Collagen Analogs Promote Tissue Regeneration in HSV-1-Infected Corneas in Animal Models
Abstract
1. Introduction
2. Materials and Methods
2.1. CLP-PEG Implants Fabrication
2.2. Characterization
2.2.1. FTIR-ATR and NMR
2.2.2. Scanning Electron Microscopy
2.2.3. Water Content and Collagenase Degradation
2.2.4. Optical Properties
2.3. Differential Scanning Calorimeter (DSC)
2.4. Physical Properties of Implants
2.5. HSV-1 Strains
2.6. Animals, HSV-1 Corneal Infections, and Surgical Implantation
2.7. Clinical Evaluations
2.8. Histopathology and Immunohistochemistry
2.9. Statistical Analysis
3. Results
3.1. CLP-PEG Hydrogels
3.2. HSV-1 Infection in Rabbit and Guinea Pig Corneas
3.3. Clinical Evaluation of Implants in HSV-1-Infected Rabbit and Guinea Pig Corneas
3.4. Histopathological and Immunohistochemical Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
HSV-1 | Herpes simplex virus type 1 |
HSK | Herpes simplex keratitis |
CLP | Collagen-like peptide |
PEG | Poly(ethylene glycol) |
MES | 2-(N-morpholino)ethanesulfonic acid |
EDC | 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride |
NHS | N-hydroxysuccinimide |
PBS | Phosphate-buffered saline |
FTIR | Fourier-Transform Infrared Spectroscopy |
ATR | Attenuated total reflectance |
NMR | Nuclear magnetic resonance |
FEG-SEM | Field emission gun scanning electron microscopy |
Tris-HCl | Tris(hydroxymethyl)aminomethane hydrochloride |
DSC | Differential scanning calorimetry |
ALK | Anterior lamellar keratoplasty |
IVCM | In vivo confocal microscopy |
H&E | Hematoxylin and eosin |
LVR | Linear viscoelastic region |
HSE | Herpes simplex encephalitis |
CIS | Cornea-in-a-Syringe |
SiNP-GF19 | Silica nanoparticles with cationic peptide GF19 |
References
- Lele, M.; Kapur, S.; Hargett, S.; Sureshbabu, N.M.; Gaharwar, A.K. Global Trends in Clinical Trials Involving Engineered Biomaterials. Sci. Adv. 2024, 10, eabq0997. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Wang, W.; Zhou, W.; Zhang, S.; Li, M.; Li, N.; Pan, G.; Zhang, X.; Bai, J.; Zhu, C. Immunomodulatory Biomaterials for Implant-Associated Infections: From Conventional to Advanced Therapeutic Strategies. Biomater. Res. 2022, 26, 1–33. [Google Scholar] [CrossRef]
- DelMonte, D.W.; Kim, T. Anatomy and Physiology of the Cornea. J. Cataract. Refract. Surg. 2011, 37, 588–598. [Google Scholar] [CrossRef]
- Meek, K.M.; Knupp, C. Corneal Structure and Transparency. Prog. Retin. Eye Res. 2015, 49, 1–16. [Google Scholar] [CrossRef]
- Whitcher, J.P.; Srinivasan, M.; Upadhyay, M.P. Corneal Blindness: A Global Perspective. Bull. World Health Organ. 2003, 79, 214. [Google Scholar]
- Gain, P.; Jullienne, R.; He, Z.; Aldossary, M.; Acquart, S.; Cognasse, F.; Thuret, G. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol. 2016, 134, 167–173. [Google Scholar] [CrossRef]
- Gurnani, B.; Czyz, C.N.; Mahabadi, N.; Havens, S.J. Corneal Graft Rejection. In Mastering Corneal Surgery: Recent Advances and Current Techniques; CRC Press: Boca Raton, FL, USA, 2023; pp. 109–117. [Google Scholar]
