In Vitro Techniques for Microleakage Evaluation of Coronary Restorative Materials: A Scoping and Mapping Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cardoso, M.; de Almeida Neves, A.; Mine, A.; Coutinho, E.; Van Landuyt, K.; De Munck, J.; Van Meerbeek, B. Current Aspects on Bonding Effectiveness and Stability in Adhesive Dentistry. Aust. Dent. J. 2011, 56, 31–44. [Google Scholar] [CrossRef]
- Migliau, G. Classification Review of Dental Adhesive Systems: From the IV Generation to the Universal Type. Ann. Stomatol. 2017, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Ishikiriama, S.K.; Valeretto, T.M.; Franco, E.B.; Mondelli, R.F.L. The Influence of “C-Factor” and Light Activation Technique on Polymerization Contraction Forces of Resin Composite. J. Appl. Oral Sci. 2012, 20, 603–606. [Google Scholar] [CrossRef]
- Singh, S. Microleakage Studies—A Viewpoint. J. Conserv. Dent. 2023, 26, 1. [Google Scholar] [CrossRef]
- Kidd, E.A.M. Microleakage: A Review. J. Dent. 1976, 4, 199–206. [Google Scholar] [CrossRef]
- Worthington, H.V.; Khangura, S.; Seal, K.; Mierzwinski-Urban, M.; Veitz-Keenan, A.; Sahrmann, P.; Schmidlin, P.R.; Davis, D.; Iheozor-Ejiofor, Z.; Rasines Alcaraz, M.G. Direct Composite Resin Fillings versus Amalgam Fillings for Permanent Posterior Teeth. Cochrane Database Syst. Rev. 2021, 2021, CD005620. [Google Scholar] [CrossRef]
- Fidalgo, T.K.; Americano, G.; Medina, D.; Athayde, G.; Letieri, A.D.; Maia, L.C. Adhesiveness of Bulk-Fill Composite Resin in Permanent Molars Submitted to Streptococcus mutans Biofilm. Braz. Oral Res. 2019, 33, e111. [Google Scholar] [CrossRef]
- Alptekin, T.; Ozer, F.; Unlu, N.; Cobanoglu, N.; Blatz, M.B. In Vivo and in Vitro Evaluations of Microleakage around Class I Amalgam and Composite Restorations. Oper. Dent. 2010, 35, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Hervás-García, A.; Martínez-Lozano, M.A.; Cabanes-Vila, J.; Barjau-Escribano, A.; Fos-Galve, P. Composite Resins. A Review of the Materials and Clinical Indications. Med. Oral Patol. Oral Cir. Bucal. 2006, 11, E215–E220. [Google Scholar]
- Fabianelli, A.; Pollington, S.; Davidson, C.L.; Cagidiaco, M.C.; Goracci, C. The Relevance of Micro-Leakage Studies. Int. Dent. SA 2007, 9, 64–74. [Google Scholar]
- Pires, P.M.; Almeida Neves, A.; Farrar, P.; Ferrando Cascales, Á.; Banerjee, A.; Pinheiro Feitosa, V.; Sauro, S. Bonding Performance and Interfacial Ultra-Morphology/Nanoleakage of a Modern Self-Curing Bulk-Fill Restorative System: An In Vitro Study. Eur. J. Dent. 2025, 25. [Google Scholar] [CrossRef] [PubMed]
- Sinche-Ccahuana, I.; Ladera-Castañeda, M.; Paucar-Rodríguez, E.; Aliaga-Mariñas, A.; Dapello-Zevallos, G.; Cervantes-Ganoza, L.; Cayo-Rojas, C. Microleakage in Indirect Onlay Restorations Cemented with Three Different Types of Adhesives: An in Vitro Study. J. Clin. Exp. Dent. 2023, 15, e641–e648. [Google Scholar] [CrossRef] [PubMed]
- Adel, M.; Hamdy, A.; Sabet, A.; Ebeid, K. Effect of Cervical Margin Relocation on Marginal Adaptation and Microleakage of Indirect Ceramic Restorations. J. Prosthodont. 2024, 33, 374–381. [Google Scholar] [CrossRef]
- Poggio, C.; Chiesa, M.; Scribante, A.; Mekler, J.; Colombo, M. Microleakage in Class II Composite Restorations with Margins below the CEJ: In Vitro Evaluation of Different Restorative Techniques. Med. Oral Patol. Oral Cir. Bucal. 2013, 18, e793–e798. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.D. Clinical Relevance of Tests on Bond Strength, Microleakage and Marginal Adaptation. Dent. Mater. 2013, 29, 59–84. [Google Scholar] [CrossRef]
