The Ballet of Nature-Product: Carrier-Free “Triadic” Drug Delivery Platforms for Enhanced Tumor Treatment
Abstract
1. Introduction
2. Natural Product-Based Carrier-Free Nanomedicines for Cancer Combinational Chemotherapy
3. Natural Product-Based Carrier-Free Nanoparticles for Liver Cancer PDT/PTT/Chemotherapy
4. Natural Product-Based Nanomedicines for Tumor Photodynamic/Starvation Therapy
5. Natural Product-Based Nanomedicines for Tumor Bioimaging and PDT-Chemotherapy
6. Natural Product-Based Emerging Nanomedicines for Tumor Chemo-Radio-Theranostics
7. Natural Product-Based Carrier-Free Nanomedicines for Tumor GT/PTT/Chemotherapy
8. Challenges and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AIE | aggregation-induced luminescence |
| ASGPR | asialoglycoprotein receptor |
| BBR | berberine |
| CPT | camptothecin |
| CUR | curcumin |
| ERI | erianin |
| FDA | Food and Drug Administration |
| GA | gambogic acid |
| GL | glycyrrhizic acid |
| GSH | glutathione |
| GT | gene therapy |
| HPC | hypericin |
| ICD | immunogenic cell death |
| ICG | indocyanine green |
| LAC | lactose |
| MDR | multidrug resistance |
| PA | photoacoustic imaging |
| PDT | photodynamic therapy |
| P-gp | P-glycoprotein |
| PS | photosensitizer |
| PTT | photothermal therapy |
| PTX | paclitaxel |
| ROS | reactive oxygen species |
| TNBC | triple-negative breast cancer |
| TrxR | thioredoxin reductase |
| TME | tumor microenvironment |
References
- Schapira, L.; Duffy, C.M. Cancer treatment survivorship statistics 2025: An urgent call to optimize health after cancer. CA Cancer J. Clin. 2025, 75, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013, 13, 714–726. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.Y.; Lei, S.Z.; Xu, W.J.; Lai, Y.X.; Zhang, Y.Y.; Wang, Y.; Wang, Z.L. Rising above: Exploring the therapeutic potential of natural product-based compounds in human cancer treatment. Tradit. Med. Res. 2025, 10, 18. [Google Scholar] [CrossRef]
- Ponton-Almodovar, A.; Sanderson, S.; Rattan, R.; Bernard, J.J.; Horibata, S. Ovarian tumor microenvironment contributes to tumor progression and chemoresistance. Cancer Drug Resist. 2024, 7, 53. [Google Scholar] [CrossRef]
- Fryem, W.J.E.; Huff, L.M.; González Dalmasy, J.M.; Salazar, P.; Carter, R.M.; Gensler, R.T.; Esposito, D.; Robey, R.W.; Ambudkar, S.V.; Gottesman, M.M. The multidrug resistance transporter P-glycoprotein confers resistance to ferroptosis inducers. Cancer Drug Resist. 2023, 6, 468–480. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, X.; Sun, M.; Wang, C.; Yang, L. Game changers: Blockbuster small-molecule drugs approved by the FDA in 2024. Pharmaceuticals 2025, 18, 729. [Google Scholar] [CrossRef]
- Kingsak, M.; Meethong, T.; Jongkhumkrong, J.; Cai, L.; Wang, Q. Therapeutic potential of oncolytic viruses in the era of precision oncology. Biomater. Transl. 2023, 4, 67–84. [Google Scholar]
- Zhang, Y.; You, P.; Liu, R. Artificial intelligence in clinical trials of lung cancer: Current and future prospects. Intell. Oncol. 2025, 1, 34–51. [Google Scholar] [CrossRef]
- Xie, H.; Jia, Y.; Liu, S. Integration of artificial intelligence in clinical laboratory medicine: Advancements and challenges. Interdiscip. Med. 2024, 2, e20230056. [Google Scholar] [CrossRef]
- Xu, M.; Hu, K.; Liu, Y.; Huang, Y.; Liu, S.; Chen, Y.; Chen, J. Systemic metastasis-targeted nanotherapeutic reinforces tumor surgical resection and chemotherapy. Nat. Commun. 2021, 12, 3187. [Google Scholar] [CrossRef]
- Chandra, R.A.; Keane, F.K.; Voncken, F.E.; Thomas, C.R. Contemporary radiotherapy: Present and future. Lancet 2021, 398, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Kefas, J.; Flynn, M. Unlocking the potential of immunotherapy in platinum-resistant ovarian cancer: Rationale, challenges, and novel strategies. Cancer Drug Resist. 2024, 7, 39. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.; Zhang, Q.; Yu, L.; Li, X.; Wu, S. Oncogenic viral antigens for engineered T cell immunotherapy: Challenges and opportunities. Med. Adv. 2023, 1, 306–317. [Google Scholar] [CrossRef]
- Zeng, H.; Wang, W.; Zhang, L.; Lin, Z. HER3-targeted therapy: The mechanism of drug resistance and the development of anticancer drugs. Cancer Drug Resist. 2024, 7, 14. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Z. Natural products, alone or in combination with FDA-approved drugs, to treat COVID-19 and lung cancer. Biomedicines 2021, 9, 689. [Google Scholar] [CrossRef]
- Thao, L.T.P.; Nguyen, T.; Singh, J. Low-dose aspirin for individualized cancer prevention in older adults: A secondary analysis of the ASPREE randomized clinical trial. JAMA Oncol. 2025. [Google Scholar] [CrossRef]