- Rabenau, H.F.; Buxbaum, S.; Preiser, W.; Weber, B.; Doerr, H.W. Seroprevalence of Herpes Simplex Virus Types 1 and Type 2 in the Frankfurt Am Main Area, Germany. Med. Microbiol. Immunol. 2002, 190, 153–160. [Google Scholar] [CrossRef]
- Xu, F.; Sternberg, M.R.; Kottiri, B.J.; McQuillan, G.M.; Lee, F.K.; Nahmias, A.J.; Berman, S.M.; Markowitz, L.E. Trends in Herpes Simplex Virus Type 1 and Type 2 Seroprevalence in the United States. JAMA 2006, 296, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Liesegang, T.J. Herpes Simplex Virus Epidemiology and Ocular Importance. Cornea 2001, 20, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.J.; Laibson, P.R.; Arentsen, J.J. Corneal Transplantation for Herpes Simplex Keratitis. Am. J. Ophthalmol. 1983, 95, 645–650. [Google Scholar] [CrossRef]
- Nardella, M.; Yu, A.C.; Busin, M.; Rizzo, R.; Zauli, G. Outcomes of Corneal Transplantation for Herpetic Keratitis: A Narrative Review. Viruses 2024, 16, 1403. [Google Scholar] [CrossRef]
- Islam, M.M.; Ravichandran, R.; Olsen, D.; Ljunggren, M.K.; Fagerholm, P.; Lee, C.J.; Griffith, M.; Phopase, J. Self-Assembled Collagen-like-Peptide Implants as Alternatives to Human Donor Corneal Transplantation. RSC Adv. 2016, 6, 55745–55749. [Google Scholar] [CrossRef]
- Fagerholm, P.; Lagali, N.S.; Ong, J.A.; Merrett, K.; Jackson, W.B.; Polarek, J.W.; Suuronen, E.J.; Liu, Y.; Brunette, I.; Griffith, M. Stable Corneal Regeneration Four Years after Implantation of a Cell-Free Recombinant Human Collagen Scaffold. Biomaterials 2014, 35, 2420–2427. [Google Scholar] [CrossRef]
- Edgar, S.W.; Marshall, J.G.; Baumgartner, J.C. The Antimicrobial Effect of Chloroform on Enterococcus Faecalis after Guttapercha Removal. J. Endod. 2006, 32, 1185–1187. [Google Scholar] [CrossRef] [PubMed]
- Aminsobhani, M.; Razmi, H.; Hamidzadeh, F.; Rezaei Avval, A. Evaluation of the Antibacterial Effect of Xylene, Chloroform, Eucalyptol, and Orange Oil on Enterococcus Faecalis in Nonsurgical Root Canal Retreatment: An Ex Vivo Study. Biomed. Res. Int. 2022, 2022, 8176172. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Mosad, W.; Gamil, M.A.; Farouk, E.M.; Hassanin, A.I.; Fakhry, H.M. Using Chloroform as a Preservative for Trivalent Foot and Mouth Disease Vaccine in Comparison to Thiomersal. J. Microbiol. Biotechnol. Rep. 2018, 2, 56–62. [Google Scholar] [CrossRef]
- Grosche, L.; Döhner, K.; Düthorn, A.; Hickford-Martinez, A.; Steinkasserer, A.; Sodeik, B. Herpes Simplex Virus Type 1 Propagation, Titration and Single-Step Growth Curves. Bio Protoc. 2019, 9, E3441. [Google Scholar] [CrossRef]
- Lee, C.J.; Buznyk, O.; Kuffova, L.; Rajendran, V.; Forrester, J.V.; Phopase, J.; Islam, M.M.; Skog, M.; Ahlqvist, J.; Griffith, M. Cathelicidin LL-37 and HSV-1 Corneal Infection: Peptide Versus Gene Therapy. Transl. Vis. Sci. Technol. 2014, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Kolb, A.W.; Ferguson, S.A.; Larsen, I.V.; Brandt, C.R. Disease Parameters Following Ocular Herpes Simplex Virus Type 1 Infection Are Similar in Male and Female BALB/C Mice. PLoS ONE 2023, 18, E0287194. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, J.E.; Loutsch, J.M.; Aguilar, J.S.; Hill, J.M.; Wagner, E.K.; Bloom, D.C. Wide Variations in Herpes Simplex Virus Type 1 Inoculum Dose and Latency-Associated Transcript Expression Phenotype Do Not Alter the Establishment of Latency in the Rabbit Eye Model. J. Virol. 2004, 78, 5038–5044. [Google Scholar] [CrossRef]
