Brain Tissue Evaluation Based on Skeleton Shape and Similarity Analysis between Hemispheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Approaches
2.2. Subjects, Image Acquisition and Post-Processing
2.3. Flow Chart
- Two datasets are generated: D1 contains raw images and D2 contains denoised images by using an anisotropic diffusion filter,
- select ROIs for further image manipulation tasks; insert and crop out the rectangle ROIs with a size of 35 × 45 pixels. This consisted of:
- (i)
- design the first rectangle mask in the right hemisphere,
- (ii)
- determine the distances to generate the other two rectangle masks in the right hemisphere,
- (iii)
- insert the other two masks into the right hemisphere according to the distances from step (ii),
- (iv)
- perform the mirror reflection of the masks into the right hemisphere onto the left hemisphere.
- crop out ROIs from both hemispheres, following the algorithm of step (II),
- compute SSIM for monochrome ROIs,
- segment ROIs with the skeleton algorithm,
- calculate S-Jaccard for ROIs processed in step (V),
- carry out a k-means clustering over SSIM and S-Jaccard values and pathologies,
- carry out cluster analysis with the silhouette method.
- carry out classification data using ROC analysis.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, V.D.; Krishniah, V.V.J.R. Segmentation of Brain Tumor Using K-Means Clustering Algorithm. J. Eng. Appl. Sci. 2018, 13, 3942–3945. [Google Scholar]
- Raja, N.S.M.; Fernandes, S.L.; Dey, N.; Satapathy, S.C.; Rajinikanth, V. Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J. Ambient. Intell. Hum. Comput. 2018, 1–12. [Google Scholar] [CrossRef]
- Dey, N.; Rajinikanth, V.; Shi, F.; Tavares, J.M.R.; Moraru, L.; Karthik, K.A.; Lin, H.; Kamalanand, K.; Emmanuel, C. Social-Group-Optimization based tumor evaluation tool for clinical brain MRI of Flair/diffusion-weighted modality. Biocybern. Biomed. Eng. 2019, 39, 843–856. [Google Scholar] [CrossRef] [Green Version]
- Rajinikanth, V.; Dey, N.; Satapathy, S.C.; Ashour, A.S. An approach to examine magnetic resonance angiography based on Tsallis entropy and deformable snake model. Future Gener. Comput. Syst. 2018, 85, 160–172. [Google Scholar] [CrossRef]
- Rajinikanth, V.; Satapathy, S.C.; Dey, N.; Lin, H. Evaluation of ischemic stroke region from CT/MR images using hybrid image processing techniques. In Intelligent Multidimensional Data and Image Processing; IGI Global: Hershey, PL, USA, 2018; pp. 194–219. [Google Scholar] [CrossRef]
- Brem, S.; Abdullah, K.G. Glioblastoma E-Book, 1st ed.; Elsevier Health Sciences: Philadelphia, PA, USA, 2016. [Google Scholar]
- Sharma, K.; Virmani, J. A decision support system for classification of normal and medical renal disease using ultrasound images: A decision support system for medical renal diseases. Int. J. Ambient Comput. Intell. 2017, 8, 52–69. [Google Scholar] [CrossRef]
- Moldovanu, S.; Moraru, L.; Biswas, A. Edge-Based Structural Similarity Analysis in Brain MR Images. J. Med. Imaging Health Inf. 2016, 6, 539–546. [Google Scholar] [CrossRef]
- Tian, F.; Hayano, K.; Kambadakone, A.R.; Sahani, D.V. Response assessment to neoadjuvant therapy in soft tissue sarcomas: Using CT texture analysis in comparison to tumor size, density, and perfusion. Abdom Imaging 2015, 40, 1705–1712. [Google Scholar] [CrossRef]
- Nachimuthu, D.S.; Baladhandapani, A. Multidimensional Texture Characterization: On Analysis for Brain Tumor Tissues Using MRS and MRI. J. Digit. Imaging 2014, 27, 496–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraru, L.; Moldovanu, S.; Dimitrievici, L.T.; Ashour, A.S.; Dey, N. Texture anisotropy technique in brain degenerative diseases. Neural Comput. Appl. 2018, 30, 1667–1677. [Google Scholar] [CrossRef]
- Dewi, C. Clustering of high resolution UAV imagery to identify essential plants using some neural network. J. Env.. Eng. Sustain. Technol. 2017, 4, 55–63. [Google Scholar]
- Niwattanakul, S.; Singthongchai, J.; Naenudorn, E.; Wanapu, S. Using of Jaccard Coefficient for Keywords Similarity. In Proceedings of the International Multiconference of Engineers and Computer Scientists, Hong Kong, 13–15 March 2013; Volume 1. [Google Scholar]
- Lee, T.-C.; Kashyap, R.L. Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP Graph. Models Image Process. 1994, 56, 462–478. [Google Scholar] [CrossRef]