- Wang, X.; Wei, M.; Miao, R.; Hao, X.; Li, M.; Wang, W.; He, Z. Adeno-associated virus vectors for gene therapy—Focusing on melanoma. Interdiscip. Med. 2024, 2, e20240031. [Google Scholar] [CrossRef]
- Goodall, G.J.; Wickramasinghe, V.O. RNA in cancer. Nat. Rev. Cancer 2021, 21, 22–36. [Google Scholar] [CrossRef]
- Tang, L.; Wang, D.; Hu, T.; Lin, X.; Wu, S. Current applications of tumor local ablation (TLA) combined with immune checkpoint inhibitors in breast cancer treatment. Cancer Drug Resist. 2024, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Kalayil, N.; Budar, A.A.; Dave, R.K. Nanofibers for drug delivery: Design and fabrication strategies. BIO Integr. 2024, 5, 978. [Google Scholar] [CrossRef]
- Zheng, L.; Chang, R.; Liang, B.; Wang, Y.; Zhu, Y.; Jia, Z.; Kong, D. Overcoming drug resistance through extracellular vesicle-based drug delivery system in cancer treatment. Cancer Drug Resist. 2024, 7, 50. [Google Scholar] [CrossRef]
- Wang, Z.; Song, X.; Sun, M.; Zhang, R.; Yang, L. Bench-to-bedside translation of podophyllotoxin-based nanomedicines for cancer treatment: Utopias and reality? Microstructures 2025, 5, 2025094. [Google Scholar] [CrossRef]
- Chen, J.W.; Chen, S.; Chen, G.Q. Recent advances in natural compounds inducing non-apoptotic cell death for anticancer drug resistance. Cancer Drug Resist. 2023, 6, 729–747. [Google Scholar] [CrossRef] [PubMed]
- Gottesman, M.M.; Robey, R.W.; Ambudkar, S.V. New mechanisms of multidrug resistance: An introduction to the cancer drug resistance special collection. Cancer Drug Resist. 2023, 6, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Barrios, C.; de Lima Lopes, G.; Yusof, M.M.; Rubagumya, F.; Rutkowski, P.; Sengar, M. Barriers in access to oncology drugs—A global crisis. Nat. Rev. Clin. Oncol. 2023, 20, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.S.; Capon, R.J.; Blaskovich, M.A.; Henderson, I.R. Natural product-derived compounds in clinical trials and drug approvals. Nat. Prod. Rep. 2025. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, L. Turning the tide: Natural products and natural-product-inspired chemicals as potential counters to SARS-CoV-2 infection. Front. Pharmacol. 2020, 11, 1013. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, L. The therapeutic potential of natural dietary flavonoids against SARS-CoV-2 infection. Nutrients 2023, 15, 3443. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, L.; Wang, Y.; Xu, R.; Yang, H.; Peng, J. Therapeutic effects of Chinese herbal medicines for treatment of urolithiasis: A review. Chin. Herb. Med. 2023, 15, 526–532. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Z. Bench-to-bedside: Innovation of small molecule anti-SARS-CoV-2 drugs in China. Eur. J. Med. Chem. 2023, 257, 115503. [Google Scholar] [CrossRef]
- Yue, Y.Z.; Xie, J.; Yan, S. Baicalin: A prominent therapeutic agent against colorectal cancer. Tradit. Med. Res. 2023, 8, 18. [Google Scholar] [CrossRef]
- Wei, X.; Zhou, J.; Zeng, L.; Xu, M.; Che, C.; Duan, J.; Yan, H.; Bi, H.; Zhao, M. Highly oxygenated dihydrostilbenoids and flavones from the aerial part of Glycyrrhiza uralensis and their antimicrobial activities. Sci. Tradit. Chin. Med. 2024, 2, 291–302. [Google Scholar] [CrossRef]
- Wang, Z. Advances in the asymmetric total synthesis of natural products using chiral secondary amine catalyzed reactions of α,β-unsaturated aldehydes. Molecules 2019, 24, 3412. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, L.; Yang, X.; Zhang, X. Advances in the chemical synthesis of artemisinin. Synth. Commun. 2014, 44, 1987–2003. [Google Scholar] [CrossRef]
- Ragozzino, C.; Casella, V.; Coppola, A.; Scarpato, S.; Buonocore, C.; Consiglio, A.; Palma Esposito, F.; Galasso, C.; Tedesco, P.; Della Sala, G. Last decade insights in exploiting marine microorganisms as sources of new bioactive natural products. Mar. Drugs 2025, 23, 116. [Google Scholar] [CrossRef]
- Kong, F.; Wang, C.; Zhang, J.; Wang, X.; Sun, B.; Xiao, X.; Zhang, H.; Song, Y.; Jia, Y. Chinese herbal medicines for prostate cancer therapy: From experimental research to clinical practice. Chin. Herb. Med. 2023, 15, 485–495. [Google Scholar] [CrossRef]
- Wang, S.F.; Dong, S.Q.; Dong, Q.; Lin, W.X.; Dong, M.; Liu, D. Natural product-induced oxidative stress-synergistic anti-tumor effects of chemotherapeutic agents. Tradit. Med. Res. 2024, 9, 14. [Google Scholar] [CrossRef]
- Li, W. Integrating tradition and innovation: Health industry opportunities for ginseng with foods and medicines. Chin. Herb. Med. 2024, 16, 487–488. [Google Scholar] [CrossRef]