- Koroglu, A.E.; Buyukates, I.; Uctasli, M. Comparing Microleakage in Various Composite Application Techniques after Dynamic-Aging. Int. Dent. J. 2024, 74, S181. [Google Scholar] [CrossRef]
- Gale, M.S.; Darvell, B.W. Thermal Cycling Procedures for Laboratory Testing of Dental Restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Chen, X.; Cuijpers, V.; Fan, M.; Frencken, J. Validation of Micro-CT against the Section Method Regarding the Assessment of Marginal Leakage of Sealants. Aust. Dent. J. 2012, 57, 196–199. [Google Scholar] [CrossRef]
- Bagherian, A.; Ahmadkhani, M.; Sheikhfathollahi, M.; Bahramabadinejad, R. Microbial Microleakage Assessment of a New Hydrophilic Fissure Sealant: A Laboratory Study. Pediatr. Dent. 2013, 35, 194–198. [Google Scholar]
- Neves, P.; Pires, S.; Marto, C.M.; Amaro, I.; Coelho, A.; Sousa, J.; Ferreira, M.M.; Botelho, M.F.; Carrilho, E.; Abrantes, A.M.; et al. Evaluation of Microleakage of a New Bioactive Material for Restoration of Posterior Teeth: An In Vitro Radioactive Model. Appl. Sci. 2022, 12, 11827. [Google Scholar] [CrossRef]
- Pinto, M.V.; Pires, S.; Marto, C.M.; Amaro, I.; Coelho, A.; Sousa, J.; Ferreira, M.M.; Botelho, M.F.; Carrilho, E.; Abrantes, A.M.; et al. Microleakage Study of a Bulk Fill over an Uncured Adhesive System. J. Compos. Sci. 2023, 7, 40. [Google Scholar] [CrossRef]
- Modaresi, J.; Baharizade, M.; Shareghi, A.; Ahmadi, M.; Daneshkazemie, A. Copper Ion as a New Leakage Tracer. J. Dent. 2013, 14, 155–159. [Google Scholar]
- Delivanis, P.D.; Chapman, K.A. Comparison and Reliability of Techniques for Measuring Leakage and Marginal Penetration. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 1982, 53, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Tosco, V.; Vitiello, F.; Furlani, M.; Gatto, M.L.; Monterubbianesi, R.; Giuliani, A.; Orsini, G.; Putignano, A. Microleakage Analysis of Different Bulk-Filling Techniques for Class II Restorations: Μ-CT, SEM and EDS Evaluations. Materials 2020, 14, 31. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Arksey, H.; O’Malley, L. Scoping Studies: Towards a Methodological Framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Aromataris, E.; Lockwood, C.; Porritt, K.; Pilla, B.; Jordan, Z. (Eds.) JBI Manual for Evidence Synthesis; JBI: Milwaukee, WI, USA, 2024; ISBN 9780648848820. [Google Scholar]
- Booth, A. Searching for Qualitative Research for Inclusion in Systematic Reviews: A Structured Methodological Review. Syst. Rev. 2016, 5, 74. [Google Scholar] [CrossRef]
- Elraggal, A.; Raheem, I.A.; Holiel, A.; Alhotan, A.; Alshabib, A.; Silikas, N.; Watts, D.C.; Alharbi, N.; Afifi, R.R. Bond Strength, Microleakage, Microgaps, and Marginal Adaptation of Self-Adhesive Resin Composites to Tooth Substrates with and without Preconditioning with Universal Adhesives. J. Adhes. Dent. 2024, 8, 53–64. [Google Scholar]
- Alqarni, A.S.; Al Ghwainem, A. Comparative Assessment of Marginal Micro Leakage of Different Esthetic Restorative Materials Used on Primary Teeth: An In-Vitro Study. J. Contemp. Dent. Pract. 2024, 25, 58–61. [Google Scholar] [CrossRef]
- Ferreira, M.N.; Neves Dos Santos, M.; Fernandes, I.; Marto, C.M.; Laranjo, M.; Silva, D.; Serro, A.P.; Carrilho, E.; Botelho, M.F.; Azul, A.M.; et al. Effect of Varying Functional Monomers in Experimental Self-Adhesive Composites: Polymerization Kinetics, Cell Metabolism Influence and Sealing Ability. Biomed. Mater. 2023, 18, 065014. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, L. Study on the Effect of Soft-Start Light on Microleakage in Pit and Fissure Closure. J. Hard Tissue Biol. 2023, 32, 105–110. [Google Scholar] [CrossRef]
