The Influence of Bleaching Intensity and Laser Activation on the Durability of Selected Aesthetic Composites—An In Vitro Study
Abstract
1. Introduction
2. Materials and Methods
- Estelite Universal Flow with three different flowability levels.
- G-aenial Universal Flow (Table 1).
2.1. Sample Preparation
2.2. Bleaching Procedure
- carbamide peroxide 10%, hydrogen peroxide (H2O2) 3.6%–Opalescence 10%;
- carbamide peroxide 16%, hydrogen peroxide (H2O2) 5.8%–Opalescence 16%;
- carbamide peroxide 40%, hydrogen peroxide (H2O2) 10.0%–Opalescence 40%.
- The bleaching procedure was carried out in accordance with the records presented in Table 2.
2.3. Microhardness Test
2.4. Tribological Test
2.5. Roughness Test
2.6. Statistical Analysis
3. Results
3.1. Microhardness Test
3.2. Tribological Test
3.3. Microscopic Analysis
3.4. Traces of Friction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Popescu, A.D.; Tuculina, M.J.; Diaconu, O.A.; Gheorghiță, L.M.; Nicolicescu, C.; Cumpătă, C.N.; Voinea-Georgescu, R. Effects of dental bleaching agents on the surface roughness of dental restoration materials. Medicina 2023, 59, 1067. [Google Scholar] [CrossRef] [PubMed]
- Atyiah, M.J.; Abdul-Ameer, Z.M. The Effect of Dental Bleaching on Surface Roughness and Microhardness of three Different Filler Types of Composites (An in vitro Study). J. Res. Med. Dent. Sci. 2022, 10, 188–194. [Google Scholar]
- Epple, M.; Meyer, F.; Enax, J. A critical review of modern concepts for teeth whitening. Dent. J. 2019, 7, 79. [Google Scholar] [CrossRef]
- Mohammadi, N.; Alavi, F.N.; Rikhtehgaran, S.; Chaharom, M.E.E.; Salari, A.; Kimyai, S.; Bahari, M. Effect of bleaching method and curing time on the surface microhardness of microhybrid composite resin. Maedica 2020, 15, 359. [Google Scholar] [CrossRef]
- Türkün, M.; Sevgican, F.; Pehlivan, Y.; Aktener, B.O. Effects of 10% carbamide peroxide on the enamel surface morphology: A scanning electron microscopy study. J. Esthet. Restor. Dent. 2002, 14, 238–244. [Google Scholar] [CrossRef]
- Llena, C.; Esteve, I.; Forner, L. Effect of hydrogen and carbamide peroxide in bleaching, enamel morphology, and mineral composition: In vitro study. J. Contemp. Dent. Pract. 2017, 18, 576–582. [Google Scholar] [CrossRef]
- Kwon, S.R.; Wertz, P.W. Review of the mechanism of tooth whitening. J. Esthet. Restor. Dent. 2015, 27, 240–257. [Google Scholar] [CrossRef]
- Szczesio-Wlodarczyk, A.; Polikowski, A.; Krasowski, M.; Fronczek, M.; Sokolowski, J.; Bociong, K. The influence of low-molecular-weight monomers (TEGDMA, HDDMA, HEMA) on the properties of selected matrices and composites based on Bis-GMA and UDMA. Materials 2022, 15, 2649. [Google Scholar] [CrossRef]
- Krasowski, M.; Ciesielska, S.; Śmielak, B.; Kopacz, K.; Bociong, K. Preparation of an experimental dental composite with different Bis-GMA/UDMA proportions. Mater. Manuf. Process. 2024, 39, 1044–1051. [Google Scholar] [CrossRef]
- Wysokińska-Miszczuk, J.; Piotrowska, K.; Paulo, M.; Madej, M. Composite materials used for dental fillings. Materials 2024, 17, 4936. [Google Scholar] [CrossRef]
