Biomechanical Influence of Different Cervical Micro-Thread Forms over Narrow-Diameter Implants (2.9 mm) Using Finite Element Analysis
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
- First FEA-based optimization of thread form and face angle parameters for NDI (2.9 mm) in Type III bone (Figure 2).
- Quantitative analysis of NDI’s thread form and face angle on abutment stress (Figure 6).
- Identified NDI’s trapezoidal thread with 30 degrees face angle showing minimal microstrain in cortical bone (Table 3).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klein, M.O.; Schiegnitz, E.; Al-Nawas, B. Systematic Review on Success of Narrow-Diameter Dental Implants. Int. J. Oral Maxillofac. Implant. 2014, 29, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Jung, R.E.; Al-Nawas, B.; Araujo, M.; Avila-Ortiz, G.; Barter, S.; Brodala, N.; Chappuis, V.; Chen, B.; De Souza, A.; Almeida, R.F.; et al. Group 1 Iti Consensus Report: The Influence of Implant Length and Design and Medications on Clinical and Patient-Reported Outcomes. Clin. Oral Implant. Res. 2018, 29 (Suppl. S16), 69–77. [Google Scholar] [CrossRef]
- Song, S.Y.; Lee, J.Y.; Shin, S.W. Effect of Implant Diameter on Fatigue Strength. Implant Dent. 2017, 26, 59–65. [Google Scholar] [CrossRef]
- Sarul, M.; Lis, J.; Park, H.S.; Rumin, K. Evidence-Based Selection of Orthodontic Miniscrews, Increasing Their Success Rate in the Mandibular Buccal Shelf. A Randomized, Prospective Clinical Trial. BMC Oral Health 2022, 22, 414. [Google Scholar] [CrossRef]
- Camps-Font, O.; González-Barnadas, A.; Mir-Mari, J.; Figueiredo, R.; Gay-Escoda, C.; Valmaseda-Castellón, E. Fracture Resistance after Implantoplasty in Three Implant-Abutment Connection Designs. Med. Oral Patol. Oral Cir. Bucal 2020, 25, e691–e699. [Google Scholar] [CrossRef]
- Zhang, W.T.; Cheng, K.J.; Liu, Y.F.; Wang, R.; Chen, Y.F.; Ding, Y.D.; Yang, F.; Wang, L.H. Effect of the Prosthetic Index on Stress Distribution in Morse Taper Connection Implant System and Peri-Implant Bone: A 3d Finite Element Analysis. BMC Oral Health 2022, 22, 431. [Google Scholar] [CrossRef]
- Bredberg, C.; Vu, C.; Häggman-Henrikson, B.; Chrcanovic, B.R. Marginal Bone Loss around Dental Implants: Comparison between Matched Groups of Bruxer and Non-Bruxer Patients: A Retrospective Case-Control Study. Clin. Implant Dent. Relat. Res. 2023, 25, 124–132. [Google Scholar] [CrossRef]
- Guo, Y.; Kono, K.; Suzuki, Y.; Ohkubo, C.; Zeng, J.Y.; Zhang, J. Influence of Marginal Bone Resorption on Two Mini Implant-Retained Mandibular Overdenture: An in Vitro Study. J. Adv. Prosthodont. 2021, 13, 55–64. [Google Scholar] [CrossRef]
- Tokgöz, S.E.; Bilhan, H. The Influence of the Implant-Abutment Complex on Marginal Bone and Peri-Implant Conditions: A Retrospective Study. J. Adv. Prosthodont. 2021, 13, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Moreno, P.; Concha-Jeronimo, A.; Lopez-Chaichio, L.; Rodriguez-Alvarez, R.; Sanchez-Fernandez, E.; Padial-Molina, M. Marginal Bone Loss around Implants with Internal Hexagonal and Internal Conical Connections: A 12-Month Randomized Pilot Study. J. Clin. Med. 2021, 10, 5427. [Google Scholar] [CrossRef] [PubMed]
