Growing Global Research Interest in Antimicrobial Peptides for Caries Management: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Management and Extraction
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Niu, J.Y.; Yin, I.X.; Mei, M.L.; Wu, W.K.K.; Li, Q.L.; Chu, C.H. The multifaceted roles of antimicrobial peptides in oral diseases. Mol. Oral Microbiol. 2021, 36, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Jenssen, H.; Hamill, P.; Hancock, R.E. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006, 19, 491–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mai, S.; Mauger, M.T.; Niu, L.N.; Barnes, J.B.; Kao, S.; Bergeron, B.E.; Lin, J.Q.; Tay, F.R. Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections. Acta Biomater. 2017, 49, 16–35. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Song, Y. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. Int. J. Mol. Sci. 2021, 22, 11401. [Google Scholar] [CrossRef]
- Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updates 2016, 26, 43–57. [Google Scholar] [CrossRef]
- Nishimura, E.; Eto, A.; Kato, M.; Hashizume, S.; Imai, S.; Nisizawa, T.; Hanada, N. Oral streptococci exhibit diverse susceptibility to human beta-defensin 2: Antimicrobial effects of hBD-2 on oral streptococci. Curr. Microbiol. 2004, 48, 85–87. [Google Scholar] [CrossRef]
- Angarita-Diaz, M.P.; Simon-Soro, A.; Forero, D.; Balcazar, F.; Sarmiento, L.; Romero, E.; Mira, A. Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age. J. Oral Microbiol. 2021, 13, 1956219. [Google Scholar] [CrossRef]
- Niu, J.Y.; Yin, I.X.; Wu, W.K.K.; Li, Q.L.; Mei, M.L.; Chu, C.H. Antimicrobial peptides for the prevention and treatment of dental caries: A concise review. Arch. Oral Biol. 2021, 122, 3021–3031. [Google Scholar] [CrossRef]
- Chu, C.H.; Ng, A.; Chau, A.M.; Lo, E.C. Dental Erosion and Caries Status of Chinese University Students. Oral Health Prev. Dent. 2015, 13, 237–244. [Google Scholar] [CrossRef]
- Taniguchi, M.; Ochiai, A.; Matsushima, K.; Tajima, K.; Kato, T.; Saitoh, E.; Tanaka, T. Endotoxin-neutralizing activity and mechanism of action of a cationic alpha-helical antimicrobial octadecapeptide derived from alpha-amylase of rice. Peptides 2016, 75, 101–108. [Google Scholar] [CrossRef]
- Ahn, K.B.; Kim, A.R.; Kum, K.Y.; Yun, C.H.; Han, S.H. The synthetic human beta-defensin-3 C15 peptide exhibits antimicrobial activity against Streptococcus mutans, both alone and in combination with dental disinfectants. J. Microbiol. 2017, 55, 830–836. [Google Scholar] [CrossRef]
- Kaplan, C.W.; Sim, J.H.; Shah, K.R.; Kolesnikova-Kaplan, A.; Shi, W.Y.; Eckert, R. Selective Membrane Disruption: Mode of Action of C16G2, a Specifically Targeted Antimicrobial Peptide. Antimicrob. Agents Chemother. 2011, 55, 3446–3452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuda, K.; Hanada, N.; Usui, Y.; Takeuchi, H.; Koba, H.; Nakao, R.; Watanabe, H.; Senpuku, H. Inhibition of Streptococcus mutans adherence and biofilm formation using analogues of the SspB peptide. Arch. Oral Biol. 2010, 55, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.Y.; Yin, I.X.; Wu, W.K.K.; Li, Q.L.; Mei, M.L.; Chu, C.H. A novel dual-action antimicrobial peptide for caries management. J. Dent. 2021, 111, 103729. [Google Scholar] [CrossRef]
- Melo, M.A.; Mei, M.L.; Li, K.C.; Hamama, H.H. Editorial: The Use of Bioactive Materials in Caries Management. Front. Oral Health 2022, 3, 832285. [Google Scholar] [CrossRef]
- Xu, V.W.; Nizami, M.Z.I.; Yin, I.X.; Yu, O.Y.; Lung, C.Y.K.; Chu, C.H. Application of Copper Nanoparticles in Dentistry. Nanomaterials 2022, 12, 805. [Google Scholar] [CrossRef] [PubMed]