- Yadav, R.; Meena, A. Effect of aluminium oxide, titanium oxide, hydroxyapatite filled dental restorative composite materials on physico-mechanical properties. Ceram. Int. 2022, 48, 20306–20314. [Google Scholar] [CrossRef]
- Yadav, R.; Singh, M.; Shekhawat, D.; Lee, S.Y.; Park, S.J. The role of fillers to enhance the mechanical, thermal, and wear characteristics of polymer composite materials: A review. Compos. Part A Appl. Sci. Manuf. 2023, 175, 107775. [Google Scholar] [CrossRef]
- Pereira, R.P.; de Oliveira, D.; Rocha, M.G.; Roulet, J.F.; Geraldeli, S.; Sinhoreti, M. Effect of butylated hydroxytoluene (BHT) concentrations on polymerization shrinkage stress and other physicochemical properties of experimental resin composites. J. Mech. Behav. Biomed. Mater. 2024, 157, 106652. [Google Scholar] [CrossRef]
- Varghese, J.T.; Cho, K.; Farrar, P.; Prentice, L.; Prusty, B.G. Influence of silane coupling agent on the mechanical performance of flowable fibre-reinforced dental composites. Dent. Mater. 2022, 38, 1173–1183. [Google Scholar] [CrossRef]
- Guo, S.; Luo, S.H.; Li, X.; Wang, Z.; Zhang, X.; Lei, X.; Yan, S.X. Effect of silica nanospheres silanized by functional silanes on the physicochemical and mechanical properties of Bis-GMA/TEGDMA dental composite resin by photocuring synthesis. Int. J. Adhes. Adhes. 2024, 132, 103724. [Google Scholar] [CrossRef]
- Yadav, R.; Sonwal, S.; Sharma, R.P.; Saini, S.; Huh, Y.S.; Brambilla, E.; Ionescu, A.C. Ranking Analysis of Tribological, Mechanical, and Thermal Properties of Nano Hydroxyapatite Filled Dental Restorative Composite Materials Using the R-Method. Polym. Adv. Technol. 2024, 35, e70010. [Google Scholar] [CrossRef]
- Alamoush, R.A.; Yang, J.; Alhotan, A.; Haider, J.; Yilmaz, B.; Elraggal, A. The impact of bleaching using 15% carbamide peroxide on surface properties of CAD-CAM composite structures. Sci. Rep. 2025, 15, 3470. [Google Scholar] [CrossRef]
- Moraes, R.R.; Marimon, J.L.M.; Schneider, L.F.J.; Correr Sobrinho, L.; Camacho, G.B.; Bueno, M. Carbamide peroxide bleaching agents: Effects on surface roughness of enamel, composite and porcelain. Clin. Oral Investig. 2006, 10, 23–28. [Google Scholar] [CrossRef]
- Al-Angari, S.S.; Eckert, G.J.; Sabrah, A.H. Color stability, roughness, and microhardness of enamel and composites submitted to staining/bleaching cycles. Saudi Dent. J. 2021, 33, 215–221. [Google Scholar] [CrossRef]
- Omar, F.; Ab-Ghani, Z.; Abd Rahman, N.; Halim, M.S. Nonprescription bleaching versus home bleaching with professional prescriptions: Which one is safer? A comprehensive review of color changes and their side effects on human enamel. Eur. J. Dent. 2019, 13, 589–598. [Google Scholar] [CrossRef]
- Guvenc, M.; Temel, U.B.; Ermis, R.B. Effect of nano-filled protective coating on the microleakage resistance of a nanocomposite during bleaching treatment. J. Radiat. Res. Appl. Sci. 2023, 16, 100686. [Google Scholar] [CrossRef]
- Tinastepe, N.; Malkondu, O.; Iscan, I.; Kazazoglu, E. Effect of home and over the contour bleaching on stainability of CAD/CAM esthetic restorative materials. J. Esthet. Restor. Dent. 2021, 33, 303–313. [Google Scholar] [CrossRef]