- Ali, A.M.; Mostafa, D.; Sakr, A.; El Tantawi, M.; Abellatif, H.; Elkateb, M.A. Comparing Nanoleakage between Class II Bulkfill and Incremental Composite Restorations Using Snowplow Technique. Saudi Dent. J. 2023, 35, 46–52. [Google Scholar] [CrossRef]
- Li, Q.; Huang, G.; Li, A.; Qiu, D.; Dong, Y. Promoting Bond Durability by a Novel Fabricated Bioactive Dentin Adhesive. J. Dent. 2024, 143, 104905. [Google Scholar] [CrossRef]
- Deb, A.; Pai, V.; Akhtar, A.; Nadig, R.R. Evaluation of Microleakage of Micro Hybrid Composite Resins versus Chitosan-Incorporated Composite Resins When Restored in Class V Cavities Using Total Etch and Self-Etch Adhesives. Contemp. Clin. Dent. 2021, 12, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Bogra, P.; Sharma, D.; Goyal, R.; Dhir, S.; Gupta, B. Impact of Radiotherapy and Shielding on the Efficacy of the Self-Etch Adhesive Technique. J. Conserv. Dent. 2022, 25, 444. [Google Scholar] [CrossRef]
- Battancs, E.; Fráter, M.; Sáry, T.; Gál, E.; Braunitzer, G.; Szabó, P.B.; Garoushi, S. Fracture Behavior and Integrity of Different Direct Restorative Materials to Restore Noncarious Cervical Lesions. Polymers 2021, 13, 4170. [Google Scholar] [CrossRef]
- Som, N.K.; Hussain, S. Comparative Evaluation of Microleakage in Various Placement Techniques of Composite Restoration: An In Vitro Study. Int. J. Clin. Pediatr. Dent. 2020, 13, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Schulz-Kornas, E.; Tittel, M.; Schneider, H.; Bemmann, M.; Pellino, M.; Meissner, T.; Fuchs, F.; Hannig, C.; Tetschke, F.; Park, K.-J.; et al. Tooth-Composite Bond Failure with a Universal and an Etch-and-Rinse Adhesive Depending on Mode and Frequency of Application. Dent. Mater. 2024, 40, 359–369. [Google Scholar] [CrossRef]
- Techa-ungkul, C.; Sakoolnamarka, R. The Effect of Dentin Age on the Microshear Bond Strength and Microleakage of Glass-ionomer Cements. Gerodontology 2021, 38, 259–266. [Google Scholar] [CrossRef]
- Putignano, A.; Tosco, V.; Monterubbianesi, R.; Vitiello, F.; Gatto, M.L.; Furlani, M.; Giuliani, A.; Orsini, G. Comparison of Three Different Bulk-Filling Techniques for Restoring Class II Cavities: ΜCT, SEM-EDS Combined Analyses for Margins and Internal Fit Assessments. J. Mech. Behav. Biomed. Mater. 2021, 124, 104812. [Google Scholar] [CrossRef]
- AlHabdan, A. Review of Microleakage Evaluation Tools. J. Int. Oral Health 2017, 9, 141. [Google Scholar] [CrossRef]
- Peters, B.C.; Cook, R.; Donovan, T.; Sulaiman, T.A. Microcomputed Tomography Void Analysis after Cement Cleanup Methods. J. Prosthet. Dent. 2023, 129, 449–455. [Google Scholar] [CrossRef]
- Hsu, P.; Ramos, V.; Sadr, A. Microcomputed Tomography Evaluation of Cement Shrinkage under Zirconia versus Lithium Disilicate Veneers. J. Prosthet. Dent. 2021, 125, 307–315. [Google Scholar] [CrossRef]
- Borhy, L.; Farkas, P.Z.; Leveles, B.; Kemény, A.; Volom, A.; Varbai, B. Structural and Mechanical Investigation of Class I Biomimetic Composite Dental Filling by X-Ray Computed Tomography, Scanning Electron Microscopy, and Microtensile Bond Strength Testing. Period. Polytech. Mech. Eng. 2023, 67, 161–167. [Google Scholar] [CrossRef]
- Daghrery, A.; Yaman, P.; Lynch, M.; Dennison, J. Evaluation of Micro-CT in the Assessment of Microleakage under Bulk Fill Composite Restorations. Am. J. Dent. 2022, 35, 128–132. [Google Scholar] [PubMed]
- Uyar, D.; Asena, L.; Tirali, R. Evaluation of Gap Formation for Different Adhesive Agents in Primary Teeth with Optical Coherence Tomography. Eur. Oral Res. 2023, 58, 30–36. [Google Scholar] [CrossRef]