- Yin, I.X.; Zhao, I.S.; Mei, M.L.; Li, Q.; Yu, O.Y.; Chu, C.H. Use of Silver Nanomaterials for Caries Prevention: A Concise Review. Int. J. Nanomed. 2020, 15, 3181–3191. [Google Scholar] [CrossRef]
- Freires, I.A.; Denny, C.; Benso, B.; de Alencar, S.M.; Rosalen, P.L. Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review. Molecules 2015, 20, 7329–7358. [Google Scholar] [CrossRef]
- Zheng, F.M.; Yan, I.G.; Duangthip, D.; Gao, S.S.; Lo, E.C.M.; Chu, C.H. Silver diamine fluoride therapy for dental care. Jpn. Dent. Sci. Rev. 2022, 58, 249–257. [Google Scholar] [CrossRef]
- Rima, M.; Rima, M.; Fajloun, Z.; Sabatier, J.M.; Bechinger, B.; Naas, T. Antimicrobial Peptides: A Potent Alternative to Antibiotics. Antibiotics 2021, 10, 1095. [Google Scholar] [CrossRef]
- Al-Mohammadi, A.R.; Osman, A.; Enan, G.; Abdel-Shafi, S.; El-Nemer, M.; Sitohy, M.; Taha, M.A. Powerful Antibacterial Peptides from Egg Albumin Hydrolysates. Antibiotics 2020, 9, 901. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Enan, G.; Al-Mohammadi, A.R.; Abdel-Shafi, S.; Abdel-Hameid, S.; Sitohy, M.Z.; El-Gazzar, N. Antibacterial Peptides Produced by Alcalase from Cowpea Seed Proteins. Antibiotics 2021, 10, 870. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Daryakenari, G.; Batooli, Z. A bibliometric and subject analysis of 3300 most-cited articles in dentistry. Clin. Exp. Dent. Res. 2022, 8, 1302–1310. [Google Scholar] [CrossRef]
- Jiang, C.M.; Duangthip, D.; Chan, A.K.Y.; Tamrakar, M.; Lo, E.C.M.; Chu, C.H. Global research interest regarding silver diamine fluoride in dentistry: A bibliometric analysis. J. Dent. 2021, 113, 103778. [Google Scholar] [CrossRef]
- Venable, G.T.; Shepherd, B.A.; Loftis, C.M.; McClatchy, S.G.; Roberts, M.L.; Fillinger, M.E.; Tansey, J.B.; Klimo, P., Jr. Bradford’s law: Identification of the core journals for neurosurgery and its subspecialties. J. Neurosurg. 2016, 124, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Bastian, S.; Ippolito, J.A.; Lopez, S.A.; Eloy, J.A.; Beebe, K.S. The Use of the h-Index in Academic Orthopaedic Surgery. J. Bone Jt. Surg. 2017, 99, e14. [Google Scholar] [CrossRef]
- Joly, S.; Maze, C.; McCray, P.B.; Guthmiller, J.M. Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J. Clin. Microbiol. 2004, 42, 1024–1029. [Google Scholar] [CrossRef] [Green Version]
- Ouhara, K.; Komatsuzawa, H.; Yamada, S.; Shiba, H.; Fujiwara, T.; Ohara, M.; Sayama, K.; Hashimoto, K.; Kurihara, H.; Sugai, M. Susceptibilities of periodontopathogenic and cariogenic bacteria to antibacterial peptides, β-defensins and LL37, produced by human epithelial cells. J. Antimicrob. Chemother. 2005, 55, 888–896. [Google Scholar] [CrossRef]
- Wei, G.X.; Campagna, A.N.; Bobek, L.A. Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J. Antimicrob. Chemother. 2006, 57, 1100–1109. [Google Scholar] [CrossRef]
- Eckert, R.; He, J.; Yarbrough, D.K.; Qi, F.X.; Anderson, M.H.; Shi, W.Y. Targeted killing of Streptococcus mutans by a pheromone-guided “smart” antimicrobial peptide. Antimicrob. Agents Chemother. 2006, 50, 3651–3657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batoni, G.; Maisetta, G.; Brancatisano, F.L.; Esin, S.; Campa, M. Use of Antimicrobial Peptides Against Microbial Biofilms: Advantages and Limits. Curr. Med. Chem. 2011, 18, 256–279. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Zhou, Y.J.; Li, Z.X.; Huang, T.; Xiao, Y.H.; Cheng, L.; Peng, X.; Zhang, L.X.; Ren, B. Application of Antibiotics/Antimicrobial Agents on Dental Caries. Biomed Res. Int. 2020, 2020, 5658212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, S.X.; Song, L.Y.; Yuca, E.; Boone, K.; Sarikaya, R.; VanOosten, S.K.; Misra, A.; Ye, Q.; Spencer, P.; Tamerler, C. Antimicrobial Peptide-Polymer Conjugates for Dentistry. ACS Appl. Polym. Mater. 