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Abstract: Background: The purpose of this article is to provide a new evaluation tool based on
skeleton maps to assess the tumoral and non-tumoral regions of the 2D MRI in PD-weighted (proton
density) and T2w (T2-weighted type) brain images. Methods: The proposed method investigated
inter-hemisphere brain tissue similarity using a mask in the right hemisphere and its mirror reflection
in the left one. At the hemisphere level and for each ROI (region of interest), a morphological skeleton
algorithm was used to efficiently investigate the similarity between hemispheres. Two datasets with
88 T2w and PD images belonging to healthy patients and patients diagnosed with glioma were
investigated: D1 contains the original raw images affected by Rician noise and D2 consists of the
same images pre-processed for noise removal. Results: The investigation was based on structural
similarity assessment by using the Structural Similarity Index (SSIM) and a modified Jaccard metrics.
A novel S-Jaccard (Skeleton Jaccard) metric was proposed. Cluster accuracy was estimated based
on the Silhouette method (SV). The Silhouette coefficient (SC) indicates the quality of the clustering
process for the SSIM and S-Jaccard. To assess the overall classification accuracy an ROC curve
implementation was carried out. Conclusions: Consistent results were obtained for healthy patients
and for PD images of glioma. We demonstrated that the S-Jaccard metric based on skeletal similarity
is an efficient tool for an inter-hemisphere brain similarity evaluation. The accuracy of the proposed
skeletonization method was smaller for the original images affected by Rician noise (AUC = 0.883
(T2w) and 0.904 (PD)) but increased for denoised images (AUC = 0.951 (T2w) and 0.969 (PD)).

Keywords: skeletonization; inter-hemisphere brain similarity; SSIM (Structural Similarity Index);
S-Jaccard (Skeleton Jaccard); clustering

1. Introduction

Over the last decades brain diseases have become increasingly frequent. Most clinical researches
show that many patients diagnosed with brain tumors die due to inaccurate detection of the position
and size of the tumor. MRI (Magnetic Resonance Imaging) scanning is pointed at the intracranial cavity,
producing a complete image of the brain, which is then visually examined for diagnosis of cerebral
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affections [1–5]. Glioma is the most common malign tumor in the central nervous system making up
approximately 80% of total malign brain tumors. Full surgical removal is almost impossible due to the
tumor’s location and infiltration [6,7].

In a comparative study of real-world objects, the human eye marks the edges of objects. In the
diagnosis of cerebral affections, the edges of the image are important elements of analysis. In image
processing, edge detection is a complex process often requiring convolutions between first-order
derivative filters [8], second order filters [9], or the image gradient [10,11] and the original image.
Glioma tumors show a higher heterogeneity and irregularity of the tumor tissue. This complex
structure qualifies the edge detection and skeletonization to distinguish between the tumor area and
the normal tissue. To estimate edge detection with a good accuracy, as well as to assess the brain MRI
image segmentation, a number of similarity indices have been defined such as feature similarity index
(FSSIM), mean SSIM, and SSIM [8,12] or Jaccard [13]. A similarity study between cerebral hemispheres
requests an effective and accurate method for edge detection because an inappropriate choice leads to
the extraction of erroneous information/edges.

