional restorative materials with different fabrication methods. J. Adv. Prosthodont. 2020, 12, 259–264. [Google Scholar] [CrossRef]
- Hashemzade, Z.; Alihemmati, M.; Hakimaneh, S.M.R.; Shayegh, S.S.; Bafandeh, M.A.; Moham-madi, Z. Comparison of Color Stability and Surface Roughness of Interim Crowns Fabri-cated by Conventional, Milling and 3D Printing Methods. Clin. Exp. Dent. Res. 2025, 11, e70119. [Google Scholar] [CrossRef]
- Soliman, T.A.; Ghorab, S.; Baeshen, H. Effect of surface treatments and flash-free adhesive on the shear bond strength of ceramic orthodontic brackets to CAD/CAM provisional materials. Clin. Oral. Investig. 2022, 26, 481–492. [Google Scholar] [CrossRef]
- Reeponmaha, T.; Angwaravong, O.; Angwarawong, T. Comparison of fracture strength after thermo-mechanical aging between provisional crowns made with CAD/CAM and conventional method. J. Adv. Prosthodont. 2020, 12, 218–224. [Google Scholar] [CrossRef]
- Bozoğulları, H.N.; Temizci, T. Evaluation of the Color Stability, Stainability, and Surface Roughness of Permanent Composite-Based Milled and 3D Printed CAD/CAM Restora-tive Materials after Thermocycling. Appl. Sci. 2023, 13, 11895. [Google Scholar] [CrossRef]
- Alkhadim, Y.K.; Hulbah, M.J.; Nassar, H.M. Color shift, color stability, and post-polishing surface roughness of esthetic resin composites. Materials 2020, 13, 1376. [Google Scholar] [CrossRef] [PubMed]
- Al Amri, M.D.; Labban, N.; Alhijji, S.; Alamri, H.; Iskandar, M.; Platt, J.A. In vitro evaluation of translucency and color stability of CAD/CAM polymer-infiltrated ceramic materials after accelerated aging. J. Prosthodont. 2021, 30, 318–328. [Google Scholar] [CrossRef]
- Yuan, J.C.; Barão, V.A.R.; Wee, A.G.; Alfaro, M.F.; Afshari, F.S.; Sukotjo, C. Effect of brushing and thermocycling on the shade and surface roughness of CAD-CAM ceramic restorations. J. Prosthet. Dent. 2018, 119, 1000–1006. [Google Scholar] [CrossRef]
- Yao, J.; Li, J.; Wang, Y.; Huang, H. Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. J. Prosthet. Dent. 2014, 112, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Liebermann, A.; Wimmer, T.; Schmidlin, P.R.; Scherer, H.; Löffler, P.; Roos, M.; Stawarczyk, B. Physicomechanical characterization of poly etheretherketone and current esthetic dental CAD/CAM polymers after aging in different storage media. J. Prosthet. Dent. 2016, 115, 321–328. [Google Scholar] [CrossRef]
- PEEK; BIOHPP. Bredent, U.K. The New Class of Materials in Prosthetics. 2013. Available online: https://www.bredent.co.uk/wp-content/uploads/2017/02/BioHPP-2013.pdf (accessed on 10 July 2021).
- Everest C-Temp. Provisional Restoration. KaVo Elements for KaVo ARCTICA and KaVo Everest. The Foundation for Reliable Long-Term Temporary Applications: C-Temp. IOP Publishing Physics Web. Available online: http://dinamed.by/media/Instrukcii2014/ARCTICA_en_Material.pdf (accessed on 13 June 2025).
- Porojan, L.; Vasiliu, R.D.; Porojan, S.D. Masking Abilities of Dental Cad/Cam Resin Composite Materials Related to Substrate and Luting Material. Polymers 2022, 14, 364. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Wible, E. Long-term effects of seven cleaning methods on light transmit-tance, surface roughness, and flexural modulus of polyurethane retainer material. Angle Orthod. 2018, 88, 355–362. [Google Scholar] [CrossRef]
- Porojan, L.; Vasiliu, R.D.; Porojan, S.D. Surface Quality Evaluation of Removable Thermo-plastic Dental Appliances Related to Staining Beverages and Cleaning Agents. Polymers 2020, 12, 1736. [Google Scholar] [CrossRef]
- ISO 10477; Dentistry-Polymer-Based Crown and Veneering Materials. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/80007.html (accessed on 13 June 2025).
