Effects of Surface Preparation Methods on the Color Stability of 3D-Printed Dental Restorations
Abstract
:1. Introduction
2. Materials and Methods
2.1. 3D Printing and Sample Preparation
2.2. Sample Groups
- The first group (45 samples) was polished using a 100-micron pumice (EcoPolish Pumice, Goslar, Sliadent, Germany) mixed with water (2:1 ratio) on a WP-EX 2000 II (Wassermann Polishing Units, Ontario Canada) with a felt polishing wheel for 5 min at 800 rpm.
- The second group (45 incisors) was coated twice with Optiglaze (GC, Tokyo, Japan) varnish and polymerized in the Evicorbox light chamber for 20 min.
- The third group (45 samples) served as a control and was not processed in any way.
- The fourth group (6 teeth) was stored in darkness at 23 °C as a reference. Only the 6th sample was selected as a reference sample, because the material is not exposed to factors that can change the color when stored in the dark and at room temperature.
2.3. Color Stability Testing
- a1 − a0—color change on the red-green axis
- b1 − b0—color change on the yellow-blue axis
2.4. Surface Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- This study highlights the importance of proper curing, surface polishing, and the potential limitations of using varnish for 3D-printed dental restorations.
- The results indicate that materials intended for 3D printing must undergo complete curing to minimize color change and ensure long-lasting esthetic results. Moreover, the surface of the material after curing should be meticulously polished using traditional techniques to eliminate any surface imperfections that may lead to localized discoloration over time.
- Whereas varnish application might be useful for temporary restorations, its long-term use may not be ideal for 3D-printed restorations. This is due to the potential for the varnish to crack and create fissures on the surface, allowing dyes to penetrate and negatively impact the esthetic appearance of the restoration. The disparity in flexibility between the varnish resin and the 3D printing material may contribute to this issue.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhargav, A.; Sanjairaj, V.; Rosa, V.; Feng, L.W.; Fuh, Y.H.J. Applications of additive manufacturing in dentistry: A review. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 2058–2064. [Google Scholar] [CrossRef] [PubMed]
- Dawood, A.; Marti, B.; Sauret-Jackson, V.; Darwood, A. 3D printing in dentistry. Br. Dent. J. 2012, 213, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Revilla-León, M.; Özcan, M. Additive manufacturing technologies: An overview about 3D printing methods and future prospects. Complexity 2019, 2019, 9656938. [Google Scholar]
- Mangano, F.; Gandolfi, A.; Luongo, G.; Logozzo, S. Intraoral scanners in dentistry: A review of the current literature. BMC Oral Health 2017, 17, 149. [Google Scholar] [CrossRef]
- Alharbi, N.; Wismeijer, D.; Osman, R.B. Factors influencing the dimensional accuracy of 3D-printed full-coverage dental restorations using stereolithography technology. Eur. J. Prosthodont. Restor. Dent. 2016, 24, 31–38. [Google Scholar] [CrossRef]
- Ciocca, L.; Fantini, M.; De Crescenzio, F.; Corinaldesi, G.; Scotti, R. CAD/CAM bilateral ear prostheses construction for Treacher Collins syndrome patients: A pilot study. J. Prosthet. Dent. 2012, 108, 349–356. [Google Scholar]