- Medina-Galvez, R.; Cantó-Navés, O.; Marimon, X.; Cerrolaza, M.; Ferrer, M.; Cabratosa-Termes, J. Bone Stress Evaluation with and without Cortical Bone Using Several Dental Restorative Materials Subjected to Impact Load: A Fully 3d Transient Finite-Element Study. Materials 2021, 14, 5801. [Google Scholar] [CrossRef] [PubMed]
- Valente, M.L.C.; Castro, D.T.; Shimano, A.C.; Reis, A.C.D. Influence of an Alternative Implant Design and Surgical Protocol on Primary Stability. Braz. Dent. J. 2019, 30, 47–51. [Google Scholar] [CrossRef]
- Heimes, D.; Becker, P.; Pabst, A.; Smeets, R.; Kraus, A.; Hartmann, A.; Sagheb, K.; Kämmerer, P.W. How Does Dental Implant Macrogeometry Affect Primary Implant Stability? A Narrative Review. Int. J. Implant Dent. 2023, 9, 20. [Google Scholar] [CrossRef]
- Liu, F.; Mao, Z.H.; Peng, W.; Wen, S. Biomechanical Influence of Thread Form on Stress Distribution over Short Implants (≤6 mm) Using Finite Element Analysis. Biomed. Tech. 2022, 67, 53–60. [Google Scholar] [CrossRef]
- Oswal, M.M.; Amasi, U.N.; Oswal, M.S.; Bhagat, A.S. Influence of Three Different Implant Thread Designs on Stress Distribution: A Three-Dimensional Finite Element Analysis. J. Indian Prosthodont. Soc. 2016, 16, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Abuhussein, H.; Pagni, G.; Rebaudi, A.; Wang, H.L. The Effect of Thread Pattern Upon Implant Osseointegration. Clin. Oral Implants. Res. 2010, 21, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Nam, D.H.; Kim, P.J.; Koo, K.T.; Seol, Y.J.; Lee, Y.M.; Ku, Y.; Rhyu, I.C.; Kim, S.; Cho, Y.D. The Cumulative Survival Rate of Dental Implants with Micro-Threads: A Long-Term Retrospective Study. J. Periodontal Implant Sci. 2024, 54, 53–62. [Google Scholar] [CrossRef]
- Golmohammadi, S.; Eskandari, A.; Movahhedy, M.R.; Shirmohammadi, A.; Amid, R. The Effect of Microthread Design on Magnitude and Distribution of Stresses in Bone: A Three-Dimensional Finite Element Analysis. Dent. Res. J. 2018, 15, 347–353. [Google Scholar] [CrossRef]
- Li, R.; Wu, Z.; Chen, S.; Li, X.; Wan, Q.; Xie, G.; Pei, X. Biomechanical Behavior Analysis of Four Types of Short Implants with Different Placement Depths Using the Finite Element Method. J. Prosthet. Dent. 2023, 129, 447.e1–447.e10. [Google Scholar] [CrossRef]
- Yağır, M.O.; Şen, Ş.; Şen, U. Examination of Various Abutment Designs Behavior Depending on Load Using Finite Element Analysis. Biomimetics 2024, 9, 498. [Google Scholar] [CrossRef]
- Morgan, E.F.; Unnikrisnan, G.U.; Hussein, A.I. Bone Mechanical Properties in Healthy and Diseased States. Annu. Rev. Biomed. Eng. 2018, 20, 119–143. [Google Scholar] [CrossRef]
- Tribst, J.P.M.; Piva, A.M.O.D.; Blom, E.J.; Kleverlaan, C.J.; Feilzer, A.J. Dental Biomechanics of Root-Analog Implants in Different Bone Types. J. Prosthet. Dent. 2024, 131, 905–915. [Google Scholar] [CrossRef]
