The Mineralization of Various 3D-Printed PCL Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. 3D Printing of PCL Scaffolds
2.2.2. Collagen Coating
2.2.3. Methods for Inserting Hydroxyapatite
Collagen-Hydroxyapatite Coating
Immersion in SBF
Surface Coating with Hydroxyapatite by Addition of ALP
Mineralization of Collagen with Poly-L-Aspartic Acid
2.2.4. Characterization of the Scaffolds and Coatings
Characterization by 3D Laser Scanning Microscopy
Characterization by Immunoassay for Collagen I
Characterization by ESEM
Characterization by MicroCT
- Tube voltage: 40 kV
- Tube current: 250 µA
- Exposure time: 1815 ms
- Additional filtering: No additional filtering
- Binning: 1 × 1 (projection size: 4032 × 2688)
- Voxel size: 2.0 µm
- Rotation step: 0.15 degrees
- Frame averaging: 5
- 360° scan
- Random movement off
Characterization by TEM/EDX
2.3. Statistics
3. Results
3.1. Characterization of the Scaffolds and Coatings
3.1.1. Characterization by 3D Laser Scanning Microscopy
3.1.2. Characterization of Collagen Coating by Immunoassay
3.1.3. Characterization by Means of ESEM
Classical Collagen Coating
Collagen-HA Coating
Surface Coating by Incubation in 10× SBF
Mineralization with ALP
Mineralization with Poly-L-Aspartic Acid
3.1.4. Characterization by MicroCT
Coatings with ALP
Coatings with Poly-L-Aspartic Acid
3.1.5. Characterization by TEM/EDX
4. Discussion
4.1. Collagen-HA Coatings
4.2. Incubation in 10× SBF
4.3. Coatings with ALP
4.4. Coatings with Poly ASP
Implications with Respect to Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behrendt, H.; Runggaldier, K. A Problem Outline on Demographic Change in the Federal Republic of Germany. Notf. + Rett. 2009, 12, 45–50. [Google Scholar] [CrossRef]
- Peters, E.; Pritzkuleit, R.; Beske, F.; Katalinic, A. Demografischer Wandel und Krankheitshäufigkeiten. Bundesgesundheitsblatt-Gesundh.-Gesundh. 2010, 53, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Destatis. Mitten im Demografischen Wandel. Available online: https://www.destatis.de/DE/Themen/Querschnitt/Demografischer-Wandel/demografie-mitten-im-wandel.html (accessed on 2 September 2020).
- Eurostat. European Union: Age Structure in the Member States in 2019. Available online: https://de.statista.com/statistik/daten/studie/248981/umfrage/altersstruktur-in-den-eu-laendern/ (accessed on 14 March 2020).
- Destatis. Gesundheit-Fallpauschalenbezogene Krankenhausstatistik (DRG-Statistik) Operationen und Prozeduren der Vollstationären Patientinnen und Patienten in Krankenhäusern (4-Steller); Statistisches Bundesamt (Destatis): Wiesbaden, Germany, 2020. [Google Scholar]
- Engh, C.A., Jr.; Young, A.M.; Engh, C.A., Sr.; Hopper, R.H., Jr. Clinical Consequences of Stress Shielding After Porous-Coated Total Hip Arthroplasty. Clin. Orthop. Relat. Res. 2003, 417, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Bublak, R. How long do artificial hips and knees last? Orthopädie Und Rheuma 2019, 22, 16–17. [Google Scholar] [CrossRef]
- Fowler, T.J.; Blom, A.W.; Sayers, A.; Whitehouse, M.R.; Evans, J.T. How might the longer-than-expected lifetimes of hip and knee replacements affect clinical practice? Expert Rev. Med. Devices 2019, 16, 753–755. [Google Scholar] [CrossRef] [Green Version]