- Bibb, R.; Eggbeer, D.; Williams, R. Rapid prototyping for orthopedic surgery. Rapid Prototyp. J. 2015, 21, 344–353. [Google Scholar]
- Kim, D.; Shim, J.-S.; Lee, D.; Shin, S.-H.; Nam, N.-E.; Park, K.-H.; Shim, J.-S.; Kim, J.E. Effects of post curing time on the mechanical and color properties of three-dimensional printed crown and bridge materials. Polymers 2020, 12, 2762. [Google Scholar] [CrossRef]
- Loges, K.; Tiberius, V. Implementation Challenges of 3D Printing in Prosthodontics: A Ranking-Type Delphi. Materials 2022, 15, 431. [Google Scholar] [CrossRef]
- Paravina, R.D.; Ghinea, R.; Herrera, L.J.; Bona, A.D.; Igiel, C.; Linninger, M.; Sakai, M.; Takahashi, H.; Tashkandi, E.; del Mar Perez, M. Color difference thresholds in dentistry. J. Esthet. Restor. Dent. 2009, 21, S1–S9. [Google Scholar] [CrossRef]
- Guler, A.U.; Yilmaz, F.; Kulunk, T.; Guler, E.; Kurt, S. Effects of different drinks on stainability of resin composite provisional restorative materials. J. Prosthet. Dent. 2005, 94, 118–124. [Google Scholar] [CrossRef]
- Dietschi, D.; Campanile, G.; Holz, J.; Meyer, J.M. Comparison of the color stability of ten new-generation composites: An in vitro study. Dent. Mater. 1994, 10, 353–362. [Google Scholar] [CrossRef]
- Mutlu-Sagesen, L.; Ergün, G.; Ozkan, Y.; Semiz, M. Color stability of a dental composite after immersion in various media. Dent Mater J. 2005, 24, 382–390. [Google Scholar] [CrossRef]
- Koksal, T.; Dikbas, I. Color stability of different denture teeth materials against various staining agents. Dent. Mater. J. 2008, 27, 139–144. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Salmi, M. Possibilities of preoperative medical models made by 3D printing or additive manufacturing. J. Med. Eng. 2016, 2016, 6191526. [Google Scholar] [CrossRef]
- Yao, Q.; Morton, D.; Eckert, G.J.; Li, W.H. The effect of surface treatments on the color stability of CAD-CAM interim fixed dental prostheses. J. Prosthet. Dent. 2021, 126, 248–253. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lim, J.H.; Kim, D.; Lee, D.H.; Kim, S.G.; Kim, J.E. Evaluation of the color stability of 3D printed resin according to the oxygen inhibition effect and temperature difference in the post-polymerization process. J. Mech. Behav. Biomed. Mater. 2022, 136, 105537, Epub ahead of print. [Google Scholar] [CrossRef]
- Çakmak, G.; Molinero-Mourelle, P.; De Paula, M.S.; Akay, C.; Cuellar, A.R.; Donmez, M.B.; Yilmaz, B. Surface Roughness and Color Stability of 3D-Printed Denture Base Materials after Simulated Brushing and Thermocycling. Materials 2022, 15, 6441. [Google Scholar] [CrossRef]
- Vanaei, H.R.; Magri, A.E.; Rastak, M.A.; Vanaei, S.; Vaudreuil, S.; Tcharkhtchi, A. Numerical–Experimental Analysis toward the Strain Rate Sensitivity of 3D-Printed Nylon Reinforced by Short Carbon Fiber. Materials 2022, 15, 8722. [Google Scholar] [CrossRef]
- Schweiger, J.; Edelhoff, D.; Güth, J.F. 3D Printing in Digital Prosthetic Dentistry: An Overview of Recent Developments in Additive Manufacturing. J. Clin. Med. 2021, 10, 2010. [Google Scholar] [CrossRef] [PubMed]