- El-Aasr, M.; Eliwa, D.; Albadry, M.; Ibrahim, A.R.S.; Kabbash, A.; Meepagala, K.M.; Khan, I.A.; Khan, S.I.; Ross, S.A. Microbial transformation of some simple isoquinoline and benzylisoquinoline alkaloids and in vitro studies of their metabolites. Phytochemistry 2021, 189, 112828. [Google Scholar] [CrossRef]
- Kong, F.; Wang, C.; Zhao, L.; Liao, D.; Wang, X.; Sun, B.; Yang, P.; Jia, Y. Traditional Chinese medicines for non-small cell lung cancer: Therapies and mechanisms. Chin. Herb. Med. 2023, 15, 509–515. [Google Scholar] [CrossRef]
- Tian, Y.; Ma, B.; Yu, S.; Li, Y.; Pei, H.; Tian, S.; Zhao, X.; Liu, C.; Zuo, Z.; Wang, Z. Clinical antitumor application and pharmacological mechanisms of Dahuang Zhechong Pill. Chin. Herb. Med. 2023, 15, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.H.; Wang, X.; Zhao, X.M.; Hu, Y.W.; Liu, X.; Deng, D.W. Co-assembly strategies of natural plant compounds for improving their bioavailability. Food Med. Homol. 2025, 2, 9420022. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, S.; Chen, K.; Ji, L.; Cui, S. Magnolol and 5fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathways. Chin. Herb. Med. 2024, 16, 94–105. [Google Scholar] [PubMed]
- Jahangiri, R. Natural products and derivatives hold promise to improve treatment of unresponsive tumours. Nat. Prod. Res. 2025, 1–20. [Google Scholar] [CrossRef]
- Wu, K.; Kwon, S.H.; Zhou, X.; Fuller, C.; Wang, X.; Vadgama, J.; Wu, Y. Overcoming challenges in small-molecule drug bioavailability: A review of key factors approaches. Int. J. Mol. Sci. 2024, 25, 13121. [Google Scholar] [CrossRef]
- Chopra, B.; Dhingra, A.K. Natural products: A lead for drug discovery and development. Phytother. Res. 2021, 35, 4660–4702. [Google Scholar] [CrossRef]
- Shi, X.Y.; Bao, X.; Li, Y.; Yin, C.L. Theanine combined with cisplatin inhibits the proliferation and metastasis of TNBC cells through Akt signaling pathway. Tradit. Med. Res. 2023, 8, 25. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; He, Q.; Yang, X. Exploration of the use of natural compounds in combination with chemotherapy drugs for tumor treatment. Molecules 2023, 28, 1022. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, X.; Zhou, W.; Wu, Q.; Yan, J.; Xu, X.; Zhang, H. Combination of photothermal, prodrug and tumor cell camouflage technologies for triple-negative breast cancer treatment. Mater. Today Adv. 2022, 13, 100199. [Google Scholar] [CrossRef]
- Bargakshatriya, R.; Pramanik, S.K. Stimuli-responsive prodrug chemistries for cancer therapy. ChemBioChem 2023, 24, e202300155. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, P.; Lin, J.; Chen, K.; Shen, J. Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system. Cancer Drug Resist. 2023, 6, 390–415. [Google Scholar] [CrossRef]
- Lv, Y.; Li, W.; Liao, W.; Jiang, H.; Liu, Y.; Cao, J.; Feng, Y. Nano-drug delivery systems based on natural products. Int. J. Nanomed. 2024, 19, 541–569. [Google Scholar] [CrossRef]
- Yap, K.M.; Sekar, M.; Fuloria, S.; Wu, Y.S.; Gan, S.H.; Mat Rani, N.N.I.; Fuloria, N.K. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: A comprehensive review of literature. Int. J. Nanomed. 2021, 16, 7891–7941. [Google Scholar] [CrossRef]
- Dechbumroong, P.; Hu, R.; Keaswejjareansuk, W.; Namdee, K.; Liang, X.J. Recent advanced lipid-based nanomedicines for overcoming cancer resistance. Cancer Drug Resist. 2024, 7, 24. [Google Scholar] [CrossRef]
- Morimoto, M.; Maishi, N.; Hida, K. Acquisition of drug resistance in endothelial cells by tumor-derived extracellular vesicles and cancer progression. Cancer Drug Resist. 2024, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, L. Natural-product-based, carrier-free, noncovalent nanoparticles for tumor chemo-photodynamic combination therapy. Pharmacol. Res. 2024, 203, 107150. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lei, C.; Qiao, R.; Li, C. Recent advances in carrier-free natural small molecule self-assembly for drug delivery. Biomater. Sci. 2024, 12, 6237–6252. [Google Scholar] [CrossRef]
- Li, G.; Cai, C.; Zhang, N.; Wang, Z.; Zhang, M.; Liu, Q.; Chen, S.; Shang, Y.; Zhao, C.; Ren, S.; et al. Carrier-free procyanidin-ferric nanonetworks loading gefitinib to inhibit TMEM16A-EGFR mutual activation loop for photothermally enhanced breast cancer targeted therapy. Mater. Today Bio 2025, 35, 102426. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, T.; Li, J.; Yu, Q.; Feng, Y.; Xie, Y.; Sun, P. Nanomedicine based on natural products: Improving clinical application potential. J. Nanomater. 2022, 2022, 3066613. [Google Scholar] [CrossRef]
- Liu, L.H.; Zhang, X.Z. Carrier-free nanomedicines for cancer treatment. Prog. Mater. Sci. 2022, 125, 100919. [Google Scholar] [CrossRef]