- Quinn, J.B.; Quinn, G.D. Material properties and fractography of an indirect dental resin composite. Dent. Mater. 2010, 26, 589–599. [Google Scholar] [CrossRef]
- Awada, A.; Nathanson, D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J. Prosthet. Dent. 2015, 114, 587–593. [Google Scholar] [CrossRef]
- Rodrigues, S.A., Jr.; Ferracane, J.L.; Della Bona, A. Flexural strength and Weibull analysis of a microhybrid and a nanofill composite evaluated by 3- and 4-point bending tests. Dent. Mater. 2008, 24, 426–431. [Google Scholar]
- Rayyan, M.M.; Aboushelib, M.; Sayed, N.M.; Ibrahim, A.; Jimbo, R. Comparison of interim restorations fabricated by CAD/CAM with those fabricated manually. J. Prosthet. Dent. 2015, 114, 414–419. [Google Scholar] [CrossRef]
- Haralur, S.B.; Albarqi, A.T.; Alamodi, A.G.; Alamri, A.A.; Aldail, S.A.; Al-Qarni, M.A.; AlQahtani, S.M.; Alqahtani, N.M. Comparison of Various Surface Treatment Procedures on the Roughness and Susceptibility to Staining of Provisional Prosthodontic Materials. J. Funct. Biomater. 2024, 15, 256. [Google Scholar] [CrossRef]
- Barutçugil, Ç.; Bilgili, D.; Barutcigil, K.; Dündar, A.; Büyükkaplan, U.Ş.; Yilmaz, B. Discoloration and translucency changes of CAD-CAM materials after exposure to beverages. J. Prosthet. Dent. 2019, 122, 325–331. [Google Scholar] [CrossRef]
- Edelhoff, D.; Beuer, F.; Schweiger, J.; Brix, O.; Stimmelmayr, M.; Guth, J.F. CAD/ CAM-generated high-density polymer restorations for the pretreatment of complex cases: A case report. Quintessence Int. 2012, 43, 457–467. [Google Scholar] [PubMed]
- Miyazaki, T.; Hotta, Y. CAD/CAM systems available for the fabrication of crown and bridge restorations. Aust. Dent. J. 2011, 56 (Suppl. S1), 97–106. [Google Scholar] [CrossRef] [PubMed]
- Gasparik, C.; Culic, B.; Varvara, M.A.; Grecu, A.; Burde, A.; Dudea, D. Effect of accelerated staining and bleaching on chairside CAD/CAM materials with high and low translucency. Dent. Mater. J. 2019, 38, 987–993. [Google Scholar] [CrossRef]
- Heimer, S.; Schmidlin, P.R.; Stawarczyk, B. Discoloration of PMMA, composite, and PEEK. Clin. Oral. Investig. 2017, 21, 1191–1200. [Google Scholar] [CrossRef]
- Cengiz, S.; Yüzbaşioğlu, E.; Cengiz, M.I.; Velioğlu, N.; Sevimli, G. Color stability and surface roughness of a laboratory-processed composite resin as a function of mouthrinse. J. Esthet. Restor. Dent. 2015, 27, 314–321. [Google Scholar] [CrossRef]
- Paravina, R.D.; Ghinea, R.; Herrera, L.J.; Bona, A.D.; Igiel, C.; Linninger, M.; Sakai, M.; Takahashi, H.; Tashkandi, E.; Perez Mdel, M. Color difference thresholds in dentistry. J. Esthet. Rest. Dent. 2015, 27 (Suppl. S1), 1–9. [Google Scholar] [CrossRef]
- Ragain, J.R. Color acceptance of direct dental restorative materials by human observers. Color Res. Appl. 2000, 25, 278–285. [Google Scholar] [CrossRef]