- Sertgöz, A. Finite Element Analysis Study of the Effect of Superstructure Material on Stress Distribution in an Implant-Supported Fixed Prosthesis. Int. J. Prosthodont. 1997, 10, 19–27. [Google Scholar]
- Bujtár, P.; Simonovics, J.; Váradi, K.; Sándor, G.K.; Avery, C.M. The Biomechanical Aspects of Reconstruction for Segmental Defects of the Mandible: A Finite Element Study to Assess the Optimisation of Plate and Screw Factors. J. Craniomaxillofac. Surg. 2014, 42, 855–862. [Google Scholar] [CrossRef]
- Bahadirli, G.; Yilmaz, S.; Jones, T.; Sen, D. Influences of Implant and Framework Materials on Stress Distribution: A Three-Dimensional Finite Element Analysis Study. Int. J. Oral Maxillofac. Implant. 2018, 33, e117–e126. [Google Scholar] [CrossRef]
- Wang, P.S.; Tsai, M.H.; Wu, Y.L.; Chen, H.S.; Lei, Y.N.; Wu, A.Y. Biomechanical Analysis of Titanium Dental Implants in the All-on-4 Treatment with Different Implant-Abutment Connections: A Three-Dimensional Finite Element Study. J. Funct. Biomater. 2023, 14, 515. [Google Scholar] [CrossRef]
- Ereifej, N.; Rodrigues, F.P.; Silikas, N.; Watts, D.C. Experimental and Fe Shear-Bonding Strength at Core/Veneer Interfaces in Bilayered Ceramics. Dent. Mater. 2011, 27, 590–597. [Google Scholar] [CrossRef]
- Pala, E.; Ozdemir, I.; Grund, T.; Lampke, T. The Influence of Design on Stress Concentration Reduction in Dental Implant Systems Using the Finite Element Method. Crystals 2024, 14, 20. [Google Scholar] [CrossRef]
- Sato, Y.; Teixeira, E.R.; Tsuga, K.; Shindoi, N. The Effectiveness of a New Algorithm on a Three-Dimensional Finite Element Model Construction of Bone Trabeculae in Implant Biomechanics. J. Oral Rehabil. 1999, 26, 640–643. [Google Scholar] [CrossRef] [PubMed]
- Handrik, M.; Majko, J.; Vaško, M.; Dorčiak, F. Research on Influence of Mesh Parameters Modification on Solution Accuracy of Finite Element Analysis. In IOP Conference Series: Materials Science Kopas, and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1199, p. 012008. [Google Scholar]
- Park, J.; Park, S.; Kang, I.; Noh, G. Biomechanical Effects of Bone Quality and Design Features in Dental Implants in Long-Term Bone Stability. J. Comput. Des. Noh Eng. 2022, 9, 1538–1548. [Google Scholar] [CrossRef]
- Menacho-Mendoza, E.; Cedamanos-Cuenca, R.; Díaz-Suyo, A. Stress Analysis and Factor of Safety in Three Dental Implant Systems by Finite Element Analysis. Saudi Dent. J. 2022, 34, 579–584. [Google Scholar] [CrossRef]
- Melsen, B.; Lang, N.P. Biological Reactions of Alveolar Bone to Orthodontic Loading of Oral Implants. Clin. Oral Implant. Res. 2001, 12, 144–152. [Google Scholar] [CrossRef]
- Geramizadeh, M.; Katoozian, H.; Amid, R.; Kadkhodazadeh, M. Finite Element Analysis of Dental Implants with and without Microthreads under Static and Dynamic Loading. J. Long Term Eff. Med. Implant. 2017, 27, 25–35. [Google Scholar] [CrossRef]
- Park, S.; Park, J.; Kang, I.; Lee, H.; Noh, G. Effects of Assessing the Bone Remodeling Process in Biomechanical Finite Element Stability Evaluations of Dental Implants. Comput. Methods Programs Biomed. 2022, 221, 106852. [Google Scholar] [CrossRef] [PubMed]