- Song, S.-Y.; Shin, Y.-H.; Lee, J.-Y.; Shin, S.-W. Color stability of provisional restorative materials with different fabrication methods. J. Adv. Prosthodont. 2020, 12, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Raszewski, Z.; Chojnacka, K.; Kulbacka, J.; Mikulewicz, M. Mechanical Properties and Biocompatibility of 3D Printing Acrylic Material with Bioactive Components. J. Funct. Biomater. 2023, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, M.; Chuchulska, B.; Zlatev, S.; Kazakova, R. Colour Stability of 3D-Printed and Prefabricated Denture Teeth after Immersion in Different Colouring Agents—An In Vitro Study. Polymers 2022, 14, 3125. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Alshehri, S.Z.; Alhamid, S.A.; Albarrak, A.; Khan, S.Q.; Alshahrani, F.A.; Alqarawi, F.K. Water Sorption, Solubility, and Translucency of 3D-Printed Denture Base Resins. Dent. J. 2022, 10, 42. [Google Scholar] [CrossRef]
- Alfouzan, A.F.; Alotiabi, H.M.; Labban, N.; Al-Otaibi, H.N.; Al Taweel, S.M.; AlShehri, H.A. Color stability of 3D-printed denture resins: Effect of aging, mechanical brushing and immersion in staining medium. J. Adv. Prosthodont. 2021, 13, 160–171, Erratum in J. Adv. Prosthodont. 2022, 14, 334. [Google Scholar] [CrossRef]
- Radwan, H.; Elnaggar, G.; El Deen, I.S. Surface roughness and color stability of 3D printed temporary crown material in different oral media (In vitro study). Int. J. Appl. Dent. Sci. 2021, 7, 327–334. [Google Scholar] [CrossRef]
- Hada, T.; Kanazawa, M.; Iwaki, M.; Arakida, T.; Soeda, Y.; Katheng, A.; Otake, R.; Minakuchi, S. Effect of Printing Direction on the Accuracy of 3D-Printed Dentures Using Stereolithography Technology. Materials 2020, 13, 3405. [Google Scholar] [CrossRef]
- Vygandas, R.; Sabaliauskas, V. Effects of different repolishing techniques on color change of provisional prosthetic materials. Stomatologija 2009, 11, 102–112. [Google Scholar]
- Mickeviciute, E.; Ivanauskiene, E.; Noreikiene, V. In vitro color and roughness stability of different temporary restorative materials. Stomatologija 2016, 18, 66–72. [Google Scholar]
- Koh, E.-S.; Cha, H.-S.; Kim, T.-H.; Ahn, J.-S.; Lee, J.-H. Color stability of three-dimensional-printed denture teeth exposed to various colorants. J. Korean Acad. Prosthodont. 2020, 58, 1–6. [Google Scholar] [CrossRef]
- Shin, J.-W.; Kim, J.-E.; Choi, Y.-J.; Shin, S.-H.; Nam, N.-E.; Shim, J.-S.; Lee, K.-W. Evaluation of the Color Stability of 3D-Printed Crown and Bridge Materials against Various Sources of Discoloration: An In Vitro Study. Materials 2020, 13, 5359. [Google Scholar] [CrossRef]
- Lee, E.H.; Ahn, J.-S.; Lim, Y.-J.; Kwon, H.-B.; Kim, M.-J. Effect of post-curing time on the color stability and related properties of a tooth-colored 3D-printed resin material. J. Mech. Behav. Biomed. Mater. 2021, 126, 104993. [Google Scholar] [CrossRef]
- Shin, D.H.; Rawls, H.R. Degree of conversion and color stability of the light curing resin with new photoinitiator systems. Dent. Mater. 2009, 25, 1030–1038. [Google Scholar] [CrossRef]
- Chakravarthy, Y.; Clarence, S. The effect of red wine on colour stability of three different types of esthetic restorative materials: An in vitro study. J. Conserv. Dent. 2018, 21, 319–323. [Google Scholar] [CrossRef]
- Korać, S.; Ajanović, M.; Džanković, A.; Konjhodžić, A.; Hasić-Branković, L.; Gavranović-Glamoč, A.; Tahmiščija, I. Color Stability of Dental Composites after Immersion in Beverages and Performed Whitening Procedures. Acta Stomatol. Croat. 2022, 56, 22–32. [Google Scholar] [CrossRef]
- Tahayeri, A.; Morgan, M.C.; Fugolin, A.P.; Bompolaki, D.; Athirsala, A.; Pfeifer, C.S.; Ferracane, J.L.; Bertassomi, L.E. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent. Mater. 2018, 34, 192–200. [Google Scholar] [CrossRef]