- Correia, C.R.P.; Poskus, L.T.; Guimarães, J.G.A.; Penelas, A.G.; Amaral, C.M.; da Silva Machado, R.F.; da Silva, E.M. Formulation and Characterization of Experimental Adhesive Systems Charged with Different Concentrations of Nanofillers: Physicomechanical Properties and Marginal Gap Formation. Appl. Sci. 2024, 14, 2057. [Google Scholar] [CrossRef]
- Barbosa, M.P.; Rabello, T.B.; da Silva, E.M. The Influence of Adhesive Strategy, Type of Dental Composite, and Polishing Time on Marginal Gap Formation in Class I-like Cavities. Materials 2023, 16, 7411. [Google Scholar] [CrossRef]
- Zotti, F.; Vincenzi, S.; Zangani, A.; Bernardi, P.; Sbarbati, A. Stamp Technique: An Explorative SEM Analysis. Dent. J. 2023, 11, 77. [Google Scholar] [CrossRef]
- Elbahary, S.; Aharonian, S.; Azem, H.; Peretz, B.; Mostinski, O.; Blumer, S. Bacterial Colonization and Proliferation in Primary Molars Following the Use of the Hall Technique: A Confocal Laser Scanning Microscopy Study. Children 2023, 10, 457. [Google Scholar] [CrossRef]
- Nag, G.; Kasim, N.; Aziz, R. Microleakage Testing. Ann. Dent. Univ. Malaya 1997, 4, 31–37. [Google Scholar] [CrossRef]
- Jafari, F.; Jafari, S. Importance and Methodologies of Endodontic Microleakage Studies: A Systematic Review. J. Clin. Exp. Dent. 2017, 9, e812. [Google Scholar] [CrossRef] [PubMed]
- Osama, S.; Badran, A.S.; Awad, B.G. Effect of Silver Diamine Fluoride on the Microleakage of Flowable Resin Composite and Glass Ionomer Cement Restorations to Carious Primary Dentin: An-in Vitro Study. BMC Oral Health 2024, 24, 91. [Google Scholar] [CrossRef]
- Eliacik, B.K.; Karahan, M. Evaluating the Effect of Three Fissure Preparation Techniques on Microleakage of a Colored Flowable Composite Used as a Fissure Sealant. J. Clin. Pediatr. Dent. 2023, 47, 119–129. [Google Scholar] [CrossRef]
- Pazinatto, F.B.; Atta, M.T. Microleakage Studies: Critical Analysis of Methodology. JBD Rev. Íbero-Am. Odontol. Estét. Dent. Oper. 2004, 3, 207–215. [Google Scholar]
- Lien, W.; Vandewalle, K.S.; Watson, J.C.; Raimondi, C.J.; Arnason, S.C. In Vitro Microleakage and Fracture Resistance of “Infinity Edge” and Cusp Reduction Preparation Designs for Moderate-Sized Class II Composites. J. Contemp. Dent. Pract. 2024, 25, 3–9. [Google Scholar] [CrossRef]
- Naguib, G.H.; Bakhsh, T.; Mazhar, J.; Turkistani, A.; Mira, A.; Aljawi, R.; Hamed, M.T. Noninvasive Assessment of Novel Nanohybrid Resin Cement Adaptation Using Cross-Polarization Optical Coherence Tomography. Dent. Mater. 2024, 40, 643–652. [Google Scholar] [CrossRef]
- Ordóñez-Aguilera, J.F.; Landmayer, K.; Shimokawa, C.A.K.; Liberatti, G.A.; de Freitas, A.Z.; Turbino, M.L.; Honório, H.M.; Francisconi-dos-Rios, L.F. Role of Non-Carious Cervical Lesions Multicausality in the Behavior of Respective Restorations. J. Mech. Behav. Biomed. Mater. 2022, 131, 105232. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, D.; Huang, W.; Yang, N.; Yuan, Q.; Yang, Y. Aptamer-functionalized Field-effect Transistor Biosensors for Disease Diagnosis and Environmental Monitoring. Exploration 2023, 3, 20210027. [Google Scholar] [CrossRef]
- Shang, R.; Yang, F.; Gao, G.; Luo, Y.; You, H.; Dong, L. Bioimaging and Prospects of Night Pearls-based Persistence Phosphors in Cancer Diagnostics. Exploration 2024, 4, 20230124. [Google Scholar] [CrossRef]
- Hanoon, Z.A.; Abdullah, H.A.; Al-Ibraheemi, Z.A.; Alamoush, R.A.; Sami, S.M.; Haider, J. Marginal Fit of Porcelain Laminate Veneer Materials under Thermocycling Condition: An In-Vitro Study. Dent. J. 2023, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Javed, F.; Arif, A.; Raza Khan, F. Comparison of Marginal Accuracy in Two Different Materials Used in Provisional Crown & Bridge—An In Vitro Experimental Study. J. Pak. Med. Assoc. 2023, 73, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Saker, S.; Özcan, M. Marginal Discrepancy and Load to Fracture of Monolithic Zirconia Laminate Veneers: The Effect of Preparation Design and Sintering Protocol. Dent. Mater. J. 2021, 40, 331–338. [Google Scholar] [CrossRef]