- An, J.; Zhang, Z.; Zhang, J.; Zhang, L.; Liang, G. Research progress in tumor therapy of carrier-free nanodrug. Biomed. Pharmacother. 2024, 178, 117258. [Google Scholar] [CrossRef]
- Zuo, J.; Gao, X.; Xiao, J.; Cheng, Y. Carrier-free supramolecular nanomedicines assembled by small-molecule therapeutics for cancer treatment. Chin. Chem. Lett. 2023, 34, 107827. [Google Scholar] [CrossRef]
- Huang, L.; Hu, S.; Fu, Y.N.; Wan, Y.; Li, G.; Wang, X. Multicomponent carrier-free nanodrugs for cancer treatment. J. Mater. Chem. B 2022, 10, 9735–9754. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Bian, X.; Li, P.; Huang, Y.; Li, C. Carrier-Free Nanomedicine for Cancer Immunotherapy. J. Biomed. Nanotechnol. 2022, 18, 939–956. [Google Scholar] [CrossRef]
- Wang, Z.; Song, X.Q.; Xu, W.; Lei, S.; Zhang, H.; Yang, L. Stand up to stand out: Natural dietary polyphenols curcumin, resveratrol, and gossypol as potential therapeutic candidates against severe acute respiratory syndrome coronavirus 2 infection. Nutrients 2023, 15, 3885. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Z. Advances in the total synthesis of aflatoxins. Front. Chem. 2021, 9, 779765. [Google Scholar] [CrossRef]
- Song, Y.; Chen, C.; Li, W. Ginsenoside Rb1 in cardiovascular and cerebrovascular diseases: A review of therapeutic potentials and molecular mechanisms. Chin. Herb. Med. 2024, 16, 489–504. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Z. Advances in the total synthesis of gelsemine. Curr. Org. Chem. 2022, 26, 356–368. [Google Scholar] [CrossRef]
- Santonocito, D.; Campisi, A.; Pellitteri, R.; Sposito, G.; Basilicata, M.G.; Aquino, G.; Puglia, C. Lipid nanoparticles loading steroidal alkaloids of tomatoes affect neuroblastoma cell viability in an in vitro model. Pharmaceutics 2023, 15, 2573. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, L.; Yang, X.; Zhang, X. Advances in the first total synthesis of natural flavonoids. Synth. Commun. 2013, 43, 3093–3114. [Google Scholar] [CrossRef]
- Parodi, A.; Buzaeva, P.; Nigovora, D.; Baldin, A.; Kostyushev, D.; Chulanov, V.; Zamyatnin, A.A., Jr. Nanomedicine for increasing the oral bioavailability of cancer treatments. J. Nanobiotechnol. 2021, 19, 354. [Google Scholar] [CrossRef]
- Abourehab, M.A.; Alshehri, S.; Huwaimel, B.; Alamri, A.H.; Alzhrani, R.M.; Alobaida, A.; Al-Shati, A.S. Enhancing drugs bioavailability using nanomedicine approach: Predicting solubility of Tolmetin in supercritical solvent via advanced computational techniques. J. Mol. Liq. 2022, 365, 120103. [Google Scholar] [CrossRef]
- Falanga, A.; Bellavita, R.; Braccia, S.; Galdiero, S. Hydrophobicity: The door to drug delivery. J. Pept. Sci. 2024, 30, e3558. [Google Scholar] [CrossRef]
- Khan, M.I.; Hossain, M.I.; Hossain, M.K.; Rubel, M.H.K.; Hossain, K.M.; Mahfuz, A.M.U.B.; Anik, M.I. Recent progress in nanostructured smart drug delivery systems for cancer therapy: A review. ACS Appl. Bio Mater. 2022, 5, 971–1012. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Lai, Y.; Xu, W.; Lei, S.; Wang, Z. A computer-aided heterodimer-based “triadic” carrier-free drug delivery platform to mitigate multidrug resistance in lung cancer enhance efficiency. J. Colloid Interf. Sci. 2025, 677, 523–540. [Google Scholar] [CrossRef]
- Wang, X.; Sun, K.; Dong, J.; Ge, Y.; Liu, H.; Jin, X.; Yu, X.A. Carrier-free nanoparticles based on natural products trigger dual "synergy and attenuation" for enhanced phototherapy of liver cancer. Mater. Today Bio 2025, 35, 102278. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, T.; Xu, X.; Hu, Q.; Wang, L.; Jin, Y. Carrier-free nano-integrated strategy of phototherapy and chemotherapy for synergetic AKT targeted therapy to inhibit cancer metastasis and recurrence. J. Nanobiotechnol. 2025, 23, 520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Ha, Y.; Gan, Y.; Liu, Y.; Liu, J.; Chen, L.; Li, H. Self-assembled dual-targeting nanoplatform for synergistic photodynamic and PROTAC-mediated metabolic starvation in triple-negative breast cancer. Chem. Eng. J. 2025, 520, 165815. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Y.C.; Liu, G.J.; Zhang, Y.; Feng, G.L.; Xing, G.W. Glycosylated AIE-active red light-triggered photocage with precisely tumor targeting capability for synergistic type I photodynamic therapy and CPT chemotherapy. Angew. Chem. Int. Edit. 2025, 64, e202413350. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Wang, R.; Zhang, H.; Zhang, Q.; Qin, Y.; Du, C.; Zhang, J. Preclinical and first-in-human study of a compact radionuclide labeled self-assembly nanomedicine for chemo-radio-theranostics of cancer. ACS Nano 2025, 19, 3953–3965. [Google Scholar] [CrossRef]