- Ramírez-Vargas, G.G.; y Mendoza, J.E.M.; Aliaga-Mariñas, A.S.; Ladera-Castañeda, M.I.; Cervantes-Ganoza, L.A.; Cayo-Rojas, C.F. Effect of Polishing on the Surface Microhardness of Nanohybrid Composite Resins Subjected to 35% Hydrogen Peroxide: An: In vitro: Study. J. Int. Soc. Prev. Community Dent. 2021, 11, 216–221. [Google Scholar] [CrossRef]
- Atiq, T.; Imran, M.F.; Khurram, M.; Irfan, F.; Barkaat, H.; Iqbal, S. Effects of Two Different Bleaching Agents on the Microhardness of Composite. Pak. J. Med. Dent. 2021, 10, 11–16. [Google Scholar]
- Muralidasan, K.; Dattaprasad, S.; Indumathi, M.; Sruthipriya, M.; Balachandran, J.; Pavankumar, O. Influence of home bleaching regimen on microhardness and flexural strength of two contemporary composite resins–an in vitro evaluation. Eur. Oral Res. 2023, 57, 90–95. [Google Scholar]
- AlRashoud, A.; Alquraishi, S.; Almarzouq, F.; Alshamrani, H.; Alshamrani, A. Effectiveness and Adverse Effects of Dental Bleaching with 10–16% vs. 30–37% Carbamide Peroxide: A Systematic Review. Arch. Pharm. Pract. 2022, 13, 104–109. [Google Scholar] [CrossRef]
- Yılmaz Atalı, P.; Doğu Kaya, B.; Manav Özen, A.; Tarçın, B.; Şenol, A.A.; Tüter Bayraktar, E.; Türkmen, C. Assessment of micro-hardness, degree of conversion, and flexural strength for single-shade universal resin composites. Polymers 2022, 14, 4987. [Google Scholar] [CrossRef]
- Ilie, N. Microstructural dependence of mechanical properties and their relationship in modern resin-based composite materials. J. Dent. 2021, 114, 103829. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Meng, X.; Ye, Y.; Feng, D.; Xue, J.; Wang, J. Rheological and mechanical properties of resin-based materials applied in dental restorations. Polymers 2021, 13, 2975. [Google Scholar] [CrossRef]
- Sagsoz, O.; Ilday, N.O.; Sagsoz, N.P.; Bayindir, Y.Z.; Alsaran, A. Investigation of hardness and wear behavior of dental composite resins. In. J. Compos. Mater. 2014, 4, 179–184. [Google Scholar]
- Kruzic, J.J.; Arsecularatne, J.A.; Tanaka, C.B.; Hoffman, M.J.; Cesar, P.F. Recent advances in understanding the fatigue and wear behavior of dental composites and ceramics. J. Mech. Behav. Biomed. Mater. 2018, 88, 504–533. [Google Scholar] [CrossRef] [PubMed]
- Suryawanshi, A.; Behera, N. Dental composite resin: A review of major mechanical properties, measurements and its influencing factors. Mater. Werkst. 2022, 53, 617–635. [Google Scholar] [CrossRef]
- Abdollahpour, S.; Estedlal, T.; Chiniforush, N.; Rafeie, N.; Nikparto, N.; Abbasi, M.; Ranjbar Omrani, L. Effect of different bleaching methods on monomer release from aged microhybrid and nanohybrid resin composites. Int. J. Dent. 2023, 2023, 2773879. [Google Scholar] [CrossRef]
- Saffarpour, M.; Gerami, S.; Parviz, N.; Chiniforush, N. Evaluating the effectiveness of two wavelengths of 810 and 980 nm Diode laser with two different beam profiles on tooth discoloration in bleaching: An experimental study. Laser Ther. 2024, 31. [Google Scholar] [CrossRef]