Several skeletonization algorithms have been devoted to process 2D or 3D images in various
applications [14–20]. Lee and Kashyap [14] introduced a 3D thinning algorithm to extract medial
surfaces and medial axes by preserving Euler characteristics and connectivity in the original object.
The noise was removed during the pre-processing step and in the post-processing steps the skeleton
was extracted, where the unwanted branches were removed, and a thinning operation was performed.
The authors claimed the proposed algorithm outperformed the existing skeletonization algorithms
in casting and forging manufacturing processes. In addition, other studies were devoted to evaluate
and/or monitor brain tumors. Wu et al. [16] designed an adaptive superpixel generation using a hybrid
algorithm based on an automated selection of the number of superpixels for further glioma segmentation
in T2w MRI images. Afterward, feature extraction, (such as statistical, texture, curvature and fractal
features, for each superpixel, and a support vector machine (SVM) for classification were applied.
The ASLIC0 algorithm was based on simple linear iterative clustering version with 0 parameters for
a hyper-parameter K selection and optimization. The results reported 0.8492 average Dice, 81.47%
sensitivity, 99.64% specificity, and Hausdorff distance of 3.4697 pixels. Zhao et al. [17] developed
a decision support algorithm for detection and segmentation of abnormal tissue regions and brain
tumor/glioma in MRI, based on the learn structure of undirected graphical models. The superpixel,
statistical feature extraction from the superpixel distribution, and the Conditional Random Fields
(CRF) for image segmentation, were used. This method led to more regular superpixel shape, but with
high computational cost. Yang et al. [18] obtained a smooth and accurate skeleton of a specified object
in the gray image using the level set idea combined with a gradient module method. First, the object’s
boundary was detected based on Partial Differential Equation PDE and level set method. Then, the
skeleton of the object was determined by connecting endpoints through the shortest path algorithm.
The reported method provided good results and was insensitive to noise. Shen et al. [19] provided
an elaborated skeleton extraction in a natural image method based on a holistically-nested network
(fully convolutional network FC-N) with multiple scale-associated side outputs for skeleton extraction.
This complex algorithm provided improved recall and precision at most of the precision-recall regimes.

In this study, a method for edge detection in the brain structure based on a skeleton algorithm
and morphological mathematical operations is proposed [20]. The proposed algorithm is implemented
in two steps. In the first step, erosion and opening morphological operations are used. A strel
object or a morphological structuring element is used for a finite number of times to perform the
morphological operation. In the second step, the same strel object is called the same number of times
to run morphological dilatation. The image is dilated and, at the end, the union of all intermediate
steps leads to the skeleton of the image. Skeletal similarity analysis is performed on the regions of
interest symmetrically placed on both hemispheres. To cut the regions of interest, a mask is designed
on the brain tissue. The reference is healthy patients and the source is patients diagnosed with glioma.
The skeletal similarity is calculated using SSIM and S-Jaccard between the corresponding interest
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regions. Moreover, SSIM and S-Jaccard values are clustered using the Silhouette method (SV) [21].
The quality of the clusters is analyzed with the Silhouette coefficient (SC). To validate our analysis
and assess the overall classification accuracy, ROC curve implementation was carried out [22]. Also, a
skeletal similarity empirical method using the comparison of the trend lines of skeleton map datasets
to determine a possible perceived similarity or dissimilarity based on a certain pattern is proposed.
The analysis was performed in two datasets; D1 contains raw images from the Harvard’s Whole Brain
Atlas that are affected by noises with Rician distribution. D2 contains denoised images by using
an anisotropic diffusion filter [23,24]. The results are compared in terms of the noise effect on the
proposed method.

A brief introduction to mathematical approaches, the subjects analyzed, the acquisition, and image
post-processing are presented in Section 2. Results of the study and a brief discussion are presented in
Section 3. Section 4 concludes the paper.

2. Materials and Methods

2.1. Mathematical Approaches

(a) SSIM quantifies image quality or perceptual difference between two images as a result of
various processing operations. It is based on the computation of luminance, contrast, and structural
terms. For x and y binary images, SSIM is defined as [8]:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) , (1)

where µx, µy,σx, σy, σxy are the local means, standard deviations, and cross-covariance for images x
and y. Usually, c1 = (K1L)2, L being the dynamic range of pixel values (255 for 8-bit images), K1 << 1
and c2 = c1/2.

(b) The skeleton algorithm of an image A, which represents a region of interest (ROI), is performed
through the following steps:

(b1) Morphological erosion and opening operations are run using a morphological structuring
element B and are repeated k times. The process stops after locating the ‘last’ contour pixel in the
shape [20,25]. k is the last iterative step before the object erodes into the void space (i.e., erosion takes
place up to the point where, if one would repeat the process one more time, the object would be
confused with the background, that is, there would be no object).

(b2) Dilation is performed with the morphological dilatation function and the structural element
B. This operation is repeated k times.

For both morphological operations (erosion and dilation) the morphological structuring element
B is a disc with a radius of 5.

(c) The Jaccard index represents the ratio between the intersection and union of two binary images.
HL represents the cardinal of ROI cuts from the left hemisphere and HR the cardinal of ROI cuts from
the right hemisphere, respectively [13].