- Wang, H.; Lu, X.; Fan, J.; Yang, C.; Zhu, H.; Liu, J.; Ding, B. A carrier-free DNA nanoplatform for efficient three-in-one tumor therapy in vivo. Nano Today 2025, 62, 102734. [Google Scholar] [CrossRef]
- Pomeroy, A.E.; Schmidt, E.V.; Sorger, P.K.; Palmer, A.C. Drug independence and the curability of cancer by combination chemotherapy. Trends Cancer 2022, 8, 915–929. [Google Scholar] [CrossRef]
- Gilad, Y.; Gellerman, G.; Lonard, D.M.; O’malley, B.W. Drug combination in cancer treatment—From cocktails to conjugated combinations. Cancers 2021, 13, 669. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Tang, Y.; Zeng, P.; Cui, D.; Al Amili, M.; Chang, Y.; Guo, S. cRGD-modified nanoparticles of multi-bioactive agent conjugate with pH-sensitive linkers and PD-L1 antagonist for integrative collaborative treatment of breast cancer. Nanoscale Horiz. 2023, 8, 870–886. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, L. Broad-spectrum prodrugs with anti-SARS-CoV-2 activities: Strategies benefits challenges. J. Med. Virol. 2022, 94, 1373–1390. [Google Scholar] [CrossRef]
- Li, B.; Shao, H.; Gao, L.; Li, H.; Sheng, H.; Zhu, L. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: A review. Drug Deliv. 2022, 29, 2130–2161. [Google Scholar] [CrossRef]
- Iova, V.; Iova, G.M.; Tiron, A.T.; Scrobota, I.; Vlad, S.; Tudosie, M.S. Latest achievements in the development of nanoparticle-based drug delivery systems of Pt drugs and prodrugs in cancer therapy. Pharmaceutics 2025, 17, 1267. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, W.; Lei, S.; Lai, Y.; Zhang, Y.; Wang, Y.; Xiang, Z.; Fu, X.; Yang, L. A computer-aided, carrier-free drug delivery system with enhanced cytotoxicity and biocompatibility: A universal model for multifunctional lung cancer therapy. Colloid. Surface B 2025, 250, 114557. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, L.; Li, Y.; Song, S.; Qu, J.; He, R.; Ren, S.; Gong, P. An activatable carrier-free triple-combination nanomedicine for ALK/EGFR-mutant non-small cell lung cancer highly permeable targeted chemotherapy. New J. Chem. 2022, 46, 17673–17677. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.; Fan, J.; Chao, H.; Peng, X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: From molecular design to application. Chem. Soc. Rev. 2021, 50, 4185–4219. [Google Scholar] [CrossRef]
- Chen, M.; Sun, Y.; Liu, H. Cell membrane biomimetic nanomedicines for cancer phototherapy. Interdiscip. Med. 2023, 1, e20220012. [Google Scholar] [CrossRef]
- Vig, S.; Srivastava, P.; Rahman, I.; Jaranson, R.; Dasgupta, A.; Perttilä, R.; Huang, H.C. Screening of photosensitizers-ATP binding cassette (ABC) transporter interactions in vitro. Cancer Drug Resist. 2024, 7, 35. [Google Scholar] [CrossRef]
- Sarbadhikary, P.; George, B.P.; Abrahamse, H. Recent advances in photosensitizers as multifunctional theranostic agents for imaging-guided photodynamic therapy of cancer. Theranostics 2021, 11, 9054. [Google Scholar] [CrossRef] [PubMed]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef]
- Pham, T.C.; Nguyen, V.N.; Choi, Y.; Lee, S.; Yoon, J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev. 2021, 121, 13454–13619. [Google Scholar] [CrossRef]
- Chen, J. Essential role of medicine and food homology in health and wellness. Chin. Herb. Med. 2023, 15, 347–348. [Google Scholar] [CrossRef]
- El-Sayed, R.A.; Jebur, A.B.; Abdel-Daim, M.M. Chemical compositions health-promoting effects of Cichorium intybus, L. (chicory): A narrative review. Food Med. Homol. 2024, 1, 9420012. [Google Scholar] [CrossRef]
- Lu, S.; Xie, X.; Xu, T.; Dong, J.; Li, S.; Lu, Z.; Shi, P.; Gong, P.; Liu, W. Advances and challenges of medicine and food homology earthworms: Active ingredients, efficacy and quality control. Trends Food Sci. Technol. 2025, 161, 105065. [Google Scholar] [CrossRef]
- Yao, R.; He, C.; Xiao, P. ‘Food and medicine continuum’ in the East and West: Old tradition and current regulation. Chin. Herb. Med. 2023, 15, 6–14. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.-X.; Chen, X.-Y.; Liu, Z.-H.; Waterhouse, G.I.; Kang, W.Y. Transformation from traditional medicine-food homology to modern food-medicine homology. Food Med. Homol. 2024, 1, 9420014. [Google Scholar] [CrossRef]
- Selvaraj, S.; Gurumurthy, K. An overview of probiotic health booster-kombucha tea. Chin. Herb. Med. 2023, 15, 27–32. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.; Sang, Y.; Wei, Y.; Chen, X.; Wang, Y.; Xue, H. Polysaccharides from medicine and food homology materials: A review on their extraction, purification, structure, and biological activities. Molecules 2022, 27, 3215. [Google Scholar] [CrossRef]