- Kiryk, J.; Kiryk, S.; Kensy, J.; Świenc, W.; Palka, B.; Zimoląg-Dydak, M.; Dobrzyński, M. Effectiveness of Laser-Assisted Teeth Bleaching: A Systematic Review. Appl. Sci. 2024, 14, 9219. [Google Scholar] [CrossRef]
- Klekotka, M.; Grykin, M.I.; Dąbrowski, J.R. Rheological and tribological behavior of polyacrylamide-base solutions for artificial synovial fluid. Acta Bioeng. Biomech. 2023, 25, 49–59. [Google Scholar] [CrossRef]
- Mierzejewska, Ż.A.; Łukaszuk, K.; Choromańska, M.; Zalewska, A.; Borys, J.; Antonowicz, B.; Kulesza, E. Influence of Different Polishing Methods on Surface Roughness and Microhardness of Dental Composites. Adv. Sci. Technol. Res. J. 2024, 18, 268–279. [Google Scholar] [CrossRef]
- Karademir, S.A.; Atasoy, S.; Yılmaz, B. Effect of bleaching and repolishing on whiteness change and staining susceptibility of resin-based materials. BMC Oral Health 2024, 24, 1507. [Google Scholar] [CrossRef]
- Chen, S.; Zhu, J.; Yu, M.; Jin, C.; Huang, C. Effect of aging and bleaching on the color stability and surface roughness of a recently introduced single-shade composite resin. J. Dent. 2024, 143, 104917. [Google Scholar] [CrossRef]
- Satheesh, S.L.; VG, S.J.; Fathima, R. Impact of In-office and Home Bleaching Agents on Surface Roughness and Microhardness of Single-shade and Nanofilled Composite Resins: An In Vitro Study. World J. Dent. 2025, 15, 989–993. [Google Scholar] [CrossRef]
- Karatas, O.; Gul, P.; Akgul, N.; Celik, N.; Gundogdu, M.; Duymus, Z.Y.; Seven, N. Effect of staining and bleaching on the microhardness, surface roughness and color of different composite resins. Dent. Med. Probl. 2021, 58, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Müller-Heupt, L.K.; Wiesmann-Imilowski, N.; Kaya, S.; Schumann, S.; Steiger, M.; Bjelopavlovic, M.; Lehmann, K.M. Effectiveness and safety of over-the-counter tooth-whitening agents compared to hydrogen peroxide in vitro. Int. J. Mol. Sci. 2023, 24, 1956. [Google Scholar] [CrossRef] [PubMed]
- Gokulnath, R.; Kumar, R.M.; Jayasenthil, A.; Anjana, R.; Vidya, G.S. Evaluation of bleaching efficiency of carbamide peroxide applied on different dental surfaces: An in vitro study. J. Conserv. Dent. Endod. 2025, 28, 366–370. [Google Scholar] [CrossRef]
- Kandil, M.M.; Abdelnabi, A.; Hamdy, T.M.; Bayoumi, R.E.; Othman, M.S. Home Bleaching Effects on the Surface Gloss, Translucency, and Roughness of CAD/CAM Multi-Layered Ceramic and Hybrid Ceramic Materials. J. Compos. Sci. 2024, 8, 541. [Google Scholar] [CrossRef]
- Femiano, F.; Femiano, R.; Scotti, N.; Nucci, L.; Lo Giudice, A.; Grassia, V. The use of diode low-power laser therapy before in-office bleaching to prevent bleaching-induced tooth sensitivity: A clinical double-blind randomized study. Dent. J. 2023, 11, 176. [Google Scholar] [CrossRef]
- Polydorou, O.; Hellwig, E.; Auschill, T.M. The effect of different bleaching agents on the surface texture of restorative materials. Oper. Dent. 2006, 31, 473–480. [Google Scholar] [CrossRef]
- Abdelaziz, K.M.; Mir, S.; Khateeb, S.U.; Baba, S.M.; Alshahrani, S.S.; Alshahrani, E.A.; Alsafi, Z.A. Influences of successive exposure to bleaching and fluoride preparations on the surface hardness and roughness of the aged resin composite restoratives. Medicina 2020, 56, 476. [Google Scholar] [CrossRef]