- Paulo, S.; Abrantes, A.M.; Xavier, M.; Brito, A.F.; Teixo, R.; Coelho, A.S.; Paula, A.; Carrilho, E.; Botelho, M.F.; Marto, C.M.; et al. Microleakage Evaluation of Temporary Restorations Used in Endodontic Treatment—An Ex Vivo Study. J. Funct. Biomater. 2023, 14, 264. [Google Scholar] [CrossRef] [PubMed]
- Gogna, R.; Shashikal, K.; Jagadis, S. A Comparative in Vitro Study of Microleakage by a Radioactive Isotope and Compressive Strength of Three Nanofilled Composite Resin Restorations. J. Conserv. Dent. 2011, 14, 128. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, X.; Wu, L.; Liang, Y.; Huang, Y.; Huang, S. Microleakage, Microgap, and Shear Bond Strength of an Infiltrant for Pit and Fissure Sealing. Heliyon 2023, 9, e16248. [Google Scholar] [CrossRef]
- Faggion, C.M. Guidelines for Reporting Pre-Clinical In Vitro Studies on Dental Materials. J. Evid. Based Dent. Pract. 2012, 12, 182–189. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Coronary structure restoration | Microleakage evaluation in fields other than restorative dentistry |
Temporary or definite restorative material | Other study types |
Teeth | |
In vitro/Ex vivo studies |
Colorimetric Methods (n = 227) | ||
---|---|---|
Dye | Protocol | Type of Assessment |
Methylene Blue (n = 108) | Concentrations: 0.1%, 5%, 1%, 2%, 5%, and 10% Exposure Time: 2 h, 4 h, 12 h, 24 h, 48 h, and 72 h T(°C): Room temperature or 37 °C | Qualitative Semi-Quantitative: Microscopy and microleakage scoring systems. Quantitative:
|
Basic Fuchsin (n = 60) | Concentrations: 0.5%, 2% Exposure Time: 8 h, 24 h, 48 h, and 7 days. T(°C): Room temperature or 37 °C | Qualitative Semi-Quantitative: Microscopy and microleakage scoring systems. Quantitative: Microscopy and image analysis software (ImageJ, QuickPhoto Micro 2.2, DinLightht Pro, Image Pro Plus) |
Silver Nitrate (n = 40) | Formulations: 50% wt% or 50% ammoniacal AgNO3 T(°C): room temperature or 37 °C Exposure Conditions: Only in AgNO3 solution for 24 h. AgNO3 solution in the dark + Photodeveloping solution under fluorescent light: (24 h + 8 h), (24 h + 12 h), (24 h + 6 h), and (12 h + 8 h). | Qualitative Semi-Quantitative: Microscopy and microleakage scoring systems. Quantitative:
|
Rhodamine-B (n = 13) | Concentrations: 0.02%, 0.1%, 0.2%, 0.5%, and 1%. Exposure Time: 10 h, 24 h, and 48 h. T(°C): Room temperature or 37 °C | Semi-quantitative: Microscopy and microleakage scoring systems. Quantitative: Confocal laser scanning microscope and ImageJ software. |
Toluidine (n = 1) | Concentration: 1% Exposure Time: 24 h T(°C): room temperature | Semi-Quantitative: Microscopy and microleakage scoring systems |
India Ink (n = 1) | Concentrations: non-specified Exposure Time: 24 h T(°C): 37 °C | Semi-quantitative: Microscopy and microleakage scoring systems. |
Thiazine (n = 1) | Concentrations: 2% Exposure Time: 24 h T(°C): 37° | Quantitative: Microscopy methods and image analysis software (Optika Vision lite 2.1 software) |
Nuclear Medicine Method
(n = 2) | ||
---|---|---|
Radioisotope | Protocol | Type of Assessment |
Technetium-99m (n = 2) | Immersion of the samples in a sodium pertechnetate (99mTc-NaO4) solution for 3 h. The radioactivity of the samples was detected by a gamma camera. | Quantitative The radioactivity emitted by the samples was detected by a gamma camera. A static image was obtained for each specimen. The total counts obtained from each image were used to quantify infiltration. |