- Pan, H.; Le, M.; He, C.; Yang, C.S.; Ling, T. Dark tea: A popular beverage with possible medicinal application. Chin. Herb. Med. 2023, 15, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Cong, B. Perspectives in food & medicine homology. Food Med. Homol. 2024, 1, 9420018. [Google Scholar] [CrossRef]
- Li, G.; Jiang, Y.; Zhang, D.; Han, L.; Mo, T.; Fan, S.; Huang, H.; Lin, J. Phyllanthi Fructus: A modal medicinal and food homologous item in quality evaluation. Chin. Herb. Med. 2023, 15, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, L. Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts. J. Ethnopharmacol. 2021, 270, 113869. [Google Scholar] [CrossRef]
- Wu, X.; Dong, S.; Chen, H.; Guo, M.; Sun, Z.; Luo, H. Perilla frutescens: A traditional medicine and food homologous plant. Chin. Herb. Med. 2023, 15, 369–375. [Google Scholar] [CrossRef]
- Ni, Y.; Zhu, Y.; Xu, L.; Duan, J.; Xiao, P. Pharmacological activities and mechanisms of proteins and peptides derived from traditional Chinese medicine. Sci. Tradit. Chin. Med. 2024, 2, 260–275. [Google Scholar] [CrossRef]
- Ma, A.; Zou, F.; Zhang, R.; Zhao, X. The effects and underlying mechanisms of medicine and food homologous flowers on the prevention and treatment of related diseases. J. Food Biochem. 2022, 46, e14430. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Tian, W.; Han, Y.; Xu, X.; Ren, T.; Chen, C. Natto: A medicinal and edible food with health function. Chin. Herb. Med. 2023, 15, 349–359. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, X.; Liu, H.; Sun, B. Medicine and food homology substances: A review of bioactive ingredients, pharmacological effects and applications. Food Chem. 2025, 463, 141111. [Google Scholar] [CrossRef]
- He, X.; Chen, Y.; Li, Z.; Fang, L.; Chen, H.; Liang, Z.; Yang, D. Germplasm resources and secondary metabolism regulation in Reishi mushroom (Ganoderma lucidum). Chin. Herb. Med. 2023, 15, 376–382. [Google Scholar] [CrossRef]
- Edo, G.I.; Ndudi, W.; Makia, R.S. Nutritional immunological effects and mechanisms of chemical constituents from the homology of medicine and food. Phytochem. Rev. 2025, 24, 4183–4217. [Google Scholar] [CrossRef]
- Xu, D.; Yuan, L.; Meng, F.; Lu, D.; Che, M.; Yang, Y.; Nan, Y. Research progress on antitumor effects of sea buckthorn, a traditional Chinese medicine homologous to food and medicine. Front. Nutr. 2024, 11, 1430768. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Lin, X.; Wang, D.; Dai, J. Proteins: Neglected active ingredients in edible bird’s nest. Chin. Herb. Med. 2023, 15, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Liu, N.; Huang, S.; Zhang, C. A comprehensive review of licorice: The preparation, chemical composition, bioactivities and its applications. Am. J. Chin. Med. 2024, 52, 667–716. [Google Scholar] [CrossRef]
- Wahab, S.; Annadurai, S.; Abullais, S.S.; Das, G.; Ahmad, W.; Ahmad, M.F.; Amir, M. Glycyrrhiza glabra (Licorice): A comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants 2021, 10, 2751. [Google Scholar] [CrossRef] [PubMed]
- Leite, C.D.S.; Bonafé, G.A.; Carvalho Santos, J.; Martinez, C.A.R.; Ortega, M.M.; Ribeiro, M.L. The anti-inflammatory properties of licorice (Glycyrrhiza glabra)-derived compounds in intestinal disorders. Int. J. Mol. Sci. 2022, 23, 4121. [Google Scholar] [CrossRef]
- Dang, L.; Jin, Y.; Yuan, Y.; Shao, R.; Wang, Y. Licorice: Comprehensive review of its chemical composition, pharmacodynamics, and medicinal value. Acupunct. Herb. Med. 2022, 4, 136–150. [Google Scholar] [CrossRef]
- Guo, X.; Chen, X.; Zeng, M.; Xuan, T.; Xue, J.; Chen, K.; Shen, Q. Revealing key antioxidant compounds and mechanisms in Fritillaria Bulbus by metabolomics and network pharmacology. npj Sci. Food 2025, 9, 124. [Google Scholar] [CrossRef]
- Stecanella, L.A.; Bitencourt, A.P.; Vaz, G.R.; Quarta, E.; Silva Junior, J.O.; Rossi, A. Glycyrrhizic acid and its hydrolyzed metabolite 18β-glycyrrhetinic acid as specific ligands for targeting nanosystems in the treatment of liver cancer. Pharmaceutics 2021, 13, 1792. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, Q.; Chen, J.; Xia, F.; Qiu, C.; Li, M.; Guo, Q. Transcriptome and lipid metabolomics-based discovery: Glycyrrhizic acid alleviates Tripterygium glycoside tablet-induced acute liver injury by regulating the activities of CYP and the metabolism of phosphoglycerides. Front. Pharmacol. 2022, 12, 822154. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Wang, C.; Tang, H.; Ma, A.; Gao, P.; Wang, J. Gambogic acid exhibits promising anticancer activity by inhibiting the pentose phosphate pathway in lung cancer mouse model. Phytomedicine 2024, 129, 155657. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yue, C.; Zhang, M.; Li, D.; Xu, T.; He, M.; Ding, D. Dually enhanced phototherapy by gambogic acid and hyperthemia-activated chemotherapy for synergistic breast cancer treatment. Chem. Eng. J. 2023, 452, 139108. [Google Scholar] [CrossRef]