- Epple, M. Biomaterialien und Biomineralisation, Eine Einführung für Naturwissenschaftler, Mediziner und Ingenieure; Teubner: Stuttgart, Germany, 2003. [Google Scholar] [CrossRef]
- Patrício, T.; Domingos, M.; Gloria, A.; Bártolo, P. Characterisation of PCL and PCL/PLA Scaffolds for Tissue Engineering. Procedia CIRP 2013, 5, 110–114. [Google Scholar] [CrossRef]
- Weingärtner, L.; Latorre, S.H.; Velten, D.; Bernstein, A.; Schmal, H.; Seidenstuecker, M. The Effect of Collagen-I Coatings of 3D Printed PCL Scaffolds for Bone Replacement on Three Different Cell Types. Appl. Sci. 2021, 11, 11063. [Google Scholar] [CrossRef]
- Sousa, I.; Mendes, A.; Bártolo, P.J. PCL Scaffolds with Collagen Bioactivator for Applications in Tissue Engineering. Procedia Eng. 2013, 59, 279–284. [Google Scholar] [CrossRef]
- Lüllmann-Rauch, R.; Asan, E. Zellenlehre. In Taschenlehrbuch Histologie, 6th ed.; Vollständig Überarbeitete Auflage ed.; Lüllmann-Rauch, R., Asan, E., Eds.; Georg Thieme Verlag: Stuttgart, Germany, 2019. [Google Scholar] [CrossRef]
- Huber, F.; Vollmer, D.; Vinke, J.; Riedel, B.; Zankovic, S.; Schmal, H.; Seidenstuecker, M. Influence of 3D Printing Parameters on the Mechanical Stability of PCL Scaffolds and the Proliferation Behavior of Bone Cells. Materials 2022, 15, 2091. [Google Scholar] [CrossRef]
- Ficai, A.; Andronescu, E.; Voicu, G.; Ghitulica, C.; Vasile, B.S.; Ficai, D.; Trandafir, V. Self-assembled collagen/hydroxyapatite composite materials. Chem. Eng. J. 2010, 160, 794–800. [Google Scholar] [CrossRef]
- Poh, P.S.P.; Hutmacher, D.W.; Holzapfel, B.M.; Solanki, A.K.; Stevens, M.M.; Woodruff, M.A. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Acta Biomater. 2016, 30, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Vaquette, C.; Ivanovski, S.; Hamlet, S.M.; Hutmacher, D.W. Effect of culture conditions and calcium phosphate coating on ectopic bone formation. Biomaterials 2013, 34, 5538–5551. [Google Scholar] [CrossRef] [PubMed]
- Gomori, G.; Benditt, E.P. Precipitation of Calcium Phosphate in the histochemical Method for Phosphatase. J. Histochem. Cytochem. 1953, 1, 114–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Wolke, J.G.C.; Jansen, J.A. Biomimetic calcium phosphate coating on electrospun poly(ɛ-caprolactone) scaffolds for bone tissue engineering. Chem. Eng. J. 2008, 137, 154–161. [Google Scholar] [CrossRef]
- Jaroszewicz, J.; Idaszek, J.; Choinska, E.; Szlazak, K.; Hyc, A.; Osiecka-Iwan, A.; Swieszkowski, W.; Moskalewski, S. Formation of calcium phosphate coatings within polycaprolactone scaffolds by simple, alkaline phosphatase based method. Mater. Sci. Eng. C 2019, 96, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, A.S.; Beniash, E. Bioinspired Synthesis of Mineralized Collagen Fibrils. Cryst. Growth Des. 2008, 8, 3084–3090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kestilä, I.; Folkesson, E.; Finnilä, M.A.; Turkiewicz, A.; Önnerfjord, P.; Hughes, V.; Tjörnstrand, J.; Englund, M.; Saarakkala, S. Three-dimensional microstructure of human meniscus posterior horn in health and osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1790–1799. [Google Scholar] [CrossRef] [Green Version]