- Atay, A.İ.; Gültekin, B.A.; Yalçın, S. Finite Element Analysis of Trabecular-Surfaced Implants and Implant Angulation in Different Mandibular Arch Forms. J. Funct. Biomater. 2025, 16, 333. [Google Scholar] [CrossRef] [PubMed]
- Şentürk, A.; Akaltan, F. Biomechanical Behavior of All-on-4 Concept and Alternative Designs under Different Occlusal Load Configurations for Completely Edentulous Mandible: A 3-D Finite Element Analysis. Odontology 2024, 112, 1231–1247. [Google Scholar] [CrossRef]
- Cantó-Navés, O.; Marimon, X.; Ferrer, M.; Cabratosa-Termes, J. Comparison between Experimental Digital Image Processing and Numerical Methods for Stress Analysis in Dental Implants with Different Restorative Materials. J. Mech. Behav. Biomed. Mater. 2021, 113, 104092. [Google Scholar] [CrossRef]
- Soodmand, I.; Becker, A.K.; Sass, J.O.; Jabs, C.; Kebbach, M.; Wanke, G.; Dau, M.; Bader, R. Heterogeneous Material Models for Finite Element Analysis of the Human Mandible Bone-a Systematic Review. Heliyon 2024, 10, e40668. [Google Scholar] [CrossRef] [PubMed]
- NarendraKumar, U.; Mathew, A.T.; Iyer, N.; Rahman, F.; Manjubala, I. A 3d Finite Element Analysis of Dental Implants with Varying Thread Angles. J. Mater. Today Proc. 2018, 5, 11900–11905. [Google Scholar] [CrossRef]
- Silva, G.A.F.; Faot, F.; Possebon, A.; da Silva, W.J.; Del Bel Cury, A.A. Effect of Macrogeometry and Bone Type on Insertion Torque, Primary Stability, Surface Topography Damage and Titanium Release of Dental Implants During Surgical Insertion into Artificial Bone. J. Mech. Behav. Biomed. Mater. 2021, 119, 104515. [Google Scholar] [CrossRef]
- Kreve, S.; Ferreira, I.; da Costa Valente, M.L.; Reis, A.C.D. Relationship between Dental Implant Macro-Design and Osseointegration: A Systematic Review. Oral Maxillofac. Surg. 2024, 28, 1–14. [Google Scholar] [CrossRef]
- Alemayehu, D.B.; Jeng, Y.R. Three-Dimensional Finite Element Investigation into Effects of Implant Thread Design and Loading Rate on Stress Distribution in Dental Implants and Anisotropic Bone. Materials 2021, 14, 6974. [Google Scholar] [CrossRef]
- Ma, C.; Du, T.; Niu, X.; Fan, Y. Biomechanics and Mechanobiology of the Bone Matrix. Bone Res. 2022, 10, 59. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Fonseca, J.; Peixinho, N.; Alves, N.; Gasik, M.; Silva, F.S.; Miranda, G. Predicting the Output Dimensions, Porosity and Elastic Modulus of Additive Manufactured Biomaterial Structures Targeting Orthopedic Implants. J. Mech. Behav. Biomed. Mater. 2019, 99, 104–117. [Google Scholar] [CrossRef]
- de Souza, A.B.; Sukekava, F.; Tolentino, L.; César-Neto, J.B.; Garcez-Filho, J.; Araújo, M.G. Narrow- and Regular-Diameter Implants in the Posterior Region of the Jaws to Support Single Crowns: A 3-Year Split-Mouth Randomized Clinical Trial. Clin. Oral Implant. Res. 2018, 29, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Assaf, A.; Saad, M.; Hijawi, S. Use of Narrow-Diameter Implants in the Posterior Segments of the Jaws: A Retrospective Observational Study of 2 to 11 Years. J. Prosthet. Dent. 2023, 130, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Freitas, M.I.M.; Gomes, R.S.; Ruggiero, M.M.; Bergamo, E.T.P.; Bonfante, E.A.; Marcello-Machado, R.M.; Del Bel Cury, A.A. Probability of Survival and Stress Distribution of Narrow Diameter Implants with Different Implant-Abutment Taper Angles. J. Biomed. Mater. Res. B Appl. Biomater. 2022, 110, 638–645. [Google Scholar] [CrossRef] [PubMed]