- Ruyter, I.E.; Nilner, K.; Moller, B. Color stability of dental composite resin materials for crown and bridge veneers. Dent. Mater. 1987, 3, 246–251. [Google Scholar] [CrossRef]
- Johnston, W.M.; Kao, E.C. Assessment of appearance match by visual observation and clinical colorimetry. J. Dent. Res. 1989, 68, 819–822. [Google Scholar] [CrossRef]
- Porojan, L.; Toma, F.R.; Bîrdeanu, M.I.; Vasiliu, R.D.; Uțu, I.D.; Matichescu, A. Surface Characteristics and Color. Stability of Denta PEEK Related to Water Saturation and Thermal Cycling. Polymers 2022, 14, 2144. [Google Scholar] [CrossRef]
- da Silva, E.M.; Amaral, C.M.; Jardim, R.N.; Barbosa, M.P.; Rabello, T.B. Influence of Specimen Dimension, Water Immersion Protocol, and Surface Roughness on Water Sorption and Solubility of Res-in-Based Restorative Materials. Materials 2024, 17, 984. [Google Scholar] [CrossRef]
- Bijelic-Donova, J.; Bath, A.K.; Rocca, G.T.; Bella, E.D.; Saratti, C.M. Can Fiber-reinforced Composites Increase the Fracture Resistance of Direct Composite Restorations in Structurally Compromised Teeth? A Systematic Review and Meta-analysis of Laboratory Studies. Oper. Dent. 2025, 50, E1–E29. [Google Scholar] [CrossRef]
- Lassila, L.; Säilynoja, E.; Prinssi, R.; Vallittu, P.K.; Garoushi, S. Fracture behavior of Bi-structure fiber-reinforced composite restorations. J. Mech. Behav. Biomed. Mater. 2020, 101, 103444. [Google Scholar] [CrossRef]
- Suzaki, N.; Yamaguchi, S.; Hirose, N.; Tanaka, R.; Takahashi, Y.; Imazato, S.; Hayashi, M. Evaluation of physical properties of fiber-reinforced composite resin. Dent. Mater. 2020, 36, 987–996. [Google Scholar] [CrossRef]
- Papathanasiou, I.; Kamposiora, P.; Papavasiliou, G.; Ferrari, M. The use of PEEK in digital prosthodontics: A narrative review. BMC Oral Health 2020, 20, 217. [Google Scholar] [CrossRef]
- Niem, T.; Youssef, N.; Wöstmann, B. Influence of accelerated ageing on the physical properties of CAD/CAM restorative materials. Clin. Oral Investig. 2020, 24, 2415–2425. [Google Scholar] [CrossRef]
- Juntavee, N.; Juntavee, A.; Srisontisuk, S. Flexural Strength of Various Provisional Restorative Materials for Rehabilitation After Aging. J. Prosthodont. 2023, 32, 20–28. [Google Scholar] [CrossRef]
Product | Composition/Manufacturer | Indication | Lot. No. |
---|---|---|---|
CAD-Temp | -PMMA (83–86 wt.%), silica micro filler (14 wt.%) micro, Pigments (<0.1%). -VITA Zahnfabrik, Germany. | Long-term provisional restoration (multi-unit, fully or partially anatomical) up to two pontics. | 38590 |
Everest C-Temp | -High performance polymer reinforced with glass fiber. -KaVo, Biberach, Germany. | Long-term temporary restoration up to 6 units. | 6946 |
Bre CAM Bio HPP | -Poly ether ether ketone, 20 wt% titanium dioxide ceramic filler, and aluminum oxide sand (50 µm mean particle size). -Bredent GmbH, senden, Germany. | 4-part posterior bridge up to two pontics. | 56654456 |
NBS Units | Color Changes |
---|---|
0.0–0.5 | Extremely slight change |
0.5–1.5 | Slight change |