- Qian, C.M.; Yang, L.; Wang, Y.Y.; Wang, Z.L.; Xu, Z.H.; Xu, M.D.; Wang, X.Y. Gambogic Acid Induces Ferroptosis via miR-1291/FOXA2 Axis in Gastric Cancer. Am. J. Chin. Med. 2025, 53, 951–971. [Google Scholar] [CrossRef] [PubMed]
- Dangi, K.; Niveria, K.; Singh, I.K.; Verma, A. Unravelling the therapeutic potential of gambogic acid: Deciphering its molecular mechanism of action and emerging role as an anticancer xanthone. Curr. Res. Complement. Altern. Med. 2023, 7, 183. [Google Scholar] [CrossRef]
- Basset, C.A.; Conway de Macario, E.; Leone, L.G.; Macario, A.J.; Leone, A. The chaperone system in cancer therapies: Hsp90. J. Mol. Histol. 2023, 54, 105–118. [Google Scholar] [CrossRef]
- Xu, A.; Zhu, L.; Yao, C.; Zhou, W.; Guan, Z. The therapeutic potential of circular RNA in triple-negative breast cancer. Cancer Drug Resist. 2024, 7, 13. [Google Scholar] [CrossRef]
- Wong, R.S.; Ong, R.J.; Lim, J.S. Immune checkpoint inhibitors in breast cancer: Development, mechanisms of resistance and potential management strategies. Cancer Drug Resist. 2023, 6, 768–787. [Google Scholar] [CrossRef]
- Yu, S.; Chen, Z.; Zeng, X.; Chen, X.; Gu, Z. Advances in nanomedicine for cancer starvation therapy. Theranostics 2019, 9, 8026. [Google Scholar] [CrossRef]
- Lu, Z.; Gao, J.; Fang, C.; Zhou, Y.; Li, X.; Han, G. Porous Pt nanospheres incorporated with GOx to enable synergistic oxygen-inductive starvation/electrodynamic tumor therapy. Adv. Sci. 2020, 7, 2001223. [Google Scholar] [CrossRef] [PubMed]
- Parvin, N.; Kumar, V.; Mandal, T.K.; Joo, S.W. Advancements in nanoporous materials for biomedical imaging and diagnostics. J. Func. Biomater. 2024, 15, 226. [Google Scholar] [CrossRef] [PubMed]
- Thanjavur, N.; Bugude, L.; Kim, Y.J. Integration of functional materials in photonic and optoelectronic technologies for advanced medical diagnostics. Biosensors 2025, 15, 38. [Google Scholar] [CrossRef]
- Hang, Y.; Boryczka, J.; Wu, N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: A review. Chem. Soc. Rev. 2022, 51, 329–375. [Google Scholar] [CrossRef]
- Benavente, S. Remodeling the tumor microenvironment to overcome treatment resistance in HPV-negative head and neck cancer. Cancer Drug Resist. 2023, 6, 291. [Google Scholar] [CrossRef]
- Fang, R.H.; Gao, W.; Zhang, L. Targeting drugs to tumors using cell membrane-coated nanoparticles. Nat. Rev. Clin. Oncol. 2023, 20, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh, V.; Norouzi, A.; Ghorbani, M. Multifunctional nanocomposite based on lactose@layered double hydroxide-hydroxyapatite as a pH-sensitive system for targeted delivery of doxorubicin to liver cancer cells. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129723. [Google Scholar] [CrossRef]
- Fan, N.; Zhao, J.; Zhao, W.; Zhang, X.; Song, Q.; Shen, Y.; Rong, J. Celastrol-loaded lactosylated albumin nanoparticles attenuate hepatic steatosis in non-alcoholic fatty liver disease. J. Control. Release 2022, 347, 44–54. [Google Scholar] [CrossRef]
- Varghese, T.P.; John, A.; Mathew, J. Revolutionizing cancer treatment: The role of radiopharmaceuticals in modern cancer therapy. Precis. Radiat. Oncol. 2024, 8, 145–152. [Google Scholar] [CrossRef]
- Graves, S.A.; Hobbs, R.F. Dosimetry for optimized, personalized radiopharmaceutical therapy. Semin. Radiat. Oncol. 2021, 31, 37–44. [Google Scholar] [CrossRef]
- Khalaji, A.; Rostampour, M.; Riahi, F.; Rafieezadeh, D.; Tabatabaei, S.A.D.; Fesharaki, S.; Tooyserkani, S.H. The use of radiopharmaceuticals in targeted cancer therapy: A narrative review. Int. J. Physiol. Pathophysiol. Pharmacol. 2025, 17, 37. [Google Scholar] [CrossRef]
- Ailawadhi, S.; Pafundi, D.; Peterson, J. Advances and future directions in radiopharmaceutical delivery for cancer treatment. Expert Rev. Anticanc. 2025, 25, 351–361. [Google Scholar] [CrossRef]
- van der Meulen, N.P.; Strobel, K.; Lima, T.V.M. New radionuclides and technological advances in SPECT and PET scanners. Cancers 2021, 13, 6183. [Google Scholar] [CrossRef]
- Gandhi, N.; Alaseem, A.M.; Deshmukh, R.; Patel, A.; Alsaidan, O.A.; Fareed, M.; Prajapati, B. Theranostics in nuclear medicine: The era of precision oncology. Med. Oncol. 2025, 42, 498. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, A.; Qi, X.; Han, Z.; Song, L.; Zhou, J.; Li, J. Radionuclide-labeled biomaterials: A novel strategy for tumor-targeted therapy. Biomimetics 2025, 10, 394. [Google Scholar] [CrossRef] [PubMed]