- McDonald, T.O.; Shadduck, J.A. Eye Irritation. In Advances in Modern Toxicology; Marzulli, F.N., Maibach, H.I., Eds.; Hemisphere Publishing Corp.: Washington, DC, USA, 1977; pp. 139–191. [Google Scholar]
- Agelidis, A.M.; Hadigal, S.R.; Jaishankar, D.; Shukla, D. Viral Activation of Heparanase Drives Pathogenesis of Herpes Simplex Virus-1. Cell Rep. 2017, 20, 439–450. [Google Scholar] [CrossRef]
- Maurice, D.M. The Cornea and Sclera. In The Eye. Vol. 1: Vege Phys and Biochem; Davson, H., Ed.; Academic Press: New York, NY, USA; London, UK, 1962; pp. 289–368. [Google Scholar] [CrossRef]
- Patel, S.; Marshall, J.; Fitzke, F.W., 3rd. Refractive Index of the Human Corneal Epithelium and Stroma. J. Refract. Surg. 1995, 11, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Doutch, J.; Quantock, A.J.; Smith, V.A.; Meek, K.M. Light Transmission in the Human Cornea as a Function of Position across the Ocular Surface: Theoretical and Experimental Aspects. Biophys. J. 2008, 95, 5092–5099. [Google Scholar] [CrossRef] [PubMed]
- Beems, E.M.; Van Best, J.A. Light Transmission of the Cornea in Whole Human Eyes. Exp. Eye Res. 1990, 50, 393–395. [Google Scholar] [CrossRef]
- Liu, W.; Deng, C.; McLaughlin, C.R.; Fagerholm, P.; Lagali, N.S.; Heyne, B.; Scaiano, J.C.; Watsky, M.A.; Kato, Y.; Munger, R.; et al. Collagen-Phosphorylcholine Interpenetrating Network Hydrogels as Corneal Substitutes. Biomaterials 2009, 30, 1551–1559. [Google Scholar] [CrossRef]
- Crabb, R.A.; Chau, E.P.; Evans, M.C.; Barocas, V.H.; Hubel, A. Biomechanical and Microstructural Characteristics of a Collagen Film-Based Corneal Stroma Equivalent. Tissue Eng. 2006, 12, 1565–1575. [Google Scholar] [CrossRef]
- Rowe, A.M.; St Leger, A.J.; Jeon, S.; Dhaliwal, D.K.; Knickelbein, J.E.; Hendricks, R.L. Herpes Keratitis. Prog. Retin. Eye Res. 2013, 32, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Harper, I.A.; Sommerville, R.G. Herpetic Keratitis Produced In The Guinea Pig By A New, Standardized Technique. Arch. Ophthalmol. 1965, 73, 552–554. [Google Scholar] [CrossRef]
- Yadavalli, T.; Patil, C.; Sharma, P.; Volety, I.; Borase, H.; Kapoor, D.; Shukla, D. Unique Attributes of Guinea Pigs as New Models to Study Ocular Herpes Pathophysiology and Recurrence. Investig. Ophthalmol. Vis. Sci. 2023, 64, 41. [Google Scholar] [CrossRef]
- Müller, K.; Fuchs, W.; Heblinski, N.; Teifke, J.P.; Brunnberg, L.; Gruber, A.D.; Klopfleisch, R. Encephalitis in a Rabbit Caused by Human Herpesvirus-1. J. Am. Vet. Med. Assoc. 2009, 235, 66–69. [Google Scholar] [CrossRef]