S− J(HL, HR) =
|HL ∩HR|

|HL ∪HR|
, (2)

We refer the Jaccard index as the S-Jaccard as its application follows the skeleton operation.
(d) k-means algorithm for clustering allows division of a dataset into a specific number of groups.

High quality clusters with high intra-cluster similarity and low inter-cluster similarity represent a good
clustering operation [1]. First, k-means calculates k centroids and then it attributes each observation to
the nearest cluster. These two steps are alternated until a stopping criterion is met, when there is no
further change in the assignment of the data points. The k-means algorithm aims at minimizing an
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objective function, which in this case is the squared error function between µk and the data point in
cluster ck [21,26,27]:

J(ck) =
∑
xi∈ck

∥∥∥xi − µk
∥∥∥2

, (3)

where
∥∥∥xi − µk

∥∥∥is the Euclidean distance between a data point, xi, and a cluster center, µk, iterated over
ith all k points in the cluster, for all k clusters. In our study, k = 3.

(e) The Silhouette method computes the silhouette width for each object, the average silhouette
width of each cluster, and the overall average silhouette width for the entire image set. This index
shows how proper a cluster is separated from its neighbors. By computing the silhouette index, it is
possible to assess the validity of a clustering operation. Also, the correctness regarding the number of
selected clusters can be evaluated [12,28]. The silhouette of the object i, S(i):

S(i) =
b(i) − a(i)

max
{
a(i), b(i)

} , (4)

where a(i) is the average dissimilarity between observation i and other points in its own cluster (‘within’
dissimilarity), and b(i) denotes the minimum average dissimilarity of i to all observations of other
clusters (between’ dissimilarity).

The Silhouette coefficient is SC = max
i

S(i).

For, SC ∈ [0.81–1.00], the object is very well-clustered; SC ∈ [0.51–0.80] the object is well-clustered;
SC∈ [0.26–0.50] the object is poor-clustered, and SC ≤ 0.25 occurs with the artificial cluster [26].
Accordingly, when S(i) is close to 1, the ‘within’ dissimilarity a(i) is much smaller than the smallest
‘between’ dissimilarity b(i), and the object is ‘well-clustered’, while for S(i)–0, the a(i), and b(i) are
approximately equal; thus, it is unclear as to which cluster the object i is assigned. Also, s(i) close to–1,
refers to a misclassified object.

(f) Skeletal similarity empirical method. The trend lines are generated for each analyzed region
of interest ROI and brain hemisphere by computing the length of each skeleton segment in each
skeleton map. The ROIs belonging to the healthy brain hemisphere are used as reference images.
The ROIs belonging to the tumoral regions are so called source images. The length of each segment
in the skeleton map is determined using the Cartesian coordinates of the start and end points and
the Euclidian distance. A scatter plot displaying the relationship between the length of each skeletal
segment and the number of segments having the same length is built. A second-degree polynomial
function provides the best fit for approximation. The similarity of the polynomial curves is an indicator
of the structural similarity between the healthy/reference and the source skeleton map and allow us to
estimate the new edges generated empirically due to the tumor presence.

The images provided by the Harvard’s Whole Brain Atlas are raw images and are affected by Rician
noise. The selected ROIs are denoised by using an anisotropic diffusion filter [23,24]. The anisotropic
diffusion filtering provides reliable noise removing while very satisfactory edge-preserving results are
achieved. The noise removal results are quantitatively assessed by the signal-to-noise ratio (SNR).

2.2. Subjects, Image Acquisition and Post-Processing

The programming environment was a MATLAB R2017a and Image Processing toolbox.
The hardware was a computer with the following technical performance: Inter (R) Core (TM) i7-8550U
CPU @ 1.80 GHz; Memory (RAM) 8 GB DDR4; GeForce MX150 4GB video; hard disk 256GB SSD,
Windows 10 operating system 64-bits. The image dataset was downloaded from Harvard’s Whole
Brain Atlas website for free [29] The D1 and D2 datasets contain raw and denoised images, respectively,
for patients with glioma and healthy patients. D2 was generated using the anisotropic diffusion
filtering for denoising the images in D1. Each dataset includes 88 PD and T2w images (256 × 256 pixels);
44 images for patients diagnosed with glioma and 44 for healthy patients. A mask of a rectangular
shape (35 × 45 pixels) was applied to obtain regions of interest (ROIs). This mask was projected into the
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right hemisphere and then was mirror-reflected using the horizontal reflection of the left hemisphere.
This process correlates the same regions in the right and left hemispheres and allows investigation of
the bilateral symmetry: 528 regions of interest (264 for images for glioma and 264 for healthy patients)
were obtained.