| Material | Elastic Modulus [MPa] | Poisson Ratio | Element Size [mm] | References |
|---|---|---|---|---|
| Cortical bone | 13,700 | 0.30 | 1.5 | [23] |
| Cancellous bone (Type III) | 1300 | 0.30 | 0.50 | [24] |
| Ti-Zr implant | 98,000 | 0.25 | 0.40–0.60 | [25] |
| Abutment (Ti-6Al-4V) | 110,000 | 0.35 | 0.50 | [26] |
| IPS e.max ZirCAD framework | 220,000 | 0.30 | 0.50 | [27] |
| Model | Thread Form | Face Angle [degrees] | Elements | Nodes |
|---|---|---|---|---|
| M1 | Reverse Buttress Threads | 30 | 328,341 | 471,297 |
| M2 | Reverse Buttress Threads | 45 | 325,273 | 471,099 |
| M3 | Reverse Buttress Threads | 60 | 327,909 | 470,557 |
| M4 | Buttress Threads | 30 | 328,423 | 471,426 |
| M5 | Buttress Threads | 45 | 328,202 | 470,900 |
| M6 | Buttress Threads | 60 | 328,287 | 471,093 |
| M7 | Trapezoidal Threads | 30 | 330,032 | 473,857 |
| M8 | Trapezoidal Threads | 45 | 325,293 | 466,305 |
| M9 | Rectangle Threads | 90 | 328,101 | 470,647 |
| Model | Vertical Load Condition | Oblique Load Condition |
|---|---|---|
| M1 | 2.04 | 7.18 |
| M2 | 2.09 | 8.21 |
| M3 | 2.11 | 7.07 |
| M4 | 1.65 | 8.68 |
| M5 | 1.98 | 7.46 |
| M6 | 2.81 | 12.6 |
| M7 | 2.21 | 5.05 |
| M8 | 2.28 | 6.78 |
| M9 | 1.53 | 9.93 |
| Model | Vertical Load Condition | Oblique Load Condition |
|---|---|---|
| M1 | 5.26 | 22.39 |
| M2 | 8.12 | 21.14 |
| M3 | 7.62 | 23.82 |
| M4 | 6.34 | 21.47 |
| M5 | 5.88 | 19.71 |
| M6 | 7.44 | 25.20 |
| M7 | 7.47 | 23.24 |
| M8 | 6.41 | 23.89 |
| M9 | 6.00 | 22.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Lau, W.; Cheong, N.; Zhang, T. Biomechanical Influence of Different Cervical Micro-Thread Forms over Narrow-Diameter Implants (2.9 mm) Using Finite Element Analysis. J. Funct. Biomater. 2025, 16, 420. https://doi.org/10.3390/jfb16110420
Zhang Q, Lau W, Cheong N, Zhang T. Biomechanical Influence of Different Cervical Micro-Thread Forms over Narrow-Diameter Implants (2.9 mm) Using Finite Element Analysis. Journal of Functional Biomaterials. 2025; 16(11):420. https://doi.org/10.3390/jfb16110420
Chicago/Turabian StyleZhang, Qiannian, Waikit Lau, Nalini Cheong, and Tonghan Zhang. 2025. "Biomechanical Influence of Different Cervical Micro-Thread Forms over Narrow-Diameter Implants (2.9 mm) Using Finite Element Analysis" Journal of Functional Biomaterials 16, no. 11: 420. https://doi.org/10.3390/jfb16110420
APA StyleZhang, Q., Lau, W., Cheong, N., & Zhang, T. (2025). Biomechanical Influence of Different Cervical Micro-Thread Forms over Narrow-Diameter Implants (2.9 mm) Using Finite Element Analysis. Journal of Functional Biomaterials, 16(11), 420. https://doi.org/10.3390/jfb16110420