- Dadgar, H.; Pashazadeh, A.; Norouzbeigi, N.; Assadi, M.; Al-Balooshi, B.; Baum, R.P.; Zaidi, H. Targeted radioligand therapy: Physics and biology, internal dosimetry and other practical aspects during 177Lu/225Ac treatment in neuroendocrine tumors and metastatic prostate cancer. Theranostics 2025, 15, 4368. [Google Scholar] [CrossRef] [PubMed]
- Obuchowicz, R.; Strzelecki, M.; Piórkowski, A. Clinical applications of artificial intelligence in medical imaging and image processing—A review. Cancers 2024, 16, 1870. [Google Scholar] [CrossRef]
- Tang, F.; Ding, A.; Xu, Y.; Ye, Y.; Li, L.; Xie, R.; Huang, W. Gene and photothermal combination therapy: Principle, materials, and amplified anticancer intervention. Small 2024, 20, 2307078. [Google Scholar] [CrossRef] [PubMed]
- Doostmohammadi, A.; Jooya, H.; Ghorbanian, K.; Gohari, S.; Dadashpour, M. Potentials and future perspectives of multi-target drugs in cancer treatment: The next generation anti-cancer agents. Cell Commun. Signal. 2024, 22, 228. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, W.; Lee, J.; Kim, I.S. Combination gene therapy using multidrug resistance (MDR1) gene shRNA and herpes simplex virus-thymidine kinase. Cancer Lett. 2008, 261, 205–214. [Google Scholar] [CrossRef]
- Muminovic, M.; Uribe, C.R.C.; Alvarez-Pinzon, A.; Shan, K.; Raez, L.E. Importance of ROS1 gene fusions in non-small cell lung cancer. Cancer Drug Resist. 2023, 6, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Khan, N.; Jayandharan, G.R. Vector engineering, strategies and targets in cancer gene therapy. Cancer Gene Ther. 2022, 29, 402–417. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Qi, Y.; Liu, G.; Song, Y.; Jiang, X.; Du, B. Size-dependent in vivo transport of nanoparticles: Implications for delivery, targeting, and clearance. ACS Nano 2023, 17, 20825–20849. [Google Scholar] [CrossRef]
- Xu, B. Redefining the future of cancer care: Intelligent oncology unveiled. Intellig. Oncol. 2024, 1, 31–33. [Google Scholar] [CrossRef]
- Yan, X.; Yue, T.; Winkler, D.A.; Yin, Y.; Zhu, H.; Jiang, G.; Yan, B. Converting nanotoxicity data to information using artificial intelligence and simulation. Chem. Rev. 2023, 123, 8575–8637. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Chen, X. Carrier-free nanodrugs: From bench to bedside. ACS Nano 2024, 18, 23827–23841. [Google Scholar] [CrossRef]












| Natural Products | Therapeutic Agents | Size [nm] | Therapy Methods | Results | Refs. |
|---|---|---|---|---|---|
| Camptothecin | DTX@ERL-SS-CPT NPs | 121.0 | Combinational chemotherapy | Mitigating multidrug resistance in lung cancer while improving drug delivery efficiency; real-time monitoring of drug release | [76] |
| Camptothecin, curcumin, and erianin | CUR@CPT-SS-ERI NPs | 162.0 | Combinational chemotherapy | Enhancing drug delivery efficiency and mitigating multidrug resistance in lung cancer | [76] |
| Gambogic acid and glycyrrhizic acid | GGZ NPs | 233.2 | PDT/PTT/chemotherapy | Dual ‘synergy and attenuation’ for improved liver cancer phototherapy | [77] |
| Paclitaxel | IP NPs | 144.4 | PDT/PTT/chemotherapy | Combined therapy to suppress tumor growth, metastasis, and recurrence | [78] |
| Berberine and Hypericin | BHP NPs | 111.5 | Photodynamic/starvation therapy | Target tumor cells via dual action on mitochondria and necrotic cells to improve penetration and effectiveness | [79] |
| Camptothecin | BT-LRCs | ~90 | Bioimaging and PDT-chemotherapy | Enhanced therapeutic effect in HepG2 cells and tumor-bearing mice | [80] |
| Camptothecin | DOTA-EB-ss-CPT NPs | 98.7 | Chemo-radio-theranostics | Achieving a balance among tumor accumulation, safety, and diagnostic efficacy | [81] |
| Camptothecin | Apt-CHA | ~50 | GT/PTT/chemotherapy | Combination of chemotherapy, PDT, and GT for personalized cancer treatment | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Wang, Z. The Ballet of Nature-Product: Carrier-Free “Triadic” Drug Delivery Platforms for Enhanced Tumor Treatment. J. Funct. Biomater. 2025, 16, 433. https://doi.org/10.3390/jfb16120433
Yang L, Wang Z. The Ballet of Nature-Product: Carrier-Free “Triadic” Drug Delivery Platforms for Enhanced Tumor Treatment. Journal of Functional Biomaterials. 2025; 16(12):433. https://doi.org/10.3390/jfb16120433
Chicago/Turabian StyleYang, Liyan, and Zhonglei Wang. 2025. "The Ballet of Nature-Product: Carrier-Free “Triadic” Drug Delivery Platforms for Enhanced Tumor Treatment" Journal of Functional Biomaterials 16, no. 12: 433. https://doi.org/10.3390/jfb16120433
APA StyleYang, L., & Wang, Z. (2025). The Ballet of Nature-Product: Carrier-Free “Triadic” Drug Delivery Platforms for Enhanced Tumor Treatment. Journal of Functional Biomaterials, 16(12), 433. https://doi.org/10.3390/jfb16120433