- Khan, A.A.; Abdullah Alkhureif, A.; Bautista, L.S.; Alsunbul, H.; Vellappally, S. Peroxide-free bleaching gel: Effect on the surface and mechanical properties of nano-and micro-hybrid restorative composite materials. Appl. Sci. 2023, 13, 5935. [Google Scholar] [CrossRef]
- Basting, R.T.; Rodrigues, A.L.; Serra, M.C. The effect of 10% carbamide peroxide, carbopol and hydrogen peroxide on enamel and dentin microhardness. Oper. Dent. 2005, 32, 291–298. [Google Scholar]
- Attin, T.; Paque, F.; Ajam, F.; Lennon, Á.M. Review of the current status of tooth whitening with the walking bleach technique. Int. Endod. J. 2004, 36, 313–329. [Google Scholar] [CrossRef]
- Qasim, S.; Ramakrishnaiah, R.; Alkheriaf, A.A.; Zafar, M.S. Influence of various bleaching regimes on surface roughness of resin composite and ceramic dental biomaterials. Technol. Health Care 2016, 24, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Badar, M.; Geetha, P.; Nair, K.R.; Kurup, N.B.; Soman, D.; Nair, R.R. Comparative Evaluation of Microhardness of Suprananospherical and Nanohybrid Composite after Various Bleaching Protocols: An In Vitro Study. Conserv. Dent. Endod. J. 2024, 7, 44–48. [Google Scholar]
- Nunes, G.P.; Marques, M.T.; de Toledo, P.T.A.; de Oliveira Alves, R.; Martins, T.P.; Delbem, A.C.B. Effect of a novel low-concentration hydrogen peroxide bleaching gel containing nano-sized sodium trimetaphosphate and fluoride. J. Dent. 2024, 150, 105330. [Google Scholar] [CrossRef]
- dos Santos Muniz Mota, G.M.; Kury, M.; Pereira da Silva Braga Tenório, C.; Lucisano Botelho do Amaral, F.; Turssi, C.P.; Cavalli, V. Effects of artificial staining and bleaching protocols on the surface roughness, color, and whiteness changes of an aged nanofilled composite. Front. Dent. Med. 2020, 1, 610586. [Google Scholar] [CrossRef]
- Karanasiou, C.; Dionysopoulos, D.; Naka, O.; Strakas, D.; Tolidis, K. Effects of tooth bleaching protocols assisted by Er, Cr: YSGG and diode (980 nm) lasers on color change of resin-based restoratives. J. Esthet. Restor. Dent. 2021, 33, 1210–1220. [Google Scholar] [CrossRef]
- Peng, P.W.; Huang, C.F.; Hsu, C.Y.; Chen, A.; Ng, H.H.; Cheng, M.S.; Lee, W.F. Color stability and staining susceptibility of direct resin-based composites after light-activated in-office bleaching. Polymers 2021, 13, 2941. [Google Scholar] [CrossRef]
- Turker, Ş.B.; Biskin, T. Effect of three bleaching agents on the surface properties of three different esthetic restorative materials. J. Prosth. Dent. 2003, 89, 466–473. [Google Scholar] [CrossRef]
- Montaner, M.; Sanz, J.L.; Llena, C.; Melo, M.; Puig-Herreros, C.; Ghilotti, J. Cytotoxicity of bleaching products: A systematic review. Appl. Sci. 2024, 14, 3680. [Google Scholar] [CrossRef]
- Alkhudhairy, F.; Naseem, M.; Bin-Shuwaish, M.; Vohra, F. Efficacy of Er Cr: YSGG laser therapy at different frequency and power levels on bond integrity of composite to bleached enamel. Photodiagn. Photodyn. Ther. 2018, 22, 34–38. [Google Scholar] [CrossRef]