- Aydın, N.; Karaoğlanoğlu, S.; Oktay, E.A.; Kılıçarslan, M.A. Investigating the color changes on resin-based CAD/CAM Blocks. J. Esthet. Restor. Dent. 2020, 32, 251–256. [Google Scholar] [CrossRef]
- Poggio, C.; Vialba, L.; Berardengo, A.; Federico, R.; Colombo, M.; Beltrami, R.; Scribante, A. Color stability of new esthetic restorative materials: A spectrophotometric analysis. J. Funct. Biomater. 2017, 8, 26. [Google Scholar] [CrossRef]
- De Silva, M.L.; Leite, F.D.; e Silva, M.; Meireles, S.S.; Duarte, R.M.; Andrade, A.K. The effect of drinks on color stability and surface roughness of nanocomposites. Eur. J. Dent. 2014, 8, 330–336. [Google Scholar]
- Ribeiro, I.A.P.; Della Bona, A.; Borba, M. Dental materials for CAD/CAM restorations: Color stability after accelerated aging. J. Esthet. Restor. Dent. 2019, 31, 304–312. [Google Scholar]
- Santos, C.; Clarke, R.L.; Braden, M.; Guitian, F.; Davy, K.W.M. Water absorption characteristics of dental composites incorporating hydroxyapatite filler. Biomaterials 2002, 23, 1897–1904. [Google Scholar] [CrossRef] [PubMed]
- Samra, A.P.; Pereira, S.K.; Delgado, L.C.; Borges, C.P. Color stability evaluation of aesthetic restorative materials. Braz. Oral Res. 2008, 22, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Tekçe, N.; Tuncer, S.; Demirci, M.; Serim, M.E.; Baydemir, C. The effect of different drinks on the color stability of different restorative materials after one month. Restor. Dent. Endod. 2015, 40, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Lepri, C.P.; Palma-Dibb, R.G. Color stability of esthetic restorative materials: A literature review. Rev. Odonto Cienc. 2012, 27, 81–85. [Google Scholar]
- Vichi, A.; Louca, C.; Corciolani, G.; Ferrari, M. Color related to ceramic and zirconia restorations: A review. Dent. Mater. 2011, 27, 97–108. [Google Scholar] [CrossRef]
- Alharbi, N.; Wismeijer, D.; Osman, R.B. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J. Prosthet. Dent. 2016, 115, 760–767. [Google Scholar] [CrossRef]
- Lohbauer, U.; Reich, S. Antagonist wear of monolithic zirconia crowns after 2 years. Clin. Oral Investig. 2017, 21, 1165–1172. [Google Scholar] [CrossRef]
- Sfondrini, M.F.; Gandini, P.; Malfatto, M.; Di Corato, F.; Trovati, F.; Scribante, A. Computerized casts for orthodontic purpose using powder-free intraoral scanners: Accuracy, execution time, and patient feedback. Biomed. Res. Int. 2018, 2018, 4103232. [Google Scholar] [CrossRef]
- Da Silva, J.D.; Park, S.E.; Weber, H.P.; Ishikawa-Nagai, S. Clinical performance of a newly developed spectrophotometric system on tooth color reproduction. J. Prosthet. Dent. 2008, 99, 361–368. [Google Scholar] [CrossRef]
- Santana, S.V.S.; Bombana, A.C.; Flório, F.M.; Basting, R.T. Effect of surface sealants on marginal microleakage in Class V resin composite restorations. J. Esthet. Restor. Dent. 2009, 21, 397–404. [Google Scholar] [CrossRef]
- Awada, A.; Nathanson, D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J. Prosthet. Dent. 2015, 114, 587–593. [Google Scholar] [CrossRef]
- AlShaafi, M.M. Effects of Different Temperatures and Storage Time on the Degree of Conversion and Microhardness of Resin-based Composites. J. Contemp. Dent. Pract. 2016, 17, 217–223. [Google Scholar] [CrossRef]
- Almejrad, L.; Yang, C.C.; Morton, D.; Lin, W.S. The Effects of Beverages and Surface Treatments on the Color Stability of 3D-Printed Interim Restorations. J. Prosthodont. 2022, 31, 165–170. [Google Scholar] [CrossRef]