- Yang, X.; Zhanghao, K.; Wang, H.; Liu, Y.; Wang, F.; Zhang, X.; Shi, K.; Gao, J.; Jin, D.; Xi, P. Versatile application of fluorescent quantum dot labels in super-resolution fluorescence microscopy. ACS Photonics 2016, 9, 1611–1618. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, Z.; Wu, W.; Lin, Y.; Wang, M. Automatic glioma segmentation based on adaptive superpixel. BMC Med. Imaging 2019, 19, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Yang, G.; Lin, Y.; Pang, H.; Wang, M. Automated glioma detection and segmentation using graphical models. PLoS ONE 2018, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Guo, F.; Dong, P. Robust skeleton extraction of gray images based on level set approach. J. Multimedia 2013, 8, 24–31. [Google Scholar] [CrossRef]
- Shen, W.; Zhao, K.; Jiang, Y.; Wang, Y.; Zhang, Z.; Bai, X. Object skeleton extraction in natural images by fusing scale-associated deep side outputs. In In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 222–230. [Google Scholar]
- Soille, P. Morphological Image Analysis: Principles and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Wang, S.; Geng, Z.; Zhang, J.; Chen, Y.; Wang, J. A Fuzzy C-means Model Based on the Spatial Structural Information for Brain MRI Segmentation. Int. J. Signal. Process. Image Process. Pattern Recognit. 2014, 7, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Kertels, O.; Linsenmann, T.; Kessler, A.F.; Kircher, M.; Brumberg, J.; Tran-Gia, J.; Malte, K.; Joachim, B.; Maria, M.C.; Samuel, S.; et al. Clinical utility of different approaches for detection of late pseudoprogression in glioblastoma with O-(2-[18F]fluoroethyl)-L-tyrosine PET. Nuklearmedizin 2019, 58, 174–175. [Google Scholar]
- Buades, A.; Coll, B.; Morel, J.-M. Computer vision and pattern recognition. In In Proceedings of the CVPR IEEE Computer Society Conference on IEEE, IEEE. San Diego, CA, USA, 20–26 June 2005; pp. 60–65. [Google Scholar]
- Pal, C.; Das, P.; Chakrabarti, A.; Ghosh, R. Rician noise removal in magnitude MRI images using efficient anisotropic diffusion filtering. Int. J. Imaging Syst. Technol. 2017, 27, 248–264. [Google Scholar] [CrossRef]
- Anoraganingrum, D. Cell segmentation with median filter and mathematical morphology operation. In Proceedings of the 10th International Conference on Image Analysis and Processing, Venice, Italy, 27–29 September 1999; pp. 1043–1047. [Google Scholar]
- Moraru, L.; Moldovanu, S.; Dimitrievici, L.T.; Dey, N.; Ashour, A.S.; Shi, F.; Fong, S.J.; Khan, S.; Biswas, A. Gaussian mixture model for texture characterization with application to brain DTI images. J. Adv. Res. 2019, 16, 15–23. [Google Scholar] [CrossRef]
- Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.A.; Becker, J.A. Available online: http://www.med.harvard.edu/AANLIB/ (accessed on 7 March 2020).
- Dong, T.; Attwood, K.; Hutson, A.; Liu, S.; Tian, L. A new diagnostic accuracy measure and cut-point selection criterion. Stat. Methods Med. Res. 2017, 26, 2832–2852. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.N.Y.; Sarowar, M.G.; Rahman, M.L.; Chaki, J.; Dey, N.; Tavares, J.M.R. Adam deep learning with SOM for human sentiment classification. Int. J. Ambient Comput. Intell. 2019, 10, 92–116. [Google Scholar] [CrossRef] [Green Version]
- Xiong, D.; Yan, L. A Classification Learning Research based on Discriminative Knowledge-Leverage Transfer. Int. J. Ambient Comput. Intell. 2018, 9, 52–68. [Google Scholar] [CrossRef] [Green Version]
Diagnosis/MRI Image Type | SSIM (Database D1) | SSIM (Database D2) | S-Jaccard (Database D1) | S-Jaccard (Database D2) |
---|---|---|---|---|
Healthy /T2w | 0.996 | 0.998 | 0.894 | 0.999 |
Glioma/T2w | 0.998 | 0.998 | 0.656 | 0.999 |
Healthy /PD | 0.953 | 0.961 | 0.881 | 0.998 |
Glioma/PD | 0.901 | 0.921 | 0.980 | 0.991 |
S-Jaccard | AUC | Sensitivity | Specificity | ER |
---|---|---|---|---|
denoised T2w image | 0.951 | 0.927 | 0.813 | 0.2 |
denoised PD image | 0.969 | 0.882 | 0.926 | 0.139 |
raw T2w image | 0.833 | 1 | 0.657 | 0.343 |
raw PD image | 0.904 | 0.857 | 0.794 | 0.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pana, L.; Moldovanu, S.; Dey, N.; Ashour, A.S.; Moraru, L. Brain Tissue Evaluation Based on Skeleton Shape and Similarity Analysis between Hemispheres. Computation 2020, 8, 31. https://doi.org/10.3390/computation8020031
Pana L, Moldovanu S, Dey N, Ashour AS, Moraru L. Brain Tissue Evaluation Based on Skeleton Shape and Similarity Analysis between Hemispheres. Computation. 2020; 8(2):31. https://doi.org/10.3390/computation8020031
Chicago/Turabian StylePana, Lenuta, Simona Moldovanu, Nilanjan Dey, Amira S. Ashour, and Luminita Moraru. 2020. "Brain Tissue Evaluation Based on Skeleton Shape and Similarity Analysis between Hemispheres" Computation 8, no. 2: 31. https://doi.org/10.3390/computation8020031
APA StylePana, L., Moldovanu, S., Dey, N., Ashour, A. S., & Moraru, L. (2020). Brain Tissue Evaluation Based on Skeleton Shape and Similarity Analysis between Hemispheres. Computation, 8(2), 31. https://doi.org/10.3390/computation8020031