1.5–3.0 | Perceivable |
3.0–6.0 | Marked change |
6.0–12.0 | Extremely marked change |
12.0 or more | Change to another color |
Materials | Before Thermocycling | After Thermocycling | Color Changes | |||||
---|---|---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | ΔE* | ΔE* According to NBS | |
VT | 65.94 | −0.89 | 7.05 | 63.15 | 1.29 | 8.93 | 4.06 | 3.74 Marked change |
(±0.39) | (±0.04) | (±0.33) | (±0.49) | (±0.05) | (±0.15) | (±0.15) | (±0.39) | |
CT | 66.93 | −0.42 | 6.44 | 64.75 | 1.83 | 7.98 | 3.81 | 3.51 Marked change |
(±0.48) | (± 0.05) | (±0.15) | (±0.79) | (±0.03) | (±0.21) | (±0.18) | (±0.54) | |
PK | 69.37 | −1.04 | 9.23 | 67.23 | 0.53 | 10.73 | 3.21 | 2.91 Perceivable |
(±0.42) | (±0.04) | (±0.52) | (±0.32) | (±0.19) | (±0.34) | (±0.38) | (±0.45) |
CAD/CAM Materials | Flexural Strength | Weibull Parameters | |||||
---|---|---|---|---|---|---|---|
m | r | σ0 | FS at Ps | ||||
5% | 90% | 95% | |||||
CAD-Temp Baseline | 96.39 d (± 3.77) | 25.68 | 0.85 | 96.95 | 101.18 | 88.82 | 86.36 |
CAD-Temp After TC | 77.38 e (± 2.98) | 27.64 | 0.93 | 78.04 | 81.22 | 71.92 | 70.06 |
C-Temp Baseline | 319.16 a (± 6.92) | 50.29 | 0.95 | 322.42 | 329.54 | 308.31 | 303.94 |
C-Temp After TC | 264.79 b (± 5.91) | 48.02 | 0.92 | 276.55 | 273.73 | 255.30 | 251.51 |
PEEK Baseline | 201.37 c (± 5.00) | 43.46 | 0.96 | 203.87 | 209.07 | 193.58 | 190.39 |
PEEK After TC | 204.40 c (± 2.31) | 45.48 | 0.92 | 205.58 | 207.98 | 200.74 | 199.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharthi, R.; Alqahtani, A.R.; Alshehri, A.M.; Almalki, A.; Abozaed, H.W.; Raffat Hussein, E.M.; Soliman, T.A. Effect of Thermal Aging on Color Stability and Mechanical Properties of High-Density CAD/CAM Polymers Utilized for Provisional Restorations. J. Funct. Biomater. 2025, 16, 223. https://doi.org/10.3390/jfb16060223
Alharthi R, Alqahtani AR, Alshehri AM, Almalki A, Abozaed HW, Raffat Hussein EM, Soliman TA. Effect of Thermal Aging on Color Stability and Mechanical Properties of High-Density CAD/CAM Polymers Utilized for Provisional Restorations. Journal of Functional Biomaterials. 2025; 16(6):223. https://doi.org/10.3390/jfb16060223
Chicago/Turabian StyleAlharthi, Rasha, Ali Robaian Alqahtani, Abdullah Mohammed Alshehri, Abdulrahman Almalki, Heba Wageh Abozaed, Eman Mohamed Raffat Hussein, and Tarek Ahmed Soliman. 2025. "Effect of Thermal Aging on Color Stability and Mechanical Properties of High-Density CAD/CAM Polymers Utilized for Provisional Restorations" Journal of Functional Biomaterials 16, no. 6: 223. https://doi.org/10.3390/jfb16060223
APA StyleAlharthi, R., Alqahtani, A. R., Alshehri, A. M., Almalki, A., Abozaed, H. W., Raffat Hussein, E. M., & Soliman, T. A. (2025). Effect of Thermal Aging on Color Stability and Mechanical Properties of High-Density CAD/CAM Polymers Utilized for Provisional Restorations. Journal of Functional Biomaterials, 16(6), 223. https://doi.org/10.3390/jfb16060223