- Scotti, C.K.; Velo, M.M.A.C.; Rizzante, F.A.P.; Nascimento, T.R.L.; Mondelli, R.F.L.; Bombonatti, J.F.S. Physical and surface properties of a 3D-printed composite resin for a digital workflow. J. Prosthet. Dent. 2020, 124, 614.e1–614.e5. [Google Scholar] [CrossRef]
Material | Composition |
---|---|
Denture 3D+ | Ethoxylated bisphenol A dimethacrylate => 75%, |
Crowntec A3 and A2 | 7,7,9(or 7,9,9)-trimethyl-4,13-dioxo-3,14-dioxa-5,12- |
diazahexadecane-1,16-diyl bismethacrylate 10–20% | |
2-hydroxyethyl methacrylate 5–10% | |
Silicon dioxide 5–10% | |
diphenyl(2,4,6- trimethylbenzoyl)phosphine oxide 1–5% | |
Titanium dioxide < 0.1% |
ΔE 14 Days | ΔE 30 Days | ΔE 60 Days | p Value | |
---|---|---|---|---|
LW | 0.42 ± 0.03 | 0.54 ± 0.10 | 0.93 ± 0.22 | p < 0.5 * |
LC | 0.50 ± 0.14 | 1.10 ± 0.23 | 1.37 ± 0.41 | |
LR | 0.70 ± 0.02 | 1.05 ± 0.08 | 1.59 ± 0.11 | p < 0.01 * |
NpW | 2.94 ± 0.51 | 3.36 ± 0.49 | 3.65 ± 0.30 | |
NpC | 3.25 ± 0.23 | 9.70 ± 0.34 | 11.54 ± 0.62 | p < 0.01 * |
NpR | 3.34 ± 0.26 | 16.27 ± 0.21 | 18.19 ± 0.16 | p < 0.01 * |
PW | 0.36 ± 0.02 | 1.44 ± 0.06 | 3.59 ± 0.42 | p < 0.01 * |
PC | 2.02 ± 0.28 | 3.32 ± 0.30 | 5.00 ± 0.49 | p < 0.01 * |
PR | 2.18 ± 0.21 | 12.59 ± 0.82 | 13.61 ± 0.42 | p < 0.01 * |
ΔE 14 Days | ΔE 30 Days | ΔE 60 Days | p Value | |
---|---|---|---|---|
LW | 0.65 ± 0.06 | 0.69 ± 0.25 | 0.75 ± 0.16 | |
LC | 0.54 ± 0.08 | 1.67 ± 0.36 | 1.97 ± 0.23 | |
LR | 1.33 ± 0.26 | 2.55 ± 0.53 | 3.45 ± 0.30 | p < 0.01 * |
NpW | 0.45 ± 0.06 | 0.73 ± 0.09 | 0.94 ± 0.51 | |
NpC | 2.72 ± 0.21 | 5.45 ± 0.43 | 6.50 ± 0.28 | p < 0.01 * |
NpR | 4.77 ± 0.29 | 5.85 ± 0.20 | 6.64 ± 0.33 | |
PW | 0.50 ± 0.10 | 1.01 ± 0.10 | 1.11 ± 0.36 | |
PC | 2.64 ± 0.31 | 3.34 ± 0.36 | 3.61 ± 0.42 | |
PR | 3.33 ± 0.33 | 8.02 ± 0.44 | 10.94 ± 0.23 | p < 0.01 * |
ΔE 14 Days | ΔE 30 Days | ΔE 60 Days | p Value | |
---|---|---|---|---|
LW | 0.63 ± 0.19 | 1.33 ± 0.42 | 1.36 ± 0.27 | |
LC | 0.76 ± 0.13 | 2.30 ± 0.26 | 2.51 ± 0.40 | |
LR | 0.83 ± 0.18 | 2.50 ± 0.32 | 3.48 ± 0.13 | p < 0.01 * |
NpW | 0.35 ± 0.18 | 1.51 ± 0.68 | 1.80 ± 0.14 | |
NpC | 2.10 ± 0.27 | 4.76 ± 0.26 | 5.59 ± 0.49 | p < 0.01 * |
NpR | 4.88 ± 0.33 | 9.04 ± 0.56 | 11.00 ± 0.28 | p < 0.01 * |
PW | 0.73 ± 0.11 | 1.36 ± 0.39 | 1.53 ± 0.27 | |
PC | 1.05 ± 0.12 | 2.46 ± 0.24 | 2.78 ± 0.25 | |
PR | 2.45 ± 0.34 | 2.45 ± 0.34 | 4.21 ± 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raszewski, Z.; Chojnacka, K.; Mikulewicz, M. Effects of Surface Preparation Methods on the Color Stability of 3D-Printed Dental Restorations. J. Funct. Biomater. 2023, 14, 257. https://doi.org/10.3390/jfb14050257
Raszewski Z, Chojnacka K, Mikulewicz M. Effects of Surface Preparation Methods on the Color Stability of 3D-Printed Dental Restorations. Journal of Functional Biomaterials. 2023; 14(5):257. https://doi.org/10.3390/jfb14050257
Chicago/Turabian StyleRaszewski, Zbigniew, Katarzyna Chojnacka, and Marcin Mikulewicz. 2023. "Effects of Surface Preparation Methods on the Color Stability of 3D-Printed Dental Restorations" Journal of Functional Biomaterials 14, no. 5: 257. https://doi.org/10.3390/jfb14050257
APA StyleRaszewski, Z., Chojnacka, K., & Mikulewicz, M. (2023). Effects of Surface Preparation Methods on the Color Stability of 3D-Printed Dental Restorations. Journal of Functional Biomaterials, 14(5), 257. https://doi.org/10.3390/jfb14050257