- de Matos, R.; Russell, D.; Van Alstine, W.; Miller, A. Spontaneous Fatal Human Herpesvirus 1 Encephalitis in Two Domestic Rabbits (Oryctolagus Cuniculus). J. Vet. Diagn. Investig. 2014, 26, 689–694. [Google Scholar] [CrossRef]
- Ak, A.K.; Bhutta, B.S.; Mendez, M.D. Herpes Simplex Encephalitis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Hjalmarsson, A.; Blomqvist, P.; Sköldenberg, B. Herpes Simplex Encephalitis in Sweden, 1990-2001: Incidence, Morbidity, and Mortality. Clin. Infect Dis. 2007, 45, 875–880. [Google Scholar] [CrossRef]
- Brash, J.T.; Denti, L.; Ruhrberg, C.; Bucher, F. VEGF188 promotes corneal reinnervation after injury. JCI Insight. 2019, 4, e130979. [Google Scholar] [CrossRef] [PubMed]
- Haun, A.; Fain, B.; Dobrovolny, H.M. Effect of cellular regeneration and viral transmission mode on viral spread. J. Theor. Biol. 2023, 558, 111370. [Google Scholar] [CrossRef] [PubMed]
- Simoliunas, E.; Ruedas-Torres, I.; Jiménez-Gómez, Y.; Edin, E.; Aghajanzadeh-Kiyaseh, M.; Zamani-Roudbaraki, M.; Asoklis, R.; Alksne, M.; Thathapudi, N.C.; Poudel, B.K.; et al. Inflammation-suppressing cornea-in-a-syringe with anti viral GF19 peptide promotes regeneration in HSV-1 infected rabbit corneas. npj Regen. Med. 2024, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
HSV-1 Strain | Origin | Source |
---|---|---|
F | Isolated from facial vesicle of a human patient. | ATCC #VR-733 |
KOS | Isolated from the lip lesion of a patient with a cold sore and deposited by the University of Pennsylvania. | ATCC# VR-1493 |
i38 | Clinical strain from the eye of an HSK patient. | Univ. of Ottawa Eye Inst., Ottawa, Canada |
CLP-PEG | Human Cornea | |
---|---|---|
Water Content (%) | 87.5 ± 3.87 | 78.0 ± 3.0 [24] |
Refractive Index | 1.343 ± 0.0015 | 1.373–1.380 [25] |
White Light Transmission (%) | 91.44 ± 4.78 | 87.1 ± 2.0 [26] |
Backscatter (%) | 0.65 ± 0.04 (%) | <3 [27] |
Residual Mass (%) | 15.82 ± 2.14 after 2 weeks | 0 by 26 days [28] |
DSC Tm (°C) | 163 | 96 |
DSC Ttd (°C) | 286 | 208 |
Storage Modulus G’(kPa) | 31.13 ± 2.41 | N/A |
Linear Viscoelastic Region-LVR (%) | 53 ± 7.81 | N/A |
Tensile Strength (kPa) | 24.12 ± 3.38 | 3810 ± 400 [25] |
Young’s Modulus (kPa) | 41.14 ± 6.54 | 3000–13,000 [29] |
Elongation at Break (%) | 42.97 ± 2.12 | N/A |
Species (Number of Samples Examined) | Virus Strain | Eye | Haze Score (0–6) Pre-Op | Haze Score (0–6) Post-Op | Neovascularization Score (0–3) Pre-Op | Neovascularization Score (0–3) Post-Op | Pachymetry (µm) Post-Op | IOP (mmHg) Post-Op | Observations |
---|---|---|---|---|---|---|---|---|---|
Rabbit (n = 2) | F | OD | 1 ± 0 | 2 ± 0 | 0.5 ± 0.7 | 2 ± 0 | 472.8 ± 48.9 | 3 ± 0 | Distinct haze and vessels |
OS | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 427.0 ± 6.7 | 4 ± 0 | |||
Rabbit (n = 3) | KOS | OD | 0.33 ± 0.57 | 0.7 ± 0.6 | 0 ± 0 | 0.7 ± 0.6 | 350.4 ± 98.9 | 7 ± 2 | Fine vessels and mild haze |
OS | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 396.1 ± 35.9 | 7.2 ± 0.3 | |||
Guinea pig (n = 3) | F | OD | 0.33 ± 0.57 | 0.7 ± 0.6 | 0.66 ± 0.6 | 1.7 ± 1.15 | 251.7 ± 27.7 | 6 ± 0 | Very fine vessels over corneal surface and mild haze |