- Antunes, E.V.G.; Basting, R.T.; do Amaral, F.L.B.; França, F.M.G.; Turssi, C.P.; Kantovitz, K.R.; Basting, R.T. Titanium dioxide nanotubes in a hydrogen peroxide-based bleaching agent: Physicochemical properties and effectiveness of dental bleaching under the influence of a poliwave led light activation. Clin. Oral Investig. 2023, 27, 1745–1755. [Google Scholar] [CrossRef]
- Erturk-Avunduk, A.T.; Cengiz-Yanardag, E.; Karakaya, I. The effect of bleaching applications on stained bulk-fill resin composites. BMC Oral Health 2022, 22, 392. [Google Scholar] [CrossRef] [PubMed]
- Erturk-Avunduk, A.T.; Delikan, E.; Cengiz-Yanardag, E.; Karakaya, I. Effect of whitening concepts on surface roughness and optical characteristics of resin-based composites: An AFM study. Microsc. Res. Tech. 2024, 87, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.P.; Landmayer, K.; Iatarola, B.D.O.; Vertuan, M.; Magalhães, A.C.; Francisconi-Dos-Rios, L.F. Bleaching as a complement to fluoride-enhanced remineralization or resin infiltration in masking white spot lesions. J. Appl. Oral Sci. 2024, 32, e20240097. [Google Scholar] [CrossRef]
- Yikilgan, İ.; Kamak, H.; Akgul, S.; Ozcan, S.; Bala, O. Effects of three different bleaching agents on microhardness and roughness of composite sample surfaces finished with different polishing techniques. J. Clin. Exp. Dent. 2017, 9, e460. [Google Scholar] [CrossRef]
- Kumar, S.R.; Sharma, A. Surface pre-reacted glass reinforced dental composite: Performance assessment of physicochemical, static mechanical, dynamic mechanical and wear properties. Proc. Inst. Mech. Eng. Part E 2024, 238, 2973–2982. [Google Scholar] [CrossRef]
- Rodríguez, H.A.; Kriven, W.M.; Casanova, H. Development of mechanical properties in dental resin composite: Effect of filler size and filler aggregation state. Mater. Sci. Eng. C 2019, 101, 274–282. [Google Scholar] [CrossRef]
- Moghaddam, E.T.; Tafazoli, A. Cola beverages: Clinical uses versus adverse effects. Curr. Nutr. Food Sci. 2019, 15, 130–139. [Google Scholar] [CrossRef]
- Alrabeah, G.; Shabib, S.; Almomen, R.; Alhedeithi, N.; Alotaibi, S.; Habib, S.R. Effect of home bleaching on the optical properties and surface roughness of novel aesthetic dental ceramics. Coatings 2023, 13, 330. [Google Scholar] [CrossRef]
- Leprince, J.G.; Palin, W.M.; Hadis, M.A.; Devaux, J.; Leloup, G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent. Mater. 2013, 29, 139–156. [Google Scholar] [CrossRef]
- Shayegan, A.; Vozza, I.; Bossù, M.; Malikzade, N. Impact of Exposure to Commonly Used Carbamide Peroxide on Dental Pulp Stem Cells. Appl. Sci. 2024, 14, 4412. [Google Scholar] [CrossRef]
- Llena, C.; Collado-González, M.; Tomás-Catalá, C.J.; García-Bernal, D.; Oñate-Sánchez, R.E.; Rodríguez-Lozano, F.J.; Forner, L. Human dental pulp stem cells exhibit different biological behaviours in response to commercial bleaching products. Materials 2018, 11, 1098. [Google Scholar] [CrossRef] [PubMed]
Name of Composite/Flowability | Type of Composite | Composite Matric | Fillers | Filler Content | |
---|---|---|---|---|---|
Estelite Universal Flow (Tokuyama Dental, Japan) | High | Supra-Nano Spherical fillers | Bis-GMA, Bis-MPEPP, TEGDMA, UDMA | 200 nm spherical SiO2*ZrO2 | 55 vol% 69 wt% |