2020, 2, 1134–1144. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wang, X.Q.; Jiang, W.T.; Wang, K.; Luo, J.Y.; Li, W.; Zhou, X.D.; Zhang, L.L. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans. J. Oral Microbiol. 2018, 10, 1442089. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Wong, H.M.; Zhang, Y.Y.; Li, Q.L. Constructing an Antibiofouling and Mineralizing Bioactive Tooth Surface to Protect against Decay and Promote Self-Healing. ACS Appl. Mater. Interfaces 2020, 12, 3021–3031. [Google Scholar] [CrossRef]
- Mahlapuu, M.; Hakansson, J.; Ringstad, L.; Bjorn, C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell. Infect. Microbiol. 2016, 6, 194. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.Y.; Yin, I.X.; Wu, W.K.K.; Li, Q.L.; Mei, M.L.; Chu, C.H. Data from: A concise review on antimicrobial peptides for prevention and treatment of dental caries. Dryad 2021. [Google Scholar] [CrossRef]
- Mejia, C.; Wu, M.; Zhang, Y.; Kajikawa, Y. Exploring Topics in Bibliometric Research Through Citation Networks and Semantic Analysis. Front. Res. Metr. Anal. 2021, 6, 742311. [Google Scholar] [CrossRef]
- Guler, A.T.; Waaijer, C.J.; Palmblad, M. Scientific workflows for bibliometrics. Scientometrics 2016, 107, 385–398. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.; Santarpia, P.; Lavender, S.; Gittins, E.; Liu, Z.; Anderson, M.H.; He, J.; Shi, W.; Eckert, R. Clinical Efficacy of a Specifically Targeted Antimicrobial Peptide Mouth Rinse: Targeted Elimination of Streptococcus mutans and Prevention of Demineralization. Caries Res. 2011, 45, 415–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmatier, R.W.; Houston, M.B.; Hulland, J. Review articles: Purpose, process, and structure. J. Acad. Mark. Sci. 2017, 46, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Maggio, L.A.; Sewell, J.L.; Artino, A.R., Jr. The Literature Review: A Foundation for High-Quality Medical Education Research. J. Grad. Med. Educ. 2016, 8, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.Y.; Yin, I.X.; Wu, W.K.K.; Li, Q.L.; Mei, M.L.; Chu, C.H. Efficacy of the dual-action GA-KR12 peptide for remineralising initial enamel caries: An in vitro study. Clin. Oral Investig. 2022, 26, 2441–2451. [Google Scholar] [CrossRef]
- Niu, J.Y.; Yin, I.X.; Wu, W.K.K.; Li, Q.L.; Mei, M.L.; Chu, C.H. Remineralising dentine caries using an artificial antimicrobial peptide: An in vitro study. J. Dent. 2021, 111, 103736. [Google Scholar] [CrossRef]
- Yassin, S.A.; German, M.J.; Rolland, S.L.; Rickard, A.H.; Jakubovics, N.S. Inhibition of multispecies biofilms by a fluoride-releasing dental prosthesis copolymer. J. Dent. 2016, 48, 62–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lips, A.; Antunes, L.S.; Antunes, L.A.; Pintor, A.V.B.; dos Santos, D.A.B.; Bachinski, R.; Kuchler, E.C.; Alves, G.G. Salivary protein polymorphisms and risk of dental caries: A systematic review. Braz. Oral Res. 2017, 31, e41. [Google Scholar] [CrossRef] [Green Version]
- Almoudi, M.M.; Hussein, A.S.; Abu-Hassan, M.I.; Saripudin, B.; Mohamad, M.S.F. The Association of Early Childhood Caries with Salivary Antimicrobial Peptide LL37 and Mutans Streptococci. J. Clin. Pediatr. Dent. 2021, 45, 330–336. [Google Scholar] [CrossRef]
- Journals with Impact Factors on Dentistry, Oral Surgery & Medicine (2021 Edition). Available online: https://lib.hku.hk/denlib/impactfactor.html (accessed on 1 August 2022).