2.3. Flow Chart

The flow chart of post-processing and analysis is shown in Figure 1.

Figure 1. The proposed post-processing and analysis.

The following steps were performed:

I. Two datasets are generated: D1 contains raw images and D2 contains denoised images by
using an anisotropic diffusion filter,

II. select ROIs for further image manipulation tasks; insert and crop out the rectangle ROIs with a
size of 35 × 45 pixels. This consisted of:

(i) design the first rectangle mask in the right hemisphere,
(ii) determine the distances to generate the other two rectangle masks in the

right hemisphere,
(iii) insert the other two masks into the right hemisphere according to the distances from

step (ii),
(iv) perform the mirror reflection of the masks into the right hemisphere onto the left

hemisphere.

III. crop out ROIs from both hemispheres, following the algorithm of step (II),
IV. compute SSIM for monochrome ROIs,
V. segment ROIs with the skeleton algorithm,
VI. calculate S-Jaccard for ROIs processed in step (V),
VII. carry out a k-means clustering over SSIM and S-Jaccard values and pathologies,
VIII. carry out cluster analysis with the silhouette method.
IX. carry out classification data using ROC analysis.
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Both metrics (i.e., SSIM and S-Jaccard) were computed in every possible pair pathology-image type.
For each dataset, 264 pairs were analyzed which belong to ROIs having the same spatial coordinates
for all the studied images.

3. Results

Figures 2 and 3 show examples for the implementation of SSIMs and skeletonization for right–
left correspondents for a raw image containing Rician noise (left panel) and a filtered image by the
anisotropic diffusion filter (right panel).

Figure 2. Example of extracting regions of interes ROIs in proton density PD image for a patient with
glioma, where: Left side: (a) raw image. Right side: (a) denoised image. (b) ROI 1L; (c) ROI 2L; (d)
ROI 3L; (e) ROI 1R; (f) ROI 2R; and (g) ROI 3R.

Figure 3. Results of the skeleton algorithm for a T2w image belonging to a patient with glioma, where:
Left side: (a) raw image. Right side: (a) denoised image. (b) ROI 1L; (c) ROI 2L; (d) ROI 3L; (e) ROI 1R;
(f) ROI 2R; and (g) ROI 3R.

The region of interests cut from the right hemisphere were labelled as ROI 1R, ROI 2R, ROI
3R, and their symmetry in the left hemisphere were denoted as ROI 1L, ROI 2L, ROI 3L. Figure 4
summarizes the skeletonization results for a patient with glioma by providing a direct comparison of
the morphological skeleton transform between brain hemispheres. The skeletal maps for two correlated
ROIs were overlapped to provide a facile evaluation of dissimilarities.
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Figure 4. (a) Skeletal map of ROI 1R; (b) rectangular masks overlaid on a T2w MRI image for a patient
diagnosed with glioma; (c) Skeletal map of ROI 1L; (d) ROI 1R, and ROI 1L overlapped to highlight
differences between the skeletal maps.

The k-mean clustering algorithm was used to group the n observations (i.e., SSIM and S-Jaccard
values) into clusters. The Silhouette method assessed the relative quality of the clusters and provided
information on the data configuration and clustering validity and the results for S-Jaccard are shown in
Figures 5 and 6. We have to mention that the number of clusters k = 3 follows the number of S-Jaccard
1 (between ROI 1R and its mirror symmetric ROI 1L), S-Jaccard 2 (between ROI 2R and its mirror
symmetric ROI 2L) and S-Jaccard 3 (between ROI 3R and its mirror symmetry ROI 3L).

Figure 5. Cluster validity for S-Jaccard values for raw images belonging to D1. The name of the images
follows the pattern: Diagnose Index/MRI image type. (a) S-Jaccard_ healthy/T2w; (b) S-Jaccard_ glioma/

T2w; (c) S-Jaccard_ healthy/PD; (d) S-Jaccard_ glioma/ PD.
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Figure 6. Cluster validity for S-Jaccard values for denoised images belonging to D2. The name
of the images follows the pattern: Diagnose Index/MRI image type. (a) S-Jaccard_ healthy /T2w;
(b) S-Jaccard_ glioma/T2w; (c) S-Jaccard_ healthy /PD; (d) S-Jaccard_ glioma /PD.