- Yeo, M.G.; Kim, G.H. Preparation and Characterization of 3D Composite Scaffolds Based on Rapid-Prototyped PCL/β-TCP Struts and Electrospun PCL Coated with Collagen and HA for Bone Regeneration. Chem. Mater. 2012, 24, 903–913. [Google Scholar] [CrossRef]
- Oechsle, A.M.; Wittmann, X.; Gibis, M.; Kohlus, R.; Weiss, J. Collagen entanglement influenced by the addition of acids. Eur. Polym. J. 2014, 58, 144–156. [Google Scholar] [CrossRef]
- Avcu, E.; Baştan, F.E.; Abdullah, H.Z.; Rehman, M.A.U.; Avcu, Y.Y.; Boccaccini, A.R. Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: A review. Prog. Mater. Sci. 2019, 103, 69–108. [Google Scholar] [CrossRef]
- Tas, A.C.; Bhaduri, S.B. Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10× simulated body fluid. J. Mater. Res. 2004, 19, 2742–2749. [Google Scholar] [CrossRef]
Used Needle | Pressure | Temperature | Speed | Needle-Offset | Pre/Post Flow | Temperature Underground |
---|---|---|---|---|---|---|
24G | 4–5 Bar | 80 °C | 1.0 mm/s | 0.19 mm | 0.07 s pre 0.10 s post | 17 °C |
Order | Substance | Amount (for 1 L 10× SBF) |
---|---|---|
1 | NaCl | 58.430 g |
2 | KCl | 0.373 g |
3 | CaCl2–2 H2O | 3.675 g |
4 | MgCl2–6 H2O | 1.016 g |
5 | Na2HPO4–H2O | 1.633 g |
Sequence | Substance | Amount (for 45 mL PIM) |
---|---|---|
1 | TRIS buffer | 545.13 mg |
2 | C3H7Na2O6P 5 H2O | 300 mg |
3 | CaCl2 | 200 mg |
4 | MgSO4 | 50 mg |
5 | NaN3 | 9 mg |
Parameter | PCL Scaffold |
---|---|
Length (mm) | 8.42 ± 0.01 |
Height (mm) | 2.04 ± 0.03 |
Pore size (µm) | 295.4 ± 9.8 |
Strand width (µm) | 300 ± 12.6 |
Porosity (%) | 31.9 |
Coating Method | Uniformity of Coating | HA Coating Thickness (µm) |
---|---|---|
Collagen-HA | non-uniform coating, HA already clumps in the collagen solution, HA only on the collagen coating, not within | - |
SBF (10×) | depending on the incubation time, short incubation (1 h) leads to uniform coating; moreover, formation of a uniform nanocrystalline layer with spots on the surface, whose expression increases with time, HA only on the collagen coating, not within | 1 h: <1 µm 2 h: 1–3 µm 4 h: 3–6 µm 8 h: 10–30 µm |
ALP | uniform coating, no nanocrystalline HA, as incubation time progresses, increased appearance of agglomerates on the surface, whose size and density increase with time, HA only on the collagen coating, not within | 1 d: <1µm 3 d: 1–2 µm 6 d: 2–4 µm |
PolyASP | HA only detectable by high-res EDX within the collagen layer, no HA nanocrystals detectable at the outer collagen layer | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egorov, A.; Riedel, B.; Vinke, J.; Schmal, H.; Thomann, R.; Thomann, Y.; Seidenstuecker, M. The Mineralization of Various 3D-Printed PCL Composites. J. Funct. Biomater. 2022, 13, 238. https://doi.org/10.3390/jfb13040238
Egorov A, Riedel B, Vinke J, Schmal H, Thomann R, Thomann Y, Seidenstuecker M. The Mineralization of Various 3D-Printed PCL Composites. Journal of Functional Biomaterials. 2022; 13(4):238. https://doi.org/10.3390/jfb13040238
Chicago/Turabian StyleEgorov, Artem, Bianca Riedel, Johannes Vinke, Hagen Schmal, Ralf Thomann, Yi Thomann, and Michael Seidenstuecker. 2022. "The Mineralization of Various 3D-Printed PCL Composites" Journal of Functional Biomaterials 13, no. 4: 238. https://doi.org/10.3390/jfb13040238