- Wieczorek, O.; Eckl, M.; Bausch, M.; Radisch, E.; Barmeyer, C.; Rehbein, M. Better, Faster, Stronger: The Evolution of Co-authorship in International Management Research between 1990 and 2016. SAGE Open 2021, 11, 21582440211061561. [Google Scholar] [CrossRef]
- Nomaler, O.; Frenken, K.; Heimeriks, G. Do more distant collaborations have more citation impact? J. Informetr. 2013, 7, 966–971. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Shafi, S.; Al-Mohammadi, A.R.; Osman, A.; Enan, G.; Abdel-Hameid, S.; Sitohy, M. Characterization and Antibacterial Activity of 7S and 11S Globulins Isolated from Cowpea Seed Protein. Molecules 2019, 24, 1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aksnes, D.W.; Langfeldt, L.; Wouters, P. Citations, Citation Indicators, and Research Quality: An Overview of Basic Concepts and Theories. SAGE Open 2019, 9, 157–185. [Google Scholar] [CrossRef] [Green Version]
- Van Noorden, R.; Singh Chawla, D. Hundreds of extreme self-citing scientists revealed in new database. Nature 2019, 572, 578–579. [Google Scholar] [CrossRef] [PubMed]
Authors, Year [Ref] | Study | Journal | Citation Counts | Citation Density |
---|---|---|---|---|
Top five publications with highest total citation counts | ||||
Joly et al., 2004 [28] | Laboratory | Journal of Clinical Microbiology | 205 | 11.39 |
Ouhara et al., 2005 [29] | Laboratory | Journal of Antimicrobial Chemotherapy | 177 | 10.41 |
Wei et al., 2006 [30] | Laboratory | Journal of Antimicrobial Chemotherapy | 163 | 10.19 |
Eckert et al., 2006 [31] | Laboratory | Antimicrobial Agents and Chemotherapy | 158 | 9.88 |
Batoni et al., 2011 [32] | Review | Current Medicinal Chemistry | 137 | 12.45 |
Top five publications with highest citation density | ||||
Niu et al., 2021 [8] | Review | Archives of Oral Biology | 21 | 21.00 |
Qiu et al., 2020 [33] | Review | Biomed Research International | 27 | 13.50 |
Mai et al., 2017 [3] | Review | Acta Biomaterialia | 67 | 13.40 |
Batoni et al., 2011 [32] | Review | Current Medicinal Chemistry | 137 | 12.45 |
Xie er al., 2020 [34] | Laboratory | Acs Applied Polymer Materials | 24 | 12.00 |
Citation density = Citation count/(2022 − published year) |
Study | Number (%) | Mean Citation Count (SD) | Mean Citation Density (SD) |
---|---|---|---|
Laboratory | 115 (71%) | 29 (36) | 3.67 (2.73) |
Clinical | 29 (18%) | 22 (27) | 2.63 (1.85) |
Review | 19 (11%) | 31 (34) | 5.79 (1.27) |
p value | 0.560 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, O.L.; Niu, J.Y.; Yin, I.X.; Yu, O.Y.; Mei, M.L.; Chu, C.H. Growing Global Research Interest in Antimicrobial Peptides for Caries Management: A Bibliometric Analysis. J. Funct. Biomater. 2022, 13, 210. https://doi.org/10.3390/jfb13040210
Zhang OL, Niu JY, Yin IX, Yu OY, Mei ML, Chu CH. Growing Global Research Interest in Antimicrobial Peptides for Caries Management: A Bibliometric Analysis. Journal of Functional Biomaterials. 2022; 13(4):210. https://doi.org/10.3390/jfb13040210
Chicago/Turabian StyleZhang, Olivia Lili, John Yun Niu, Iris Xiaoxue Yin, Ollie Yiru Yu, May Lei Mei, and Chun Hung Chu. 2022. "Growing Global Research Interest in Antimicrobial Peptides for Caries Management: A Bibliometric Analysis" Journal of Functional Biomaterials 13, no. 4: 210. https://doi.org/10.3390/jfb13040210
APA StyleZhang, O. L., Niu, J. Y., Yin, I. X., Yu, O. Y., Mei, M. L., & Chu, C. H. (2022). Growing Global Research Interest in Antimicrobial Peptides for Caries Management: A Bibliometric Analysis. Journal of Functional Biomaterials, 13(4), 210. https://doi.org/10.3390/jfb13040210