Figures 5 and 6 containing the silhouette structure of S-Jaccard for both datasets D1, and D2 show
the two cases of negative clusters (glioma/T2w, glioma/PD). Thus, for glioma/PD case S(i) = −0.45 and
for glioma/T2w case S(i) = −0.1, and SSIM_ glioma/ T2w is characterized by S(i) = −0.05 indicating an
intermediate case lying far from the other two clusters or that analyzed objects are dispensed to another
close cluster. However, for denoised images these negative clusters are substantially reduced. Also,
data in Table 1 indicate a clear-cut clusters structure. There are two exceptions for SSIM_ glioma/PD
and S-Jaccard_glioma/T2w for noisy images in D1. Moreover, data in Table 1 shows a slightly weak
performance for PD images for both pathologies, as the silhouette coefficient is 10%–15% lower than SC
corresponding to the T2w images. Nevertheless, the SC values in Table 1 indicate a dominant strong
(well-defined) cluster structure. In this comparison, a better clustering performance was achieved
when a denoising operation was carried out (results for database D2).

Table 1. The SC values for both pathologies and MRI image type.

Diagnosis/MRI
Image Type

SSIM
(Database D1)

SSIM
(Database D2)

S-Jaccard
(Database D1)

S-Jaccard
(Database D2)

Healthy /T2w 0.996 0.998 0.894 0.999
Glioma/T2w 0.998 0.998 0.656 0.999
Healthy /PD 0.953 0.961 0.881 0.998
Glioma/PD 0.901 0.921 0.980 0.991

Figure 7 illustrates the ROC curves for both cases: raw and denoised images. It shows that the
skeletonization accuracy, which is smaller for original images, affected by the Rician noise, where the
obtained AUC is 0.883, and 0.904 with the T2w, and PD, images, respectively. However, the accuracy
increases in the denoised images showing AUC 0.951, and 0.969 with T2w, and PD images, respectively.
The average SNR is 18.5 dB for T2w images, and 14.72 dB for PD images. Since both the SC and
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AUC values for the S-Jaccard index are high for the images in D2, it can be concluded that the edges
are preserved and there are no artifacts generated during the denoising operation. Also, the point
closest-to-(0, 1) corner (ER) is computed by minimizing the Euclidean distance between the ROC curve,
and the point of intersection of the (1-specificity) axis, and sensitivity axis [30]. The ER characterizes
the optimal condition when most of the individuals are classified correctly. The performance measure
ER ensures both high sensitivity and specificity. Table 2 shows the cut-points ER, and the related
sensitivity/specificity values. The case of glioma denoised PD images meet the condition, where the
sensitivity and specificity values are almost equal to the AUC value. The average SNR is 18.5 dB for
T2w images, and 14.72 dB for PD images. As the SC, AUC, and ER values for the S-Jaccard index are
higher for images in D2 it can be concluded that the edges are preserved and there are no artifacts
generated during the denoising process.

Figure 7. ROC curves for S-Jaccard computed for glioma images in D1 dataset (top) and D2 dataset
(bottom), (a) raw T2w image, (b) raw PD image, (c) denoised T2w image, and (d) denoised PD image.

Table 2. The cut-points ER, area under the curve AUC and related sensitivity and specificity values, for
S-Jaccard computed for glioma images.

S-Jaccard AUC Sensitivity Specificity ER

denoised T2w image 0.951 0.927 0.813 0.2

denoised PD image 0.969 0.882 0.926 0.139

raw T2w image 0.833 1 0.657 0.343

raw PD image 0.904 0.857 0.794 0.25
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The trend lines for each analyzed ROI were determine based on the length of each skeleton
segment (Figures 8 and 9). A pair comparison between the left and right ROI skeleton map was
empirical performed using the polynomial trend curves. As can be seen in Figures 7 and 8, polynomial
trend curves allow an easier detection of the dissimilarity of skeleton maps. The number of skeletal
segments is highly increased for PD images compared to T2w, i.e., the edges are better preserved in PD
brain images and the pattern of the trend lines is different.