OS | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 224.5 ± 17.1 | 5.7 ± 1.1 | |||
Guinea pig (n = 4) | KOS | OD | 0 ± 0 | 0.25 ± 0.3 | 0 ± 0 | 2 ± 0 | 276.3 ± 84.3 | 5.5 ± 1.3 | Mild haze, fine vessels over surface |
OS | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 227.4 ± 25.6 | 5 ± 0.8 | |||
Guinea pig (n = 2) | i38 | OD | 0.5 ± 0.7 | 0 ± 0 | 0 ± 0 | 2 ± 0 | 280.5 ± 10.4 | 4.5 ± 0.7 | Fine vessels over surface |
OS | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 242.2 ± 25.2 | 6 ± 1.4 |
Evaluation Criteria | Rabbits | Guinea Pigs | ||||
---|---|---|---|---|---|---|
F (n = 2) | KOS (n = 3) | F (n = 2) | KOS (n = 2) | i38 (n = 4) | ||
Inflammatory infiltrate | 0 | - | 100% [3/3] | 50% [1/2] | - | - |
1 | - | - | 50% [1/2] | 100% [2/2] | 75% [3/4] | |
2 | 50% [1/2] | - | - | - | - | |
3 | 50% [1/2] | - | - | - | 25% [1/4] | |
Neovascularization | No | 50% [1/2] | 100% [3/3] | 100% [2/2] | 50% [1/2] | 50% [2/4] |
Yes | 50% [1/2] | - | - | 50% [1/2] | 50% [2/4] | |
Stromal disorganization | 0 | 50% [1/2] | 33.33% [1/3] | - | 50% [1/2] | - |
1 | 50% [1/2] | 66.67% [2/3] | - | 50% [1/2] | 75% [3/4] | |
2 | - | - | 100% [2/2] | - | 25% [1/4] | |
3 | - | - | - | - | - | |
Epithelial thinning | No | - | - | 50% [1/2] | - | 50% [2/4] |
Yes | 100% [2/2] * | 100% [3/3] | 50% [1/2] | 100% [2/2] | 50% [2/4] | |
Epithelial hyperplasia | 0 | 100% [2/2] | 33.33% [1/3] | 50% [1/2] | 50% [1/2] | - |
1 | - | 33.33% [1/3] | - | - | 25% [1/4] | |
2 | - | 33.33% [1/3] | 50% [1/2] | - | 25% [1/4] | |
3 | - | - | - | 50% [1/2] | 50% [2/4] | |
Other findings | 100% [2/2] * | 33.33% [1/3] † | 50% [1/2] ‡ | 50% [1/2] § | 75% [3/4] || |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buznyk, O.; Goodarzi, H.; Gómez Laguna, J.; Reddy, J.; Liszka, A.; Edin, E.; Boutopoulos, C.; Chodosh, J.; Islam, M.M.; Griffith, M. Collagen Analogs Promote Tissue Regeneration in HSV-1-Infected Corneas in Animal Models. J. Funct. Biomater. 2025, 16, 377. https://doi.org/10.3390/jfb16100377
Buznyk O, Goodarzi H, Gómez Laguna J, Reddy J, Liszka A, Edin E, Boutopoulos C, Chodosh J, Islam MM, Griffith M. Collagen Analogs Promote Tissue Regeneration in HSV-1-Infected Corneas in Animal Models. Journal of Functional Biomaterials. 2025; 16(10):377. https://doi.org/10.3390/jfb16100377
Chicago/Turabian StyleBuznyk, Oleksiy, Hamid Goodarzi, Jaime Gómez Laguna, Jaganmohan Reddy, Aneta Liszka, Elle Edin, Christos Boutopoulos, James Chodosh, Mohammad Mirazul Islam, and May Griffith. 2025. "Collagen Analogs Promote Tissue Regeneration in HSV-1-Infected Corneas in Animal Models" Journal of Functional Biomaterials 16, no. 10: 377. https://doi.org/10.3390/jfb16100377
APA StyleBuznyk, O., Goodarzi, H., Gómez Laguna, J., Reddy, J., Liszka, A., Edin, E., Boutopoulos, C., Chodosh, J., Islam, M. M., & Griffith, M. (2025). Collagen Analogs Promote Tissue Regeneration in HSV-1-Infected Corneas in Animal Models. Journal of Functional Biomaterials, 16(10), 377. https://doi.org/10.3390/jfb16100377