Medium | 57 vol% 71 wt% | ||||
Super Low | 56 vol% 70 wt% | ||||
G-aenial Universal Flo (GC, Japonia) | Microfilled | UDMA, Bis-MPEPP, TEGDMA | Silicon dioxide (16 nm) Strontium glass (200 nm) | 50 vol% 69 wt% |
Type of Bleaching | Bleaching Time |
---|---|
Opalescence 10% | 6 h × 7 days (Home bleaching) |
Opalescence 16% | |
Opalescence 40% | 2 × 20 min + 20 min break (Office bleaching) |
Opalescence 10% + laser beam | 90 s of exposure (3 × 30 s + 1 min break) + 10 min after activation (Office bleaching) |
Opalescence 16% + laser beam | |
Opalescence 40% + laser beam |
Type of Bleaching | G-Aenial | Estelite Universal Flow High | ||
---|---|---|---|---|
Mean ± St Dev. | t-Value (p-Value) | Mean ± St Dev. | t-Value (p-Value) | |
Control samples | 47.29 ± 0.71 | 42.07 ± 1.69 | ||
bleaching 10% | 45.04 ± 0.43 | 8.72 (<0.001) | 32.32 ± 0.75 | 13.1 (<0.001) |
bleaching 16% | 43.08 ± 0.41 | 12.21 (<0.001) | 31.18 ± 0.67 | 15.34 (<0.001) |
bleaching 40% | 33.99 ± 0.87 | 28.49 (<0.001) | 29.68 ± 0.80 | 16.29 (<0.001) |
bleaching 10% + laser | 46.70 ± 0.44 | 2.47 (0.032) | 38.40 ± 0.39 | 5.32 (<0.001) |
bleaching 16% + laser | 38.58 ± 1.01 | 9.84 (<0.001) | 36.96 ± 0.44 | 9.92 (<0.001) |
bleaching 40% + laser | 38.50 ± 0.21 | 11.09 (<0.001) | 30.70 ± 0.21 | 15.29 (<0.001) |
One-way ANOVA | F = 106.5 p < 0.001 | F = 251.3 p < 0.001 | ||
Regression | R2 = 0.89 | R2 = 0.95 | ||
Estelite Universal Flow Medium | Estelite Universal Flow Super Low | |||
Mean ± St dev. | t-value (p-value) | Mean ± St dev. | t-value (p-value) | |
Control samples | 45.46 ± 1.18 | 55.72 ± 0.94 | ||
bleaching 10% | 43.98 ± 0.79 | 3.02 (0.016) | 46.52 ± 0.87 | 12.4 (<0.001) |
bleaching 16% | 42.56 ± 0.72 | 4.89 (<0.001) | 45.01 ± 0.77 | 14.83 (<0.001) |
bleaching 40% | 44.37 ± 1.58 | 0.73 (0.479) | 45.97 ± 1.29 | 14.38 (<0.001) |
bleaching 10% + laser | 45.02 ± 0.41 | 0.68 (0.501) | 44.12 ± 2.05 | 11.42 (<0.001) |
bleaching 16% + laser | 41.46 ± 0.43 | 6.42 (<0.001) | 46.92 ± 1.32 | 10.24 (<0.001) |
bleaching 40% + laser | 40.74 ± 0.65 | 8.82 (<0.001) | 41.30 ± 0.38 | 18.66 (<0.001) |
One-way ANOVA | F = 15.7 p < 0.001 | F = 70.2 p < 0.001 | ||
Regression | R2 = 0.75 | R2 = 0.68 | ||
Two-way ANOVA | F(Bleaching) = 134.8 | F(Material) = 78.4 | Interaction = 25.2 | p < 0.001 (all) |
Type of Bleaching | G-Aenial | Estelite Universal Flow High | ||
---|---|---|---|---|
Mean ± St Dev. | t-Value (p-Value) | Mean ± St Dev. | t-Value (p-Value) | |
Control samples | 0.198 ± 0.0087 | 0.114 ± 0.0027 | ||
bleaching 10% | 0.278 ± 0.0113 | 817.46 (<0.001) | 0.121 ± 0.0051 | 3.02 (0.017) |
bleaching 16% | 0.209 ± 00025 | 4.32 (<0.001) | 0.122 ± 0.0030 | 4.58 (<0.001) |
bleaching 40% | 0.205 ± 0.0131 | 2.81 (0.014) | 0.125 ± 0.0040 | 6.89 (<0.001) |
bleaching 10% + laser | 0.227 ± 0.0072 | 10.49 (<0.001) | 0.118 ± 0.0061 | 1.68 (0.136) |
bleaching 16% + laser | 0.216 ± 0.0051 | 7.81 (<0.001) | 0.120 ± 0.0059 | 3.92 (<0.001) |
bleaching 40% + laser | 0.211 ± 0.0083 | 5.24 (<0.001) | 0.117 ± 0.0025 | 2.38 (0.038) |
One-way ANOVA | F = 68.3 p < 0.001 | F = 12.6 p < 0.001 | ||