Imaging Methods (n = 42) | ||
---|---|---|
Imaging Method | Variable of the Protocol | Type of Assessment |
SEM (n = 18) | Sample Processing:
| Qualitative Semi-quantitative: microleakage scoring systems Quantitative: ImageJ analysis software, VGSTUDIO MAX, NRecon |
Micro-CT (n = 11) | Number and moment of scans:
| Quantitative
|
Stereomicroscope (n = 4) | Direct observation | Qualitative Quantitative: Image analysis software (NIS-Element’s viewer, AxioVision) |
Optical Coherence Tomography (n = 4) | Technologies:
| Quantitative: ImageJ analysis software |
Digital Microscope (n = 2) | Direct observation | Qualitative Quantitative: ImageJ analysis software |
Confocal Laser Scanning Microscopy (CLSM) (n = 1) | Direct observation and measurement | Quantitative: Specific tools from the CLSM allow the measurement of the perimeter of the tooth–restoration interface and the sum of the gaps. |
3D-Laser Confocal Microscopy (n = 1) | Direct observation and measurement | Quantitative: Specific tools from the 3D-LCM allow the identification of areas with gaps in the tooth composite interface (height filter) and measure the length of the gaps (linear marker) |
Energy Dispersive X-ray Spectroscopy (n = 1) | Sample processing: Ion sputtered the samples with gold ion coating equipment before the EDS assessment | Qualitative: X-ray technique used to identify the elemental composition of materials, allowing confirmation if the voids consist of gaps or adhesive layer. |
Microbiological Method
(n = 1) | ||
---|---|---|
Strain | Protocol | Type of Assessment |
Enterococcus faecalis (n = 1) | Enterococcus faecalis bacterial infection for 21 days. After this period, the samples were sectioned and stained using a Live/Dead Backlight Bacterial Viability Kit L-7012. The fluorescence from the stained bacteria was observed and measured with CLSM. | Quantitative Using a confocal laser scanning microscope, it is possible to track and quantify the routes and extent of bacterial colonization and therefore measure the extent of microleakage. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, S.; Marto, C.M.; Coelho, A.; Amaro, I.; Francisco, I.; Vale, F.; Paulo, S.; Ferreira, M.M.; Carrilho, E.; Paula, A. In Vitro Techniques for Microleakage Evaluation of Coronary Restorative Materials: A Scoping and Mapping Review. J. Funct. Biomater. 2025, 16, 210. https://doi.org/10.3390/jfb16060210
Vieira S, Marto CM, Coelho A, Amaro I, Francisco I, Vale F, Paulo S, Ferreira MM, Carrilho E, Paula A. In Vitro Techniques for Microleakage Evaluation of Coronary Restorative Materials: A Scoping and Mapping Review. Journal of Functional Biomaterials. 2025; 16(6):210. https://doi.org/10.3390/jfb16060210
Chicago/Turabian StyleVieira, Sofia, Carlos Miguel Marto, Ana Coelho, Inês Amaro, Inês Francisco, Francisco Vale, Siri Paulo, Manuel Marques Ferreira, Eunice Carrilho, and Anabela Paula. 2025. "In Vitro Techniques for Microleakage Evaluation of Coronary Restorative Materials: A Scoping and Mapping Review" Journal of Functional Biomaterials 16, no. 6: 210. https://doi.org/10.3390/jfb16060210
APA StyleVieira, S., Marto, C. M., Coelho, A., Amaro, I., Francisco, I., Vale, F., Paulo, S., Ferreira, M. M., Carrilho, E., & Paula, A. (2025). In Vitro Techniques for Microleakage Evaluation of Coronary Restorative Materials: A Scoping and Mapping Review. Journal of Functional Biomaterials, 16(6), 210. https://doi.org/10.3390/jfb16060210