Figure 8. Fitted curves on number of skeleton segments vs. length of the segments (i.e., the
corresponding connected pixels) for T2-weighted image for a patient with glioma.

Figure 9. Fitted curves on number of skeleton segments vs. length of the segments (i.e., the
corresponding connected pixels) for PD-weighted image for a patient with glioma.
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4. Discussion

Several studies have been conducted on brain segmentation and classification and different
applications [31,32]. In addition, skeleton transform is a quite effective and accurate approach for
similarity investigations when images show a little contrast and the main cerebral tissues (i.e., gray
matter, white matter, and cerebrospinal fluid) are overlapped. Experimental data analysis reveals
different clustering options for SSIM and S-Jaccard provided by the Silhouette method. In this case,
we focused on a cluster validity examination. Optimal clustering operation requires clusters sharing
almost the same diameter and showing clearer compactness and separation. In our experiments, due
to the heterogenous data of patients diagnosed with glioma, clusters may drastically be non-uniform.
S-Jaccard–glioma/PD and S-Jaccard–glioma/T2w show clusters with the smallest average silhouette
width (Figure 6b,d). These two extreme cases indicate a high variability of the S-Jaccard values
and show the structural dissimilarity of the cerebral tissue between hemispheres in glioma patients.
These results are improved by using denoised images. For healthy patients, a more uniform distribution
of the clusters indicates a higher textural similarity between hemispheres. Data in Table 1 provides
SC values between 0.8 and 1 indicating that a division into k = 3 clusters is a natural choice. The SC
values were improved for D2. Also, the ROC and AUC accuracy improved from 0.883 to 0.951 (T2w)
and from 0.904 to 0.969 (PD), respectively, when noise was removed from images. We note that that
proposed algorithm provides good results for raw images (with only one exception) and substantially
better results are obtained for denoised images. Data in Table 2 shows the cut-points ER and related
sensitivity and specificity values. The higher sensitivity (=1) induces a detection bias as the AUC is
0.833 (case of D1, raw T2w images) The sensitivity and specificity values are almost equal to the AUC
value for glioma PD images and led to the best results for our approach.

A new empirical approach was conducted with focus on skeletal similarity. The skeletons generated
from the tumoral areas and the reference healthy brain were compared using the scatter plots displaying
the relationship between the length of each skeletal segment and the number of segments having the
same length. The trend lines for each pair of analyzed ROIs were approximated using the second-degree
polynomial functions. This approach explores the visual similarity. The number of skeleton segments
for PD-weighted images was higher, indicating the effectiveness of the skeletonization PD-weighted
image type and the utility of the skeletonization method for segmentation. The difference between ROI
pairs was empirically evaluated and indicates that visual dissimilarity is better perceived. The results
of this skeletal similarity approach were compared with SSIM and S-Jaccard evaluation metrics and we
reached the same conclusion, the PD-weighted image type is a better approach when the analysis is
focused on edge detection.

5. Conclusions

To evaluate the textural similarity between brain hemispheres, two MRI image types (PD and
T2w) for glioma and healthy patients were analyzed. The results were compared with denoised data.
A morphological skeleton algorithm and a k-means clustering algorithm were used to cluster the SSIM
and S-Jaccard metrics and to assess the structural similarity between brain hemispheres. Both the
validity and the performance of the clustering algorithm were assessed using the silhouette score. The
experimental results indicate that SSIM is independent of the texture variability while S-Jaccard is
more sensitive to texture irregularities. The overall classification accuracy was assessed by ROC curve
implementation. Also, a skeletal similarity empirical method using the comparison of the trend lines of
skeleton map datasets indicated the PD-weighted image type as a better approach when the analysis
was focused on edge detection, as it is suitable for very satisfactory edge-preserving results. At this
stage of the study, S-Jaccard could be successfully used to differentiate healthy patients from those
diagnosed with glioma. The proposed approach proved its efficiency as reported in the results section;
accordingly, it is recommended to compare our proposed method with other studies on the evaluation
of the brain tissue between hemispheres. It is also suggested to test other datasets. Our future work
will investigate different brain disorders and will aim to improve the proposed method.
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