Regression | R2 = 0.81 | R2 = 0.69 | ||
Estelite Universal Flow Medium | Estelite Universal Flow Super Low | |||
Mean ± St dev. | t-value (p-value) | Mean ± St dev. | t-value (p-value) | |
Control samples | 0.037 ± 0.0030 | 0.060 ± 0.0042 | ||
bleaching 10% | 0.051 ± 0.0034 | 9.34 (<0.001) | 0.118 ± 0.0069 | 23.56 (<0.001) |
bleaching 16% | 0.050 ± 0.0025 | 11.21(<0.001) | 0.081 ± 0.0044 | 7.32 (<0.001) |
bleaching 40% | 0.069 ± 0.0047 | 18.73 (<0.001) | 0.084 ± 0.0067 | 6.82 (<0.001) |
bleaching 10% + laser | 0.065 ± 0.0043 | 17.84 (<0.001) | 0.063 ± 0.0069 | 0.82 (0.435) |
bleaching 16% + laser | 0.063 ± 0.0033 | 17.36 (<0.001) | 0.064 ± 0.0070 | 0.99 (0.362) |
bleaching 40% + laser | 0.059 ± 0.0024 | 13.92 (<0.001) | 0.072 ± 0.0051 | 2.32 (0.042) |
One-way ANOVA | F = 94.7 p < 0.001 | F = 57.8 p < 0.001 | ||
Regression | R2 = 0.92 | R2 = 0.78 | ||
Two-way ANOVA | F(Bleaching) = 87.5 | F(Material) = 42.9 | Interaction = 19.4 | p < 0.001 (all) |
Type of Bleaching | G-Aenial | Estelite Universal Flow High | ||
---|---|---|---|---|
Mean | St Dev. | Mean | St Dev. | |
Control samples | 1.16 | 0.019 | 1.59 | 0.077 |
bleaching 10% | 1.25 | 0.074 | 2.51 | 0.091 |
bleaching 16% | 1.08 | 0.065 | 2.18 | 0.101 |
bleaching 40% | 1.18 | 0.029 | 2.68 | 0.100 |
bleaching 10% + laser | 1.02 | 0.061 | 1.80 | 0.061 |
bleaching 16% + laser | 1.00 | 0.029 | 1.30 | 0.059 |
bleaching 40% + laser | 2.08 | 0.048 | 2.08 | 0.085 |
Estelite Universal Flow Medium | Estelite Universal Flow Super Low | |||
Mean | St dev. | Mean | St dev. | |
Control samples | 2.51 | 0.098 | 1.91 | 0.074 |
bleaching 10% | 2.02 | 0.064 | 1.56 | 0.069 |
bleaching 16% | 2.29 | 0.105 | 1.74 | 0.044 |
bleaching 40% | 2.83 | 0.097 | 1.69 | 0.067 |
bleaching 10% + laser | 1.88 | 0.104 | 1.22 | 0.069 |
bleaching 16% + laser | 2.13 | 0.093 | 1.69 | 0.070 |
bleaching 40% + laser | 2.74 | 0.117 | 1.47 | 0.051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mierzejewska, Ż.A.; Łukaszuk, K.; Rusztyn, B.; Maliszewski, K. The Influence of Bleaching Intensity and Laser Activation on the Durability of Selected Aesthetic Composites—An In Vitro Study. J. Funct. Biomater. 2025, 16, 193. https://doi.org/10.3390/jfb16060193
Mierzejewska ŻA, Łukaszuk K, Rusztyn B, Maliszewski K. The Influence of Bleaching Intensity and Laser Activation on the Durability of Selected Aesthetic Composites—An In Vitro Study. Journal of Functional Biomaterials. 2025; 16(6):193. https://doi.org/10.3390/jfb16060193
Chicago/Turabian StyleMierzejewska, Żaneta Anna, Kamila Łukaszuk, Bartłomiej Rusztyn, and Kacper Maliszewski. 2025. "The Influence of Bleaching Intensity and Laser Activation on the Durability of Selected Aesthetic Composites—An In Vitro Study" Journal of Functional Biomaterials 16, no. 6: 193. https://doi.org/10.3390/jfb16060193
APA StyleMierzejewska, Ż. A., Łukaszuk, K., Rusztyn, B., & Maliszewski, K. (2025). The Influence of Bleaching Intensity and Laser Activation on the Durability of Selected Aesthetic Composites—An In Vitro Study. Journal of Functional Biomaterials, 16(6), 193. https://doi.org/10.3